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Abstract. Sensor array imaging arises in applications such as nondestructive evaluation of materials
with ultrasonic waves, seismic exploration, and radar. The sensors probe a medium with
signals and record the resulting echoes, which are then processed to determine the location
and reflectivity of remote reflectors. These could be defects in materials such as voids,
fault lines or salt bodies in the earth, and cars, buildings, or aircraft in radar applica-
tions. Imaging is relatively well understood when the medium through which the signals
propagate is smooth, and therefore nonscattering. But in many problems the medium is
heterogeneous, with numerous small inhomogeneities that scatter the waves. We refer to
the collection of inhomogeneities as clutter, which introduces an uncertainty in imaging
because it is unknown and impossible to estimate in detail. We model the clutter as a
random process. The array data is measured in one realization of the random medium,
and the challenge is to mitigate cumulative clutter scattering so as to obtain robust images
that are statistically stable with respect to different realizations of the inhomogeneities.

Scatterers that are not buried too deep in clutter can be imaged reliably with the coher-
ent interferometric (CINT) approach. But in heavy clutter the signal-to-noise ratio (SNR)
is low and CINT alone does not work. The “signal,” the echoes from the scatterers to be
imaged, is overwhelmed by the “noise,” the strong clutter reverberations. There are two
existing approaches for imaging at low SNR: The first operates under the premise that data
are incoherent so that only the intensity of the scattered field can be used. The unknown
coherent scatterers that we want to image are modeled as changes in the coefficients of
diffusion or radiative transport equations satisfied by the intensities, and the problem be-
comes one of parameter estimation. Because the estimation is severely ill-posed, the results
have poor resolution, unless very good prior information is available and large arrays are
used. The second approach recognizes that if there is some residual coherence in the data,
that is, some reliable phase information is available, it is worth trying to extract it and
use it with well-posed coherent imaging methods to obtain images with better resolution.

This paper takes the latter approach and presents a first attempt at enhancing the SNR
of the array data by suppressing medium reverberations. It introduces filters, or annihila-
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tors of layer backscatter, that are designed to remove primary echoes from strong, isolated
layers in a medium with additional random layering at small, subwavelength scales. These
strong layers are called deterministic because they can be imaged from the data. However,
our goal is not to image the layers, but to suppress them and thus enhance the echoes
from compact scatterers buried deep in the medium. Surprisingly, the layer annihilators
work better than intended, in the sense that they suppress not only the echoes from the
deterministic layers, but also multiply scattered ones in the randomly layered structure.

Following the layer annihilators presented here, other filters of general, nonlayered
heavy clutter have been developed. We review these more recent developments and the
challenges of imaging in heavy clutter in the introduction in order to place the research
presented here in context. We then present in detail the layer annihilators and show with
analysis and numerical simulations how they work.

Key words. broadband array imaging, random media, migration, coherent interferometry, velocity
estimation
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1. Introduction. Sensor array imaging is an important technology in many ap-
plications such as ultrasonic nondestructive testing, seismic exploration, and ground
or foliage penetrating radar. The arrays use one or more sources to probe a medium
with signals that are typically short pulses, and then they record the reflected waves.
Depending on the application, the waves may be acoustic, elastic, or electromagnetic.
We consider here scalar, pressure waves, modeled by the acoustic wave equation. This
simplifies the analysis while neglecting shear waves and mode conversion of elastic
waves in solids, and polarization effects for electromagnetic waves.

The array data are the recordings of the pressure field p(t, �xr, �xs), with �xs and
�xr denoting the locations of the sources and receivers. We call the recordings time
traces to emphasize their dependence on the time t that takes values in some recording
window. In principle, the location of the sources and receivers may be in different
sets. We assume here that they are collocated at N points in a set A, the array. The
array data are gathered with Ns ≤ N sources that sequentially probe the medium.
All the N sensors in the array record the responses, the echoes. We may have the
entire response matrix

P(t) = {p(t, �xr, �xs)}r,s=1,...,N

when Ns = N , or just a column of it, in the case of a single source excitation. The
imaging problem is to determine the reflectivity ν of the coherent scatterers in the
medium. We often image just the support of the reflectivity, which is located around
abrupt changes of the wave speed such as jump discontinuities that produce reflected
waves measured at the array.

Imaging in smooth or homogeneous media, such as air, is simpler, because the
waves are scattered only by the coherent scatterers that we wish to locate. It can
be done efficiently with Kirchhoff migration and its variants used in radar [36, 44],
seismic imaging [19, 41, 20], etc. These methods form an image in a search domain D
by superposing the data traces p(t, �xr, �xs) migrated to imaging points �ys ∈ D. The
term migration refers to the synchronization of the traces at time t = τ(�xr , �y

s, �xs),
the travel time from the source at �xs to �ys and then back to the array at receiver �xr.
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The Kirchhoff migration function is given by

(1.1) J KM(�ys) =
∑

�xs,�xr∈A
p
(
τ(�xr , �y

s, �xs), �xr , �xs

)
.

It is a simplification of the solution of the least squares optimization problem that
estimates the unknown reflectivity ν in the medium by minimizing the misfit between
the array data and its mathematical model linearized in the reflectivity [20]. More
explicitly, (1.1) is the high frequency approximation of the L2 adjoint M� of the
forward map M applied to the data d. The forward map takes the reflectivity ν to
the data space. The adjoint takes the data and backpropagates it to the imaging
points by running the wave equation in reverse. Kirchhoff migration assumes that
the medium is known and smooth, and it uses geometrical optics to approximate the
backpropagation, up to an amplitude factor that is nearly constant, by evaluating the
data at the travel times [20, 19].

The solution of the linear least squares formulation of the inverse problem satisfies
the normal equations

(1.2) M�Mν = M�d,

with M�M the normal operator (Hessian). This is also called the time reversal
operator, because, mathematically, it takes the data, time reverses it, and then back-
propagates it to the imaging points. It turns out that M�M focuses at the reflectivity,
at least for large enough arrays and bandwidths, as shown in [17, 18, 67] in the case
of smooth media. The relevance of these results to imaging is that the support of the
unknown coherent scatterers can be estimated from the right-hand side of (1.2), the
operator M� acting on the data, which is what (1.1) approximates in smooth media.

Recent studies, mostly applied to exploration geophysics, use full wave simulators
instead of approximations with travel times, and they improve images by inverting
the normal operator [54, 45, 58] in the generalized sense. Alternatively, images can be
improved with image enhancement filters [29, 24] or by using regularization techniques
based on prior information, such as sparsity of the scattering scenes [46, 13, 40]. All
such results are dependent on the medium being smooth and known. If the medium
is not known, but is smooth, it can be estimated with a complementary process called
velocity estimation. Velocity estimation can be done separately, using tomographic
methods [66, 16], or jointly with imaging [39].

Imaging is more complicated in heterogeneous media, with numerous inhomo-
geneities that cause significant cumulative scattering. The inhomogeneities arise at
small, typically subwavelength scales. They cannot be known in advance and they
cannot be estimated from the array data. We can only estimate the smooth part of
the wave speed, called the background speed, which is what determines the travel
time of the coherent part of the signals. The small scale details of the medium cannot
be determined, they may not even be interesting in applications, but they cause scat-
tering. For example, in nondestructive evaluation of aging concrete structures, the
goal is to find coherent scatterers (defects) such as voids or cracks. These are strong
scatterers when compared with any single inhomogeneity (pebble) in the concrete,
but there are many inhomogeneities, and their scattering effects add up. The time
traces measured at the array are noisy, with waves scattered back by the medium ar-
riving long before and after the primary echoes from the defects. The primary echoes
are the parts of the signals that are transmitted through the medium, scatter at the
defects, and then are transmitted back to the array. They are the coherent part of
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the data that we need for imaging, because we know how to relate their arrival times
to locations of scatterers in the medium. Multiple scattering by the inhomogeneities
gradually transfers the energy of the coherent signals to the incoherent echoes, the
medium backscatter, which impedes imaging.

The numerous inhomogeneities in the medium are called clutter. Mathematically,
they represent small scale fluctuations of the wave speed. Because the fluctuations
are unknown, we model them with random processes and speak of wave propagation
and imaging in random media. The “noise” in the measurements is the wave field
backscattered by one realization of the random medium. It is very different than
the additive, identically distributed, and uncorrelated noise commonly assumed in
imaging. The clutter backscatter is not additive, it has complicated statistics, with
correlations over sensor offsets and frequencies, and it is difficult to mitigate. For
example, it follows from the law of large numbers that additive, uncorrelated noise
can be removed by the sum over the sensors in (1.1) if N is large. Clutter backscatter
has persistent correlations and it is not removed in (1.1). The resulting images are
noisy (speckled) and difficult, or impossible, to interpret.

To explain in more detail the failure of Kirchhoff migration and related approaches
in clutter, let us go back to the normal equations (1.2). The normal (time reversal)
operatorM�M still focuses at the reflectivity. In fact, the focusing is better in clutter,
meaning that it can occur even for small arrays, as described in the time reversal
studies [47, 22, 60]. Thus,M�d would give a good estimate of the unknown reflectivity,
if we could compute it. But M� is unknown, because the medium is unknown.
Traditional methods like Kirchhoff migration ignore the unknown inhomogeneities
and replace M� with a surrogate M�

o. The surrogate backpropagates the data in a
fictitious smooth medium. For example, this could be the medium with the known
or estimated background speed, the mean of the rapidly fluctuating wave speed in
clutter. Unfortunately, M�

od is not a good approximation of the backpropagation in
the real medium, and imaging fails.

