
Numerical Analysis

Computer Exercise 2

Our goal here is to solve a stiff, non-linear system of differential equations using a
4th order diagonally implicit Runge-Kutta method. The first step is to write a multi-
dimensional solver which implements Newton’s method:

xn+1 = xn − J(xn)−1f(xn), Jij =
∂fi
∂xj

.

Your program should be a function called my newton. The function should have as input
arguments f , J ,x0 and tol. The last argument is the tolerance below which you stop the
iterations by checking the L2 norm between two consecutive steps.

Q1: Let’s first check the Newton solver on the four dimensional nonlinear system of
equations

xi = ecos (i
∑4

j=1 xj)

Find the solution of this system equations by using Newtons method by defining appro-
priately the function f and its Jacobian J . What is a good way to chose a starting guess?
Remember to chose a small value for the tolerance parameter.

Q2: Now consider the following stiff system of ODE’s:

y′1 = −0.04y1 + y2y3,
y′2 = 400y1 − 10000y2y3 − 3000y22,
y′3 = 0.3y22,

, 0 ≤ t ≤ 3 (1)

with initial condition y(0) = (1, 0, 0)T . You will solve this using both the Runge-Kutta-
Fehlberg (RKF) method and a 4th order L-stable diagonally implicit Runge-Kutta method.

Let me first briefly describe the RKF method which aims in determining the optimal
discretization step to be used in the solution of an Initial Value Problem (IVP). As we said
in the course, one way to guarantee the accuracy when solving an IVP is to solve it twice
using step sizes h and h/2 and then compare answers at the mesh points corresponding
to the larger step size. This requires a significant amount of computation !!! The Runge-
Kutta-Fehlberg method is one way to solve this problem. It has a procedure to determine
if the proper step size h is being used. At each step, two different approximations for
the solution are computed and compared. If the two answers are in close agreement, the
approximation is accepted. If the two answers do not agree to a specified accuracy, the
step size is reduced. If the answers agree to more significant digits than required, the
step size is increased.

The method is defined as

ki = f

(
wn + h

i∑
j=1

aijkj

)
, i = 1, . . . , s (2)

and

wn+1 = wn + h
s∑

j=1

bjkj, w̃n+1 = wn + h
s∑

j=1

b̃jkj, (3)



where the matrix A and the vectors b and b̃ are defined by

A =


0 0 0 0 0 0

1/4 0 0 0 0 0
3/32 9/32 0 0 0 0

1932/2197 −7200/2197 7296/2197 0 0 0
439/216 −8 3680/513 −845/4104 0 0
−8/27 2 −3544/2565 1859/4104 −11/40 0


,

b =


25/216

0
1408/2565
2197/4104

−1/5
0

 , b̃ =


16/135

0
6656/12825
28561/56430

−9/50
2/55


The provided file rkf.m is an implementation of the Runge-Kutta-Fehlberg method for
which s = 6.

Change appropriately the file rkf.m so as to implement the DIRK method defined by
(2)-(3) with s = 5 and

A =


1/4 0 0 0 0
1/2 1/4 0 0 0

17/50 −1/25 1/4 0 0
371/1360 −137/2720 15/544 1/4 0

25/24 −49/48 125/16 −85/12 1/4

 (4)

,

b =


25/24
−49/48
125/16
−85/12

1/4

 , b̃ =


59/48
−17/96
225/32
−85/12

0


The main difference between RKF and this DIRK method is that the diagonal entries

of A in (4) are not zero. This means that the equations that determine ki are of the form

ki = f(z + haiiki)

where z = wn + h

i−1∑
j=1

aijkj is known. Thus if we define

g(k) = k − f(z + haiik),

we can use Newton’s method to solve for k. As a starting guess you can take f(wn).
Q2: Implement the DIRK method in a file called my dirk.m. Note that the step-size

control works the same for DIRK as it does for RKF, so you do not need to modify this
part of the code.

Q3: Compare the results obtained by the two methods. How many iterations do you
need by each method to provide the results with the same accuracy?



Q4: Determine numerically the order of accuracy of the two methods that are used
in the RKF method. To do so, you need to solve a system of equations for which you
know the exact solution. The order can be determined by looking at the rate at which
the error goes to zero by successively refining h. To do this you have to write another
version of the rkf where h is fixed.

You should submit all your files and your report by email by 18/12/2014 at 9pm. Late
submissions will not be considered. All your codes and the report should be compressed
in one file named EA2 xxx.tgz (or zip) where xxx is your AM. Include enough comments
in the code to convince the reader that you understand the algorithms. Also comment
and explain the results obtained in your report. Please name your report EA2 xxx.pdf
and make directory (folder) that contains all your files. The directory should also named
EA2 xxx. Then compress this directory and send it to me.