An efficient way to mitigate clutter backscatter is to image with local cross-
correlations of the time traces, instead of the traces themselves, as is done in the
coherent interferometric (CINT) approach introduced and analyzed in [31, 30, 33, 26].
CINT imaging can be viewed as a statistically smoothed migration method. The
smoothing is done by cross-correlating the traces over carefully chosen sensor offset
and time windows, and then summing the results, synchronized with travel times
relative to the imaging points. The choice of the windows plays a key role in the quality
of CINT images, that is, their focusing and robustness. The optimal window sizes are
given by two intrinsic scales that capture the statistics of the clutter backscatter: The
decoherence frequency Ωd and the decoherence lengthXd, which varies with frequency.
Typically, Ωd is smaller than the bandwidth of the signals, and Xd is smaller than the
array aperture. The decoherence frequency and length are defined as the frequency
and sensor offsets over which clutter backscatter decorrelates. They depend on the
statistics of the clutter, the distance of propagation, and the frequency. Expressions
for Ωd and Xd have been derived analytically, using various random models of clutter
[33], but CINT is a general imaging approach that is not tied to a model. It has
an adaptive implementation that estimates Ωd and Xd during the image formation,
without any prior knowledge of the medium [30, 26]. The resolution and statistical
stability analysis of CINT are given in [33, 26], and shows that the CINT imaging
function involves the Wigner transform of the array data smoothed over its arguments.
The smoothing is needed for statistical stability, but it blurs the image. The smaller
the sensor offset windows and the longer the temporal ones, the more smoothing CINT



FILTERING DETERMINISTIC LAYER EFFECTS IN IMAGING 5

does, at the expense of resolution. The trade-off between smoothing for stability and
resolution leads to a figure of merit of the images that CINT produces, which is
optimized in adaptive CINT to get the optimal choice of the windows over which to
cross-correlate the data traces [30, 26].

CINT by itself cannot deal with heavy clutter. If the waves travel deep in the
medium the signal-to-noise (SNR) is very low. The clutter backscatter (the “noise”)
dominates the measurements at the array and the coherent echoes (the “signals”)
are faint. Imaging at such low SNR can proceed in two ways. One way is to accept
that there is no coherence left in the data and work with intensities of the measured
field [12, 4, 28]. The coherent scatterers are represented by parameters in diffusion
or radiative transport equations that model the intensity, and the problem becomes
a parameter estimation [12, 4]. The difficulty is that the estimation is extremely ill-
posed, meaning that only very low resolution results can be expected, unless there is
very good prior information about the coherent scatterers. Thus, if there is residual
coherence in the array data, as faint as it may be, it is worth trying to extract it
and then process it with well-posed, coherent methods such as CINT that give better
resolution. This leads to the second way of dealing with low SNR, which complements
the imaging process with data preprocessing that filters clutter backscatter, thus
enhancing the SNR. The question is how to do the filtering, with no prior information
about the location of the coherent scatterers to be imaged.

This paper describes one of the first filtering approaches, called layer annihilation.
It is designed for imaging compact coherent scatterers buried deep in layered media.
For example, the coherent scatterers may be due to fractures, small scale faults, rough
edges of salt bodies, or other “diffractors,” as they are called in the geophysics litera-
ture, in an idealized layered earth. Layered media are of special interest here because
they represent the worst case scenario in terms of strength of clutter backscatter. The
concept of transport mean free path that quantifies net scattering in general clutter
does not even apply to randomly layered media, because of wave localization [5, 50].
Wave localization means that all of the incident energy is reflected back and does not
reach beyond some depth [71, 5, 50].

The layered media in this paper have random fluctuations of the wave speed
at a fine length scale � that is small with respect to the central wavelength λo of
the waves emitted by the source. There are also isolated strong scattering layers,
for example, due to large jump discontinuities of the wave speed. These layers are
coherent scatterers that produce strong primary echoes at the array, and thus can be
imaged. However, we are not concerned with imaging the layers. We look instead
at how to enhance the primary echoes from compact scatterers buried deep in the
medium, with no knowledge of the layered structure.

The separation of the layer echoes from those due to small diffractors has been
considered before in the geophysics literature [42, 48]. Examples are the so-called
plane-wave destruction filters [42, 48, 49] designed to remove from the data a sequence
of plane-like waves arriving from different directions. The layer annihilators discussed
in this paper use ideas from semblance velocity estimation [39, 68]. They are based
on the fact that the arrivals from the small scatterers and the arrivals from the layers
have a different signature in the time and source-receiver offset space. The layer
annihilation consists of two steps. The first step is a travel-time transformation of
the data, between the time t and the range z, the depth in the layered medium. The
purpose of the transformation is to remove the dependence of the primary layer echoes
on the source and receiver offset so that we can suppress them in the second step, by
taking, for example, derivatives in the offset. The arrival times of the primary echoes
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from the compact scatterers have a different dependence on the offset, and this is why
they are not removed.

We show with analysis and numerical simulations that layer annihilators are effi-
cient image enhancement tools, provided that we know the smooth part of the wave
speed. If this is not known, we indicate briefly how it can be estimated by coupling
the imaging process with an optimization scheme. The objective function measures
the quality of the image as it is being formed with migration of the filtered data with
a trial background speed. The annihilation is effective when the speed is right, and
this is why we can estimate it directly by working with the image.

The analysis presented here explains the annihilation of the echoes from the strong
layers. But what is surprising is that the incoherent backscatter from random layering
is annihilated as well. The theoretical analysis of this surprising result is in [27].

Following the layer annihilation filters presented here, other approaches have
emerged that work in general clutter, not just layered ones [6, 7, 8, 3, 51, 2, 35].
The one-to-one correspondence between time and depth traveled by the waves exists
only in layered media, so filtering cannot be based just on travel-time transforma-
tions. New approaches have emerged that combine results from random matrix the-
ory [57, 9, 10] with statistical tools from extreme value theory [1] and computational
harmonic analysis [56] to detect faint coherent echoes in heavy clutter backscatter,
and to enhance the SNR.

The algorithm introduced in [35] uses the local cosine transform (LCT) to decom-
pose the traces, the entries in the response matrix P(t), in orthonormal bases given by
smooth time windows modulated by cosine functions. It detects the time windows that
contain the faint coherent echoes using the singular value decomposition of the trans-
formed response matrix, for all the frequencies in the bandwidth. The window search
is on a binary tree, starting from the root, and the detection is based on anomalous
behavior of the largest singular values as functions of frequency and the time window.
Once a window is selected, it is refined by taking the search to the children of the
window, and so on. The filtering of clutter backscatter consists of three steps: First,
it zeroes the LCT coefficients in all the time windows but the selected one. Second, it
projects the matrix of LCT coefficients in the selected window on the subspace of low
rank matrices with the anomalous large singular values, which contain information
about the coherent scatterers. Third, it undoes the LCT and gives the filtered data
in the original time window used by the array for recording the traces. The analysis
of the algorithm in [35] is carried out in [2] in randomly layered media, where the re-
sponse matrix has a special Toeplitz structure. This allows a detailed spectral analysis
of the LCT matrices, using the tools developed in [53, 55, 38], and puts the detection
and filtering approach in [35] into a rigorous setting, at least for layered media.

The detection of weak coherent echoes using the first singular value of the response
matrix is also studied in [6, 7, 8, 3, 51] for the case of heavy isotropic clutter and for
strong additive noise. It requires the estimation of the probability distribution of the
singular value, so as to set a statistical detection threshold. The results in [6, 7, 8]
include a filter of clutter backscatter that has been tested experimentally. It uses the
paraxial approximation model of the primary echoes in combination with subspace
projections to enhance the SNR.

A completely different approach for mitigating heavy clutter uses an auxiliary
array of receivers that is near the imaging region [52, 11, 63, 70]. Near means closer
than a transport scattering mean free path, so that scattering effects between the
auxiliary array and the imaging region are not strong. The primary array is far
away, and the signals emitted by its sources pass through heavy clutter to reach the
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auxiliary array and the coherent scatterers. The auxiliary array records very noisy
signals, the sequence of arrivals of the waves scattered multiple times during their
passage through clutter. Some of these arrivals involve reflections at the coherent
scatterers in the imaging region. The analysis in [52] shows that the primary echoes
from these scatterers can be extracted efficiently from cross-correlations of the noisy
measurements at the auxiliary array. The cross-correlations compress the long signals
caused by heavy clutter, at the origin of time; that is, they have a large peak at
t = 0. However, they also peak at the travel time between the auxiliary sensors and
the coherent scatterers. Thus, the heavy clutter can be removed by windowing the
cross-correlations, and images can be formed using migration if there is no residual
clutter effect and, otherwise, with CINT. The result is as if data were gathered by the
auxiliary array which is near the imaging region [52, 11, 63, 70].

If the application permits the use of auxiliary arrays, then they should be used
because they allow a simple removal of heavy clutter effects. But in many cases this is
not possible, so data preprocessing with filters of clutter backscatter is the only choice
for enhancing the SNR. This is where the results of this paper, which is specialized
to layered media, and those that followed [6, 7, 8, 3, 51, 2, 35] that apply to general
media, fit in.

A recent extension of the layer annihilator filters considered in this paper applies
to synthetic aperture radar imaging with motion estimation [21]. It uses travel-time
transformations to divide the data into subsets of echoes from stationary targets and
moving targets with unknown velocity. The separated data sets are then processed,
as shown, for example, in [25], to estimate target motion and to image.

2. Setup and Outline of the Paper. We consider the inverse problem of imaging
scatterers of small support, buried deep in a medium with layered structure. The
setup is illustrated in Figure 2.1. We probe the medium with a short pulse emitted
from a source at �xs and record the echoes at receivers placed at �xr for r = 1, . . . , N .
Let

A =
{
�xr = (xr , 0) ∈ Rd, xr ∈ Rd−1, r = 1, . . . , N

}
, d ≥ 2,

be the set of receiver locations, and consider a system of coordinates in dimension
d ≥ 2, with range (depth) z axis normal to the layers. The array is on the surface
z = 0 in the set of diameter a, the array aperture.

The data are one column {p(t, �xr, �xs)}r=1,...,N of the response matrix P(t), for
the source at �xs. The layer annihilation does not need more than one source, unlike

Fig. 2.1 Schematic of the setup for imaging scatterers buried in a layered medium with wave speed
v(z). The array of transducers sits on top of the medium. The source and receiver locations
are denoted by xs and xr. The medium is finely layered, and it has some strong scattering
interfaces at depths −Lj for j = 1, 2, . . . .
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the filters in [6, 7, 8, 3, 51, 2, 35] that work in general clutter but require the whole
response matrix P(t). Because the source is fixed, we suppress it henceforth in the
arguments of the pressure field.

The inverse problem is to use the data {p(t, �xr)}r=1,...,N to locate the small scat-
terers in the layered medium, which may be known partially or not at all. By partial
knowledge we mean that we may know the large scale features of the wave speed, but
not its small scale fluctuations, which we model as random with length scale �. The
medium may also have strong scattering layers at depths z = −Lj for j = 1, 2, . . . ,M .
The depth of these layers is not known, although it can be estimated in principle from
the data. We are not concerned with finding the layers. We look instead at how to
suppress the layer echoes and therefore enhance those echoes from the small scatterers.

The random fluctuations are strong enough, of order one, and cause scattering
that is visible in the traces as long tailed signals observed long before and long after
the arrival of the echoes from the small scatterers. If we have separation of scales of
the form

(2.1) �� λo � L

and a broadband pulse, as assumed in this paper, then the data retains a coherent
part. These are the echoes from the small scatterers and the strong layers at z = −Lj,
for j = 1, 2, . . . ,M , and they are described by the O’Doherty–Anstey (ODA) theory
[50, 5, 59, 43, 65]. ODA theory says that if we observe p(t, �xr) in a time window of
width similar to that of the probing pulse, centered at the travel time computed in the
smooth part of the medium, for waves traveling between the array and the scatterers,
we see a deterministic signal except for a small random arrival time shift. Such
pulse stabilization is special to layered media and it is because of this that Kirchhoff
migration can give useful results, in spite of the fine scale fluctuations. This has been
noted in [32, 23] in the context of imaging sources buried in finely layered media.

However, Kirchhoff migration does not give useful results in the case of scatterers
buried deep in layered media, due to low SNR. The echoes from the layers, the “noise,”
overwhelm the coherent arrivals, the signal, from the scatterers buried deep in the
medium, and must be filtered from the data prior to imaging. We introduce such
filters, called layer annihilators, and show that they can improve significantly the
images, provided that we know the smooth part of the wave speed. If this is not
known, we indicate briefly how it can be estimated by coupling the imaging process
with an optimization scheme. The objective function measures the quality of the
image as it is being formed by migrating the filtered data with a trial background
speed. The annihilation is effective when the speed is right, and this is why we can
estimate it directly by working with the image.

While all the theory in this paper assumes perfectly layered structures, we present
numerical simulations in media with additional, isotropic fluctuations, generated by
weak and small inhomogeneities of diameter comparable to λo. The cumulative effect
of such inhomogeneities leads to significant loss of coherence of the echoes coming from
the deep scatterers and consequently to the degradation of resolution and reliability
of the Kirchhoff migration images, even after the layer annihilation process. The loss
of coherence due to scattering by the inhomogeneities is dealt with efficiently by the
coherent interferometric (CINT) imaging method.

The paper is organized as follows: We begin in section 3 with the mathematical
model for the acoustic pressure recorded at the array. Then we introduce and analyze
in section 4 the filters that we call layer annihilators. Imaging with these filters and
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the coupling with velocity estimation are discussed in section 5. The numerical results
are in section 6. We end with a summary and conclusions in section 7.

3. The Forward Model. The acoustic pressure p(t, �x) and velocity �u(t, �x) satisfy
the first order system of partial differential equations

ρ
∂�u

∂t
(t, �x) +∇p(t, �x) = �F(t, �x),

1

V 2(�x)

∂p

∂t
(t, �x) + ρ∇ · �u(t, �x) = 0, �x ∈ Rd, t > 0,(3.1)

where ρ is the medium density and V is the wave speed. The source at �xs is modeled
by �F(t, �x) and acts at times t ≥ 0. The medium is quiescent prior to the source
excitation,

(3.2) �u(t, �x) = �0, p(t, �x) = 0, t < 0.

We suppose for simplicity that the density ρ is constant, but its variations can be
included in the analysis as shown in [50, 5].

The wave speed V (�x) is modeled as

(3.3)
1

V 2(�x)
=

1

v2(z)
+ ν(�x),

where ν(�x) is the reflectivity of the scatterers that we wish to image. We let S be
the compact support of ν(�x) and suppose that it lies at depth z = −L and that its
diameter is small with respect to the array aperture a. The background speed is
denoted by v(z) and has a smooth (or piecewise smooth) part c(z) and a remaining
rough part supported in the half space z < 0,

(3.4)
1

v2(z)
=

{
1

c2(z)

[
1 + σμ

(
z
�

)]
, −Lj < z < −Lj−1, j = 1, . . . ,M,

1
c2o
, z ≥ −L0 = 0.

The rough part consists of fine layering at scale � � λo and of strong scattering
interfaces at depths z = −Lj for j = 1, . . . ,M . These interfaces could be the result
of jump discontinuities of c(z), or we could have sudden blips1 in v(z), due to large
variations of c(z) over a few isolated intervals of order λo, as illustrated in Figure 2.1.
We refer the reader to section A.4 for the details of our mathematical model of the
scattering interfaces.

The fine layering is modeled in (3.4) with a random process written in scaled form
as σμ (z/�). We let μ be a dimensionless, zero-mean random function of dimensionless
argument, and we control the strength of the fluctuations with the parameter σ. We
consider strong fluctuations, with σ = O(1), and we impose the constraint

(3.5) σ |μ(z)| < 1 for all z < 0,

so that the right-hand side in (3.4) stays positive and bounded. See section 3.2 for
details on the scaling and the random function μ.

1The waves sample most efficiently the variations of the wave speed at scales similar to the
wavelength. This is why isolated changes (blips) of c(z) over intervals of length ∼ λo produce strong
echoes.
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3.1. The Scattered Field. The pressure field recorded at the receivers consists
of two parts: the direct arrival at time |�xr − �xs|/co from the source at �xs, and the
scattered field. The direct arrival carries no information about the medium, and it
can be removed by tapering the data for t ≤ |�xr − �xs|/co.

For time t less than the travel time τS from the source to S and back, p(t, �xr)
consists of the echoes from the layers above the localized scatterers. These can be
determined by solving the wave equation

ρ
∂�u

∂t
(t, �x) +∇p(t, �x) = �F(t, �x),

1

v2(z)

∂p

∂t
(t, �x) + ρ∇ · �u(t, �x) = 0, �x ∈ Rd, 0 < t < τS ,(3.6)

with initial conditions (3.2), and then removing the direct arrival. Here we used the
causality of the wave equation to ignore the reflectivity ν(�x) for t < τS .

For t > τS the scattered field contains the echoes pS(t, �xr) from the reflectivity
ν(�x). We model them with the Born approximation

(3.7) pS(t, �xr) ≈ −
∫
S
d�y ν(�y)

∂2pi(t, �y)

∂t2

t G(t, �xr , �y),

where 
t denotes time convolution and G is the causal Green’s function of the wave
equation in the layered medium:

1

v2(z)

∂2G(t, �x, �y)

∂t2
−ΔG(t, �x, �y) = δ(�x− �y)δ(t),

G(t, �x, �y) = 0 for t < 0.(3.8)

In (3.8) we denote by pi(t, �x) the “incident” pressure field, i.e., the field in the layered
medium without the reflectivity. This satisfies (3.6) for all times t > 0 or, equivalently,
it satisfies

1

v2(z)

∂2pi(t, �x)

∂t2
−Δpi(t, �x) = −∇ · �F(t, �x), t > 0,

pi(t, �x) = 0 for t < 0.(3.9)

Note the similarity of (3.8) and (3.9). They both have as a source term a distri-
bution supported at a point (at �xs in (3.9) and at �y ∈ S in (3.8)). This observation
and (3.7) allow us to reduce the calculation of the scattered field to solving a generic
problem for the pressure in a purely layered medium and for a point source excitation.
We study this generic problem in detail in Appendix A. The resulting mathematical
model of the scattered pressure field recorded at the array is presented in section 3.3.

3.2. Scaling. Let us consider the following model for the source excitation:

(3.10) �F(t, �x) = δ(�x − �xs)

(
Fε(t)
f ε(t)

)
,

where

(3.11) f ε(t) = ε
d−1
2 f

(
t

ε

)
, Fε(t) = ε

d−1
2 F

(
t

ε

)
,
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and ε � 1. Here f is the pulse shape emitted upwards and F ∈ Rd−1 is the pulse in
the remaining d − 1 cross-range directions. The small parameter ε in the arguments
in (3.11) comes from scaling the width of the pulse by the much longer travel time
τS of the waves from the source to the scatterers in S and back. Since the problem
is linear we can control the amplitude of the echoes with the amplitude of the source.

We take the latter equal to ε
d−1
2 to obtain O(1) echoes at the array.

In the frequency domain we have

(3.12) f̂ ε
(ω
ε

)
=

∫
dt f ε(t)ei

ω
ε t = ε

d+1
2

∫
dt

ε
f

(
t

ε

)
eiω

t
ε = ε

d+1
2 f̂(ω),

and similarly for F̂ε
(
ω
ε

)
. Thus, assuming pulses f̂(ω) and F̂(ω) with support in an

O(1) interval centered at ωo, we see that the scaling in (3.10) implies having O(1/ε)
frequencies in the analysis. Equivalently, the wavelengths are ∼ ε while L = O(1).

The random process μ that models the fluctuations of v(z) has mean zero, is
statistically homogeneous, and lacks long range correlations:

(3.13) C(z) = E {μ(0)μ(z)} → 0 as |z| → ∞,

where the decay is sufficiently fast for C(z) to be integrable over the real line. We
assume further the normalization

(3.14) C(0) = 1,

∫ ∞

−∞
C(z)dz = 1,

which implies

(3.15)

∫ ∞

−∞
E
{
μ(0)μ

(z
�

)}
dz = �,

where � is the correlation length of the speed fluctuations. The intensity of the
fluctuations is

(3.16) E

{[
σμ
(z
�

)]2}
= σ2,

and we control it by adjusting the dimensionless parameter σ.
Following [50], we refer to the scaling in this paper as a high frequency, white

noise regime,

(3.17)
L

λo
� 1,

λo
�

� 1, σ = O(1),

which arises in applications of exploration seismology [71], where λo ∼ 100m, L =
5 − 15km, and � = 2 − 3m. The regime (3.17) considers strong fluctuations (σ ∼ 1),
but, since λo � �, the waves do not interact strongly with the small scales and
the fluctuations average out over distances of order λ0. It takes long distances of
propagation (L� λo) for the scattering to build up and become an important factor
in the problem.

We realize the regime (3.17) by taking

(3.18)
�

λo
∼ λo

L
∼ ε� 1, σ = 1, Lj − Lj−1 = O(1), j = 1, 2 . . . ,
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and we remark that we call it high frequency because the wavelengths are small in
comparison with the large scale variations of the medium (i.e., L and Lj − Lj−1 for
j = 1, 2, . . .). It is, however, a low frequency regime with respect to the small scale
(λo � �), and the effect of the random fluctuations takes the canonical form of white
noise in the limit ε→ 0, independent of the details of the random model μ [50, 5].

Let us note that there are other interesting scaling regimes where scattering is
significant and the analysis can be carried out [50]. For example, the theory extends
almost identically to the weakly heterogeneous regime

(3.19) � ∼ λo � L = O(1), σ � 1,

except for some subtle differences [50]. In the scaling (3.19), the waves sample more
efficiently the small scales, since � ∼ λo, and the asymptotic theory results depend on
the specific autocorrelation function of the random fluctuations [50]. In our regime
the waves cannot see the small scales in detail, because λo � �, and this is why the
theory is not sensitive to the precise structure of the random function μ.

The remaining scales are the array aperture a and the diameter b of the support
S of the reflectivity ν. We assume that a is much larger than λo and independent
of ε,

(3.20) λo � a ≤ L,

and that b satisfies

(3.21) λo ≤ b� a.

While b can be much larger than λo, it should be much smaller than a so that the
layer annihilator filters can make a robust differentiation between the layer echoes
and the coherent arrivals from S.

3.3. The Multiple Scattering Series. We show in Appendix A that the pressure
field at the surface z = 0 has the following multiple scattering series representation:

(3.22) D(t,h) := p(t, �x) =
∑
P

ΦP

[
t− τP (h)

ε
− δτP (h),h

]
+N (t,h).

Here �x = (x, 0) ∈ A is an arbitrary receiver location and

(3.23) h = x− xs

is the source-receiver offset. Since the source is fixed at �xs, we can parametrize the
data by the offset h and denote it from now on by D(t,h). We also assume for
convenience in the analysis that the separation between the receivers is small enough
to allow us to view the array as a continuum aperture. This means that h varies
continuously in a compact set of diameter a, the array aperture.

DataD(t,h) consists of an incoherent partN and a coherent part. The incoherent
part is due to scattering by the random medium between the strong layers. The
coherent part is written in (3.22) as a sum of arrivals of pulses of shape ΦP along
the multiple scattering paths P . These paths are transmitted through the random
medium, and they involve scattering in S and/or at the layers z = −Lj for j =
1, . . . ,M . See Figure 3.1 for an illustration of coherent paths P . It follows from
Appendix A that these paths obey Snell’s laws [37] at the scattering interfaces and
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Fig. 3.1 Examples of coherent paths from the source at �xs to a receiver at �xr. Left: Path between
the layers without “seeing” the scatterer at �y. Right: Path through the scatterer at �y.

they pass through the random slabs −Lj < z < −Lj−1, for j = 1, . . . ,M , according
to Fermat’s principle [37].

The transmission of the waves through the random slabs is described in the asymp-
totic limit ε → 0 by the ODA theory. This says that as the pressure waves p(t, �x)
propagate through the random medium, they maintain a coherent front pODA(t, �x)
that is similar to the field in the smooth medium, except for two facts: (1) The travel
time has a small random shift εδτ . (2) The pulse shape is broadened due to the con-
volution with a Gaussian kernel. This kernel accounts for the diffusion of energy from
the coherent part of p to the incoherent part, and it is due to the multiple scattering
in the finely layered structure.

The theory (see Appendix A and [50, 5, 59, 43, 65]) says that the amplitude of the
incoherent events N (t,h) is smaller than the amplitude of the coherent events, by a
factor of O(ε1/2). The amplitude of the coherent events varies by path. The variations
are due to geometrical spreading, the reflection and transmission coefficients at the
scattering interfaces, and the ODA pulse broadening in the random medium. The
amplitudes and the time shifts εδτP (h) change slowly with the offset h. The fast
variation of D(t,h) with the offset is due to the O(1/ε) argument of ΦP in (3.22). This
is the key observation used in section 4 to design layer annihilators for enhancement
of the coherent arrivals along paths P�y through points �y in the support S of the
reflectivity that we wish to image. Such signal enhancement is crucial for successful
imaging of scatterers buried deep in the layered structure, as illustrated next.

3.3.1. An Illustration. For the purpose of illustration, let us consider the fol-
lowing simplification of our problem: Suppose that the source at �xs has directivity
along the z axis (i.e., Fε = 0 in (3.10)) and that the smooth background has constant
speed c(z) = co. Then, let us observe the pressure field p(t, �x) for times t < 2L1/co,
so that we can ignore the scattering interface at z = −L1. If there were no random
fluctuations, the pressure field would be

(3.24) po(t, �x) = − ∂

∂z

[
f ε (t− τ(�x, �xs))

4π|�x− �xs|

]
, �x = (x, z) ∈ R3.

We would observe the emitted pulse f centered at travel time τ(�x, �xs) = |�x− �xs|/co,
and the amplitude change due to geometrical spreading. The ODA theory says that
the transmitted field through the random medium is given by [50, 5, 59, 43, 65]

(3.25) pODA(t, �x) ≈ − ∂

∂z

[(
f ε 
t KODA

)
(t− τ(�x, �xs)− εδτ(�x, �xs))

4π|�x− �xs|

]
.
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Fig. 3.2 Left: The wave speed v(z) as a function of depth measured in central wavelengths. Right:
The transmitted pressure field for different depths traveled in the random medium. The
depth for each trace is measured in central wavelengths.

We have pulse spreading due to the convolution of f ε with the Gaussian kernel

(3.26) KODA(t) =
sin θ(�x)√
2πtps(z)

e
− t2 sin2 θ(�x)

2t2ps(z) , sin θ(�x) =
|z|

|�x− �xs|
,

and a random arrival time shift εδτ(�x, �xs). The spread is proportional to tps(z), a
parameter with units of time that depends on the correlation function C(z) of the
random medium and the depth z, and it is more pronounced for waves propagating
at shallow angles θ(�x). The time shift δτ(�x, �xs) is given by

(3.27) δτ(�x, �xs) =
tps(z)

sin θ(�x)

W (z)√
|z|

,

in terms of the standard Brownian motion W (z).
We show in Figure 3.2 the pressure field computed with numerical simulations in

two dimensions. The numerical method and setup are described in section 6. We plot
on the left the wave speed v(z), which fluctuates at length scale � = 0.1λo around the
constant value co = 3km/s. On the right we show the transmitted pressure field to five
different depths ranging from 14λo to 68λo. The ODA formula (3.25) describes the
coherent fronts but not the incoherent long tail or coda. The theory [50, 5, 59, 43, 65]
says that the amplitude of the coda is smaller than the coherent front, by a factor of
O(ε1/2). This is what we see approximately in Figure 3.2.

In imaging we do not observe the transmitted field plotted in Figure 3.2. The
array of sensors sits at the top surface z = 0 and records the scattered pressure
field. We show in Figure 3.3 the pressure at the array for the numerical simulation
setup shown on the left of the figure (see section 6 for details). We have a cluster
of three small scatterers buried deep in the layered structure, below some strong
scattering interfaces. Note the two strong coherent arrivals of the waves scattered
by the top interfaces. Ahead of these arrivals we observe the incoherent signal due
to the scattering by the fine layers. This signal is weak, consistent with the theory
which says that the incoherent amplitudes are smaller than the coherent ones by a
factor of O(ε1/2). The echoes from the small scatterers buried deep in the medium
are also weak, and they cannot be distinguished in Figure 3.3 from the echoes due to
the layers. This is a serious issue. It says that unless we can filter the data to enhance
the signal from the small scatterers with respect to the echoes from the layers, we
cannot image the scatterers.
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Fig. 3.3 Left: Simulation setup with a cluster of three scatterers buried in a layered structure with
speed v(z) plotted below the computational domain. Right: Data traces plotted as a func-
tion of time (abscissa) and source-receiver offset (ordinate). The distances are scaled by
the central wavelength and the time is scaled by the pulse width, which is 0.02s in our
simulations.

4. Layer Annihilators. In this section we define and analyze data filtering op-
erators called layer annihilators. The performance of these filters depends on the
background speed c(z) and on whether we know it. The easiest and most favorable
case is that of a homogeneous background, considered in section 4.1. The general case
is discussed in section 4.2.

4.1. Homogeneous Background. We begin by analyzing the arrival times of
the coherent events in the series (3.22). The paths P that do not involve scattering
in S can be classified as the “primary paths” Pj that involve a single scattering at
an interface z = −Lj, for j = 1, . . . ,M , and the “multiple paths” that are scattered
more than once by the interfaces. See Figure 4.1 for an illustration of these paths.
The red line indicates a primary path, the blue line indicates a multiple path, and
the green line indicates a path P�y scattered at a point �y in S.

The travel time along paths Pj is (see section A.6)

(4.1) τPj
(h) = T (h, Lj) =

√
h2 + 4L2

j

co
,

where we let h = |h|. Consider next a multiple path P . Each reflection in P satisfies
Snell’s law, as shown in Appendix A. It also follows from Appendix A that the
transmission through the random medium and through the interfaces does not bend
the coherent paths, because the background speed is constant. This implies, after a
straightforward geometrical argument, that any multiple path P has the same length
as a primary path reflected at a ghost layer z = −Lghost,

(4.2) τP (h) = T (h, Lghost).

See Figure 4.1 for an illustration, where the multiple path shown in blue is mapped to
the primary path (blue dotted line) reflected at the ghost layer shown with the black
dotted line.

The arrival times along paths P�y, for �y = (y,−L) ∈ S, have a different depen-
dence on the offset. Take, for example, the path that scatters at �y but involves no
reflection by the layered structure (like the green path in Figure 4.1). The arrival
time along P�y is

(4.3) τP�y
(h) =

1

co

(√
|xs − y|2 + L2 +

√
|xs + h− y|2 + L2

)
= T (h, η(h)) ,
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Fig. 4.1 Illustration of a primary path (red), a multiple path (blue), and a path through a point
scatterer (green). At background speed co the multiple path maps exactly to a primary
reflection at a ghost interface drawn with the dotted line.

and using the monotonicity in the second argument of (4.1), we can always equate it
to the arrival time T (h, η(h)) of a primary path from depth −η(h). However, unlike
Lghost in (4.2), this depth depends on the offset
(4.4)

η(h) =

{
L2

2
+

(xs − y) · (xs + h− y)

2
+

1

2

[(
|xs−y|2+L2

) (
|xs+h−y|2+L2

)] 1
2

} 1
2

.

It is only in the case of �y below the midpoint between the source and receiver (i.e.,
y = xs + h/2) that η(h) is independent of h. Considering that the source is fixed in
our data acquisition setup, this is a special situation that can arise for at most one
offset h.

The layer annihilators are data filtering operators intended to suppress all co-
herent arrivals at times T (h, z) for arbitrary depths z < 0. We study theoretically
and numerically two such annihilators. Since the background speed co may not be
known, we define them at a trial speed c̃o. We then show in section 5 how to use the
annihilators for imaging and velocity estimation.

Definition 4.1. Consider a trial c̃o of the true background speed and define
function

(4.5) Tc̃o(h, z) =

√
h2 + 4z2

c̃o

and its inverse

(4.6) ζc̃o(h, t) = −
√
c̃2ot

2 − h2

2
,

where

(4.7) Tc̃o (h, ζc̃o(h, t)) = t, ζc̃o (h, Tc̃o(h, z)) = z.

We propose as a layer annihilator the data filtering operator Qc̃o :

(4.8) [Qc̃oD] (t,h) =

[
d

dh
D (Tc̃o(h, z),h)

]
z=ζc̃o (h,t)

.
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This definition involves three steps: (1) The mapping of the data from the time
and offset space (t, h) to the time and depth space (t, z), via function Tc̃o(h, z). This
is called normal move-out in the geophysics literature [42, 19]. (2) Annihilation via
the derivative with respect to h. The derivative is expected to be small if we indeed
have echoes at times T (h, z), for some z, because the normal move-out eliminates by
subtraction the strong variation of ΦP in h (see (3.22)). (3) The return to the (t, h)
space with the inverse function ζc̃o .

We have the following result.
Lemma 4.2. The operator Qc̃o is a layer annihilator, in the sense that it sup-

presses the echoes from the layered structure if c̃o = co +O(ε). The operator does not
suppress the echoes from the compactly supported reflectivity for any trial speed.

Proof. The result follows easily from the discussion at the beginning of this
section. The goal of the annihilator is to suppress the coherent paths that involve
scattering by the layered structure. According to (4.1) and (4.2), the arrival time
along these paths is of the form Tco(h, LP ) for some layer at a depth −LP :

ΦP

[
t− τP (h)

ε
− δτP (h),h

]
= ΦP

[
t− Tco(h, LP )

ε
− δτP (h),h

]
.

After normal move-out, we get

ΦP

[
Tc̃o(h, z)− Tco(h, LP )

ε
− δτP (h),h

]
,

with z to be mapped later to time t, using ζc̃o(h, t). Now take the derivative with
respect to h = |h| and let eh be the unit vector in the direction of h. We have

{
1

ε

d

dh
[Tc̃o(h, z)−Tco(h, LP )]− eh · ∇δτP (h)

}
∂

∂t
ΦP

[
Tc̃o(h, z)− τP (h)

ε
− δτP (h),h

]

+ eh · ∇hΦP

[
Tc̃o(h, z)− τP (h)

ε
− δτP (h),h

]
,

(4.9)

where we denote by ∂
∂tΦP the derivative of ΦP with respect to the first argument and

by ∇hΦP the gradient with respect to the second argument. Recall from section 3.3
and section A.6 that ΦP (·,h) and δτP (h) vary slowly in h. The leading term in (4.9)
is

1

ε

d

dh
[Tc̃o(h, z)− Tco(h, LP )]

∂

∂t
ΦP

[
Tc̃o(h, z)− τP (h)

ε
− δτP (h),h

]

=
1

ε

[
h

c̃2oTc̃o(h, z)
− h

c2oτP (h)

]
∂

∂t
ΦP

[
Tc̃o(h, z)− τP (h)

ε
− δτP (h),h

]
,

and after mapping z = ζc̃o(h, t), it becomes

1

ε

[
h

c̃2ot
− h

c2oτP (h)

]
∂

∂t
ΦP

[
t− τP (h)

ε
− δτP (h),h

]
.

Since ΦP has O(1) support, the leading order term can be observed at times t =
τP (h) +O(ε),(

1/c̃2o − 1/c20
ε

)
h

τP (h)

∂

∂t
ΦP

[
t− τP (h)

ε
− δτP (h),h

]
+O(1),

and then only if |c̃o − co| > O(ε).



18 BORCEA, GONZÁLEZ DEL CUETO, PAPANICOLAOU, AND TSOGKA

Let us consider next the coherent arrivals along paths P�y scattered at points
�y ∈ S. We focus our attention on the “stronger” paths2 that involve no scattering in
the layered structure. Using a calculation similar to the above, we get

d

dh
ΦP�y

[
Tc̃o(h, z)− τP�y

(h)

ε
− δτP�y

(h),h

]∣∣∣∣∣
z=ζc̃o (h,t)

=
1

ε

[
h

c̃2ot
− h

c2oτP�y
(h)

]
∂

∂t
ΦP�y

[
t− τP�y

(h)

ε
− δτP�y

(h),h

]

+
2

εc2oτP�y
(h)

eh · ∇η2(h) ∂
∂t

ΦP�y

[
t− τP�y

(h)

ε
− δτP (h),h

]
+ · · · .

Here we have used (4.3) for τP�y
(h) and written explicitly the O(1/ε) terms. The

first term vanishes as before at the correct speed, but the second term is O (1/ε)
independent of c̃o (recall (4.4)).

The annihilator introduced in Definition 4.1 works well in ideal situations for
perfectly layered structures. This is seen clearly in the numerical simulations pre-
sented in section 6. We also study there the more complicated problem of a layered
structure with additional isotropic fluctuations of the wave speed, due to small in-
homogeneities. In that case, Definition 4.1 is not the best choice of an annihilator
because the derivative over the offset h can amplify significantly the correlated “noise”
due to the isotropic clutter. We propose the following alternative.

Definition 4.3. Consider a trial speed c̃o, and let Tc̃o and ζc̃o be as in Defini-
tion 4.1. Let also h′ = h + ξeh be offsets collinear with h = heh, for ξ belonging
to an interval I(h) of length |I(h)|, limited by the constraint �xs + (h′, 0) ∈ A. The
filtering operator is given by
(4.10)

[Qc̃oD] (t,h) =

{
D (Tc̃o(h, z),h)−

1

|I(h)|

∫
I(h)

D (Tc̃o(h+ξ, z), (h+ξ)eh) dξ

}
z=ζc̃o (h,t)

.

The first and last steps involved in (4.10) are the same as in Definition 4.1; it is
the annihilation step that is different. Instead of taking derivatives with respect to
the offset as in (4.8), we subtract the average of the traces with respect to the offset,
after the normal move-out.

We omit the analysis of (4.10) because it is very similar to that in Lemma 4.2.
We find that the annihilation of the coherent, strong layer echoes occurs for both
small and large interval lengths |I(h)|. In the numerical simulations in section 6.2.4
we implement Definition 4.3 using the longest intervals I(h), consistent with the
constraint �xs + (h′, 0) ∈ A, to average out the isotropic clutter effects. However, the
choice of I(h) affects significantly the influence of Qc̃o on the incoherent field N (t,h),
which is backscattered by the randomly layered medium. The annihilation of N (t,h)
is studied in [27], and it is shown there that |I(h)| must be O(λo) for the annihilation
to be effective.

2These paths are “stronger” than those that scatter in the layered medium because of the follow-
ing: (1) Each scattering at an interface reduces the amplitude of the echoes by multiplication with
the reflection coefficient. (2) The longer the path is, the more it is affected by geometrical spreading
and the ODA diffusion kernel due to the random medium.
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4.2. Variable Background. Definitions 4.1 and 4.3 extend to the case of variable
backgrounds in an obvious manner. Instead of (4.5) we take Tc̃(h, z) to be the travel
time of a primary reflection at depth z < 0 in the medium with trial speed c̃(z). This
follows from Appendix A,

(4.11) Tc̃(h, z) = 2

∫ 0

−|z|

√
1− c̃2(s)K2

c̃

c̃(s)
ds+ hKc̃,

with horizontal slowness Kc̃ given by

(4.12)
h

2
= Kc̃

∫ 0

−|z|

c̃(s)√
1− c̃2(s)K2

c̃

ds.

Note that because the right-hand side is monotonically increasing with Kc̃, we have a
unique slowness satisfying condition (4.12) and, therefore, a unique Tc̃(h, z) for each
z. Furthermore, Tc̃(h, z) increases monotonically3 with |z|, so the inverse function
ζc̃(t, h) satisfying

(4.13) Tc̃ (h, ζc̃(h, t)) = t, ζc̃ (h, Tc̃(h, z)) = z,

is also uniquely defined.
The annihilator operators are as in Definitions 4.1 and 4.3, with Tc̃(h, z) used

for the normal move-out and ζc̃(t, h) for the mapping between depths z and time t.
The performance of the annihilators is expected to be worse than in the homogeneous
case, because the multiple paths do not map exactly to primaries from ghost layers
(i.e., Lghost independent of h) at the correct speed. The degradation in performance
depends on how much c(z) varies along the multiple paths and on the depth where the
stronger variations occur. We show with numerical simulations in section 6 that when
the variations of c(z) are not too large, the annihilation of the multiples is almost as
good as in the homogeneous case.

5. Imaging and Velocity Estimation. We now use the layer annihilators for
imaging the compactly supported reflectivity and for velocity estimation. We be-
gin in section 5.1 with migration-type imaging. Then, we discuss CINT imaging in
section 5.3.

5.1. Migration Imaging with Layer Annihilators. Under the idealization of a
continuum array aperture, we define the migration imaging function with the annihi-
lated data,4

(5.1) J (�ys; c̃) =

∫
A
dh [Qc̃D] (τ(�xs, �y

s, (xs + h, 0)),h).

Here Qc̃ is one of the annihilators introduced in section 4 for a trial speed c̃(z), and
τ(�xs, �y

s, �xs+(h, 0)) is the travel time computed at the trial speed between the source
at �xs = (xs, 0), the image point at �ys, and the receiver at (xs + h, 0).

3It follows from (4.11) and (4.12) that ∂Tc̃/∂|z| = 2/c̃(z)
√

1− c̃2(z)K2
c̃ > 0, with z = −|z|.

4The continuum approximation made in (5.1) is to be understood in practice as having a very
dense array of sensors. This is in fact required in Definition 4.1 to approximate derivatives in offset.
Definition 4.3 makes sense for receivers that are further apart, as well, in which case the integral over
h in (5.1) should be replaced by a sum over the receivers.
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As we have seen in section 4, the layer annihilators suppress the echoes from
the layers above the reflectivity support S if the trial speed c̃(z) is close to the true
one. Take, for example, the annihilator in Definition 4.1 and use (4.11) and (4.12) to
deduce that the primary arrival times satisfy

(5.2)
d

dh
Tc̃(h, z) = Kc̃,

with horizontal slowness Kc̃ given by (4.12) or, equivalently, by

(5.3) Kc̃ = Kc̃ [Tc̃(h, z)] .

The map Kc̃ cannot be written explicitly in general, unless we are in the homogeneous
case c̃(z) = c̃o, where

(5.4) Kc̃o =
h

c̃o
√
h2 + 4z2

=
h

c̃2oTc̃o(h, z)
= Kc̃o [Tc̃o(h, z)] .

It is nevertheless unambiguously defined, as explained in section 4.2.
We have from (3.22), (5.1)–(5.3), and Definition 4.1 that

J (�ys; c̃) =
∑
P

∫
A

dh

ε

{
Kc̃ [τ(�xs, �y

s, (xs + h, 0))]− d

dh
τP (h)

}

× ∂

∂t
ΦP

[
τ(�xs, �y

s, (xs + h, 0))

ε
− τP (h)

ε
− δτP (h),h

]
+ · · · ,(5.5)

where we denote by the dots the lower order terms. We have computed already the
derivatives

(5.6)
d

dh
τPj

(h) =
d

dh
Tc(h, Lj) = Kc

[
τPj

(h)
]

for the primary paths Pj . For the other paths we write

(5.7)
d

dh
τP (h) = Kc [τP (h)] + ψP (h), P 
= Pj , j = 1, . . . ,M,

where the remainder ψP (h) may be O(1), independent of the trial speed c̃.
Remark 5.1. In the most favorable case c(z) = co, the remainder ψP (h) vanishes

for all paths that do not scatter in the reflectivity support S, when c̃ = co. However,
the remainder does not vanish for paths P�y that involve scattering at points �y in
the reflectivity support S (see Lemma 4.2). In the general case of variable c(z), the
remainder ψP (h) does not vanish for the multiple paths. However, it can be small if
the variations of c(z) are not too significant, as illustrated with numerical simulations
in section 6.

Returning to (5.5), and using (5.6), we obtain

J (�ys; c̃) =
∑
P

∫
A

dh

ε
{Kc̃ [τ(�xs, �y

s, (xs + h, 0))]−Kc [τP(h)] + ψP (h)}

× ∂

∂t
ΦP

[
τ(�xs, �y

s, (xs + h, 0))

ε
− τP (h)

ε
− δτP (h),h

]
+ · · · .(5.8)

Since ΦP has O(1) support, we get a large O(1/ε) contribution at the image point �ys

if there is a path P for which

τ(�xs, �y
s, (xs + h, 0)) = τP (h) +O(ε).
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Each such path is weighted in (5.8) by the amplitude

Kc̃ [τ(�xs, �y
s, (xs + h, 0))]−Kc [τP (h)] + ψP (h) ≈ Kc̃ [τP(h)]−Kc [τP(h)] + ψP (h).

The first two terms on the right-hand side are the horizontal slownesses at speeds c̃
and c, respectively. They cancel each other when the trial speed is right, and then
the image is determined by the paths with remainder ψP = O(1). As stated in
Remark 5.1, all paths that scatter at the reflectivity in S have a large remainder. We
have now shown the main result.

Proposition 5.2. Assuming a homogeneous background co and a trial speed c̃o =
co+O(ε), the migration imaging function (5.1) peaks in the support S of the reflectivity
and not at the layers above it. If the trial speed c̃o is not close to co, the top layers in
the structure obscure the reflectivity. If the background is not homogeneous, but the
trial speed is right, the annihilator partially obscures the top layers by eliminating the
contribution of the primary paths Pj in the image.

5.2. Algorithm for Imaging and Velocity Estimation with Layer Annihilators.
Using Proposition 5.2 we can formulate the following algorithm for imaging jointly
with velocity estimation:

1. Choose a trial speed c̃(z).
2. Form the image (5.1) at points �ys in the search domain Ss, using the data

filtered by the layer annihilator Qc̃. The search domain is assumed to contain
S, the unknown support of the reflectivity.

3. Compute the objective function

(5.9) F(c̃) =
|J (�ys; c̃)|L1(Ss)

max
�ys∈Ss

|J (�ys; c̃)| .

4. Adjust the speed c̃ using optimization over a compact set C of admissible
speeds:

(5.10) min
c̃∈C

F(c̃).

This algorithm returns a speed c̃(z) that produces an image of small spatial support,
as measured by the sparsity promoting L1 norm in the objective function (5.9). It is
expected to work well when imaging scatterers of small support S, because the images
at incorrect speeds are dominated by the top layers, which involve more pixels in the
image than those contained in S.

Remark 5.3. We can simplify the optimization by taking the L2 norm in (5.9)
and replacing the division by the maximum of J with an equality constraint. The L1

norm should be better in theory for getting a sharper image, but we have not seen a
significant difference in our numerical simulations.

Remark 5.4. As an alternative algorithm for velocity estimation, we can seek
c̃(z) as the minimizer of the L2 norm of the annihilated data traces

(5.11)

∫
A
dh

∫
dt |[Qc̃D] (t,h)|2 .

5.3. CINT Imaging with Layer Annihilators. CINT imaging was introduced
in [31] for mitigating the correlated “noise” due to clutter in the medium. It involves
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a statistical smoothing process that takes cross-correlations of the data traces over
carefully chosen windows. The CINT imaging function with unfiltered data is

J CINT(�ys; c̃) =

∫
dω

∫
A
dh

∫
dω̃ χ̂

t
(ω̃; Ωd)

∫
dh̃ χ̂

h

(ω
ε
h̃;κ−1

d

)

× D̂

(
ω

ε
+
ω̃

2ε
,h+

h̃

2

)
D̂

(
ω

ε
− ω̃

2ε
,h− h̃

2

)

exp

{
−i
(
ω

ε
+
ω̃

2ε

)
τ
(
�xs, �y

s, (xs + h+ h̃/2, 0)
)

+ i

(
ω

ε
− ω̃

2ε

)
τ
(
�xs, �y

s, (xs + h− h̃/2, 0)
)}

.

Here we denote by D̂ the Fourier transform of the data with respect to time and we
scale the frequency by 1/ε, as explained in section 3.2. We use the window χ̂t(·,Ωd) to
restrict the scaled frequency offset ω̃ by Ωd, and we limit |h̃| ≤ ε

ωκd
with the window

χ̂
h

(
ω
ε ·;κ

−1
d

)
. The bar in J CINT(�ys) stands for the complex conjugate of D̂.

CINT images by migrating the cross-correlations of the data with the travel times
computed in the smooth medium with speed c̃(z). The supports Ωd and κ−1

d of the
windows χ̂t and χ̂h

must be chosen carefully to get good results. To see this, we note
that straightforward calculations (see [30, 33]) let us rewrite the equation above as

J CINT(�ys; c̃) ≈
∫
A
dh

∫
dω

∫
dK

∫
dtW (ω,K, t,h)

×χt

(
τ(�xs, �y

s, (xs + h, 0))− t

ε
; Ω−1

d

)
χ

h
(∇hτ(�xs, �y

s, (xs + h, 0))−K;κd) ,(5.12)

in terms of the Wigner transform of the data
(5.13)

W (ω,K, t,h) =

∫
dt̃

∫
dh̃ D̂

(
ω

ε
+
ω̃

2ε
,h+

h̃

2

)
D̂

(
ω

ε
− ω̃

2ε
,h− h̃

2

)
ei

ω
ε (t̃−h̃·K).

Note how the windows χ
t
and χ

h
are used in (5.12) for smoothing the Wigner trans-

form. Such smoothing is essential for getting statistically stable results that are in-
dependent of the realization of the clutter [33]. CINT imaging is a trade-off between
smoothing for stability and minimizing the image blur. The range blur is inversely
proportional to Ωd, and the cross-range blur is proportional to κd, the support of
window χ

h
. The parameter Ωd is the decoherence frequency and κd is the uncer-

tainty in the horizontal slowness. They both depend on the statistics of the random
medium, which is typically unknown. However, we can determine them adaptively,
with optimization of the image that they produce, as shown in [30].

The results in [30] apply to a smooth medium cluttered by small inhomogeneities.
In this paper we have the additional layered structure that creates strong echoes at the
array. We deal with these echoes by replacing the data in (5.12) with the filtered data
[Qc̃D] (t,h). The velocity estimation can then be done jointly with CINT imaging,
by using an algorithm analogous to that in section 5.1.

Remark 5.5. The ODA theory used in this paper says that simple migration
of the annihilated data should give very good results in layered media. This is an
asymptotic result in the limit ε→ 0. In practice we find that migration images can be
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noisy and that they can be improved with adaptive CINT imaging, as noted in [32] and
section 6. The use of CINT imaging simplifies in layered media because there is no
spatial decoherence in the data, i.e., no uncertainty over the horizontal slowness. It is
only the smoothing over arrival times that affects the results, and even this smoothing
is not dramatic. The adaptive algorithm returns an O(1) value of Ωd, which makes
the range resolution of order ε, as in ideal migration. In layered media with additional
fluctuations of the speed due to small, isotropic inhomogeneities, smoothing over the
horizontal slowness is typically needed.

6. Numerical Simulations. We present numerical simulations for migration and
CINT imaging in layered media. We show by comparison with the simpler problem of
imaging sources that backscattering is a serious issue when imaging scatterers buried
deep in layered structures. We then illustrate the beneficial effect of layer annihilators
on the imaging process.

The array data is generated by solving (3.1) in two dimensions, with the mixed
finite element method described in [14, 15]. The infinite extent of the medium is
modeled numerically with a perfectly matched absorbing layer surrounding the com-
putational domain.

Fig. 6.1 Setup for numerical simulations with sources buried in a finely layered structure. The units
are in carrier wavelengths λo and the distance d between the scatterers is 4. The perfectly
matched layer surrounding the domain is shown in pink.

6.1. Sources Buried in Finely Layered Structures. The setup for the simula-
tions with sources buried in layered media is shown in Figure 6.1. We use an array
of 41 receivers at distance λo/2 apart from each other. The sources are at depth
L ∼ 78λo. The wave speed is plotted on the left in Figure 3.2. It fluctuates around
the constant value co = 3km/s. The source has directivity along the z axis and it
emits the pulse f(t) given by the derivative of a Gaussian. While everything is scaled
in terms of the central wavelength, we choose for illustration numbers that are typical
in exploration geophysics. We let ωo/(2π) = 30Hz be the central frequency, so that
λo = 100m and L = 7.8km. The bandwidth is B = 20− 40Hz (measured at 6dB) and
the correlation length is � = 10m.

We show in Figure 6.2 the data traces for one and four sources buried in the
layered medium. The time axis is scaled by the pulse width, which is 0.02s in our
simulations, and the cross-range is scaled by the central wavelength. We note in
Figure 6.2 the strong coherent arrivals of the signals from the sources and the trail of
weaker incoherent echoes from the finely layered structure. The Kirchhoff migration
and CINT images with these data are shown in Figure 6.3. Although in theory
migration should work well, we see how the smoothing in CINT imaging improves the
images, especially in the case of four sources.
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Fig. 6.2 Traces recorded at the array for a single source (top) and four sources (bottom). The pulse
width is 0.02s.
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Fig. 6.3 Top: Images with the traces in Figure 6.2 (top) for a single source. Bottom: Images with
the traces in Figure 6.2 (bottom) for four point sources. Left column: Kirchhoff migration.
Right column: CINT imaging. The correct location of the source is shown in each figure
with a dot.

6.2. Scatterers Buried in Finely Layered Structures. We present numerical
simulations for layered media with constant and variable background speeds. We also
consider media with isotropic clutter in addition to the layered structure.

6.2.1. Simulations for a Constant Background Speed. Consider first the simu-
lation with the setup shown in Figure 3.3. The source is now at the center point in the
array and it emits the same pulse as before, with central frequency ωo/(2π) = 30Hz
and bandwidth 20–40Hz. The array has 81 receivers distributed uniformly over the
aperture a = 40λo. The wave speed v(z) is as in Figure 3.3. It has a constant part
co = 3km/s, rapid fluctuations with correlation length � = 0.02λo = 2m, and five
strong blips (interfaces) separated by distance 10λo = 1km. The reflectivity ν(�x) is
supported on three soft acoustic scatterers (i.e., pressure is zero at their boundary)
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Fig. 6.4 Images with the traces in Figure 3.3. Kirchhoff migration is on the left and CINT imaging
on the right. The small scatterers are indicated with circles and they are invisible in both
images. Both range and cross-range are scaled by λo.

Fig. 6.5 Images with filtered data [QcoD](t, h). Migration is on the left and CINT imaging on the
right.

that are disks of radius λo. They are at depth L ∼ 60λo = 6km and at distance
2.5λo = 250m apart. Note that the setup is in agreement with assumption (3.18) of
separation of scales, for ε = 0.02, because

�

λo
= 0.02 ∼ λo

L
= 0.017.

The change in v(z) at the interfaces is close to 100% and the rapid fluctuations have
an amplitude of 10%.

The data traces are shown in Figure 3.3. The reflectivity is masked by the lay-
ered structure above it, and it cannot be seen with migration or CINT imaging (see
Figure 6.4).

The results improve dramatically when imaging with filtered data [QcoD](t, h) at
the true speed co, as shown in Figure 6.5. The annihilators in Definitions 4.1 and 4.3
give similar results in this case, so we show only the plots for the first one. Note that
the scatterers are too close together to be resolved by migration or CINT imaging. The
images could be improved in principle if we had more data (more source locations),
using optimal subspace projections as in [34]. We will consider such improvements in
a separate publication.

In Figure 6.6 we illustrate the estimation of the background speed c̃o using the
layer annihilators. We form the image with migration of the filtered data [Qc̃oD](t, h),
and we plot its L2 norm computed in the same domain as in Figures 6.4–6.5. Note
the monotone behavior of the objective function near the optimum c̃o = co. The
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Fig. 6.6 Plot of the L2 norm of the image, as a function of the trial speed c̃o.

Fig. 6.7 Left: Wave speed v(z). Right: Traces before (top) and after (bottom) annihilation. The
time axis is scaled by the pulse width and the receiver location is scaled by λo. The echoes
from the small scatterers are overwhelmed by those from the layers in the top traces, but
they are clearly emphasized after the annihilation.

decrease noted at the ends of the trial speed interval is to be discarded, as it is due to
c̃o being so wrong that the image peaks are pushed outside the image domain fixed
in the optimization.

6.2.2. Simulations for a Variable Background Speed. In the next simulation
we consider the variable background speed shown in Figure 6.7 on the left. All other
parameters are the same as in section 6.2.1. We compute the travel times Tc(h, z)
by essentially solving (4.11)–(4.12). The actual implementation uses the MATLAB
Toolbox Fast Marching [61], which computes the viscosity solution of the eikonal
equation using level sets and the fast marching algorithm.

We plot on the right in Figure 6.7 the traces before and after annihilation. Note
the emergence of the echoes from the small scatterers after the annihilation. The
images with the annihilated data are similar to those in Figure 6.5, so we do not
include them in this paper.

Let us now take a finely layered medium with the speed as in Figure 6.7 but
without the five strong blips. The traces and the Kirchhoff migration image are
shown in Figure 6.8 on the left. We see that the layered medium impedes the imaging
process even in the absence of the strong interfaces. The echoes due to the layered
structure are now just the incoherent ones denoted by N (t,h) in (3.22). We do not
present in this paper any theory for the annihilation of such incoherent echoes; this is
done in a different publication [27]. However, we illustrate with numerical results on
the right in Figure 6.8 the enhancement of the signal from the compact scatterers and
the significant improvement of the migration image obtained with layer annihilation.
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Fig. 6.8 Left: Traces and Kirchhoff migration image without annihilation. Right: Annihilated traces
and the resulting migration image. The speed v(z) is as in Figure 6.7 but without the five
strong scattering interfaces.

Fig. 6.9 Left: Wave speed v(z). Right: Traces before (top) and after (bottom) annihilation.

Fig. 6.10 Left: Wave speed v(z). Right: Traces before (top) and after (bottom) annihilation.

6.2.3. Simulations for Media with Discontinuous Background Speeds. We il-
lustrate here the performance of the layer annihilators in the case of background
speeds c(z) with jump discontinuities. We show in Figures 6.9–6.10 the results of two
simulations. The wave speed v(z) is plotted on the left, and the traces before and
after annihilation are shown on the right. The filters Qc are defined at the true mean
speed. The coherent echoes from the reflectors that we wish to image are seen clearly
in the filtered traces in Figures 6.9–6.10 but not in the raw, measured traces.

6.2.4. Simulations for Layered Media with Additional Isotropic Clutter. In
our last simulation we return to the setup considered in section 6.2.1 and add isotropic
clutter to the medium. This is modeled with a random process generated with random
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Fig. 6.11 Top: Raw traces for the layered structure plotted in Figure 3.3 and additional isotropic
clutter. Middle: Traces filtered with the annihilator in Definition 4.1. Bottom: Traces
filtered with the annihilator in Definition 4.3. Left: Isotropic clutter with 3% standard
deviation. Right: Isotropic clutter with 1% standard deviation.

Fig. 6.12 Left: Migration image with the raw traces shown on the top in Figure 6.11. Middle:
Migration with the annihilated traces shown on the bottom left in Figure 6.11. Right:
CINT image with the annihilated traces shown on the bottom left in Figure 6.11.

Fourier series. We take a Gaussian correlation function, with correlation length equal
to λo. The standard deviation of the isotropic fluctuations of the wave speed is 3%.

We show in Figure 6.11 the traces before and after filtering with the annihilators
Qco given by Definitions 4.1 and 4.3. We plot for comparison the traces for both
3% and 1% standard deviation of the isotropic clutter. We note that the first choice
does not work well, in the sense that it magnifies the effect of the isotropic clutter
at the early times. This is due to the offset derivative in Definition 4.1. The layer
annihilator given by Definition 4.3 works much better, as seen in the bottom plots
of Figure 6.11. The emergence of the echoes from the small scatterers is seen more
clearly in the weaker clutter (bottom right plot in Figure 6.11).

Before the annihilation we can image only the top two strong scattering interfaces
(left plot in Figure 6.12). After the annihilation, we can image below these interfaces.
However, we still have to deal with the loss of coherence of the echoes due to scattering
by the isotropic clutter. This makes the migration image speckled and difficult to
interpret, as seen in the middle plot in Figure 6.12. The speckles are suppressed in the
CINT image (right plot in Figure 6.12) because of the statistical smoothing induced
by the cross-correlation of the annihilated traces in appropriately sized time and offset
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windows (see section 5 and [31, 30, 33]). The CINT image in Figure 6.12 is obtained
with the decoherence frequency Ωd = 3% of the bandwidth and decoherence length
Xd = 15.9λ. We note that the image peaks at the small scatterers and slightly behind
them. This is because of the strong interface that lies just below the small scatterers
(see Figure 3.3). The layer annihilator is not designed to suppress the echoes that
have been multiply scattered between the small scatterers and the interfaces. These
are coherent echoes that are not eliminated by the statistical smoothing in CINT
imaging either, and this is why we see their effect in the image. We expect that the
result could be improved if we had more data (more source locations), using optimal
subspace projections as in [34]. We will consider such improvements in a separate
publication.

7. Summary and Conclusions. The focus of this paper is on the use of data
filtering operators, called layer annihilators, for imaging small scatterers buried deep
in layered deterministic and random structures. The annihilators are designed to
suppress the echoes from the layered structure and enhance the signals from the
compact scatterers that we wish to image. We have shown analytically and with
numerical simulations that the layer annihilators can significantly improve the images
if we know the smooth part of the wave speed in the medium. This determines the
kinematics (i.e., the travel times) of the data that we record with an array of sensors
placed at the top of the layered structure.

If we compute travel times with the wrong background speed, then the annihila-
tors do not suppress the echoes from the layer structure and the resulting images are
bad. This is why we can also use the annihilators for velocity estimation. We have
indicated briefly how to carry out velocity estimation jointly with imaging. This is
done by optimizing an objective function that measures the quality of the image as it
is being formed with data filtered with a trial background speed.

We note that the imaging methods discussed in this paper do not require any
knowledge of the rough part of the background speed. This rough part may be due
to strongly scattering interfaces or to fine layering at the subwavelength scale, which
we model with random processes. We may also have additional isotropic clutter due
to the presence of small inhomogeneities in the medium. We have shown that we
can mitigate lack of knowledge of the rough part of the wave speed for the purpose
of imaging, using the following: (1) layer annihilators for enhancement of the signals
from the compact scatterer to be imaged, and (2) CINT imaging for stabilization of
the images with a statistical smoothing process that involves cross-correlations of the
annihilated data traces over carefully chosen time and source-receiver offset windows.

The analysis in this paper is concerned with the annihilation of the echoes com-
ing from strongly scattering interfaces in the medium. These echoes dominate the
coherent part of the wavefield as described by the O’Doherty–Anstey (ODA) the-
ory. However, the numerical simulations indicate that the incoherent field that is
backscattered by the random medium is annihilated as well. The analysis of this
surprising phenomenon requires a deeper understanding of reflected signals from the
fine layering, beyond the ODA theory [50]. It is presented in [27].

Appendix A. Derivation of the Scattering Series. We derive here the multiple
scattering series (3.22) for the data recorded at the array. As explained in section 3.1,
when using the Born approximation for scattering by the reflectivity ν(�x) supported
in S, we can reduce the problem to that of waves in purely layered media for a point
source excitation. Specifically, the pressure field p(t, �x) observed at the array for time
t < τS , the travel time from the source at �xs to the reflectivity support S and back,
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satisfies the initial value problem

ρ
∂�u

∂t
(t, �x) +∇p(t, �x) = �F(t, �x),

1

v2(z)

∂p

∂t
(t, �x) + ρ∇ · �u(t, �x) = 0, �x ∈ Rd, t > 0,(A.1)

�u(t, �x) = �0, p(t, �x) = 0, t < 0.

The incident field pi(t, �y) on the reflectivity (see (3.7)) is also given by the solution
of (A.1), evaluated at points �y ∈ S. Finally, (3.8) for the Green’s function appearing
in (3.7) is very similar to (A.1). Once we solve (A.1), we can deduce easily the result
for G(t, �x, �y) and, consequently, the series (3.22).

A.1. The Plane Wave Decomposition. It is convenient to analyze (A.1) in the
phase space

p̂
(ω
ε
,K, z

)
=

∫
dt

∫
dx p(t,x, z)ei

ω
ε (t−K·x),

�̂u
(ω
ε
,K, z

)
=

∫
dt

∫
dx �u(t,x, z)ei

ω
ε (t−K·x), �u = (u, u).(A.2)

Here we Fourier transform p and �u with respect to time t and the cross-range vari-
ables x ∈ Rd−1, where �x = (x, z). We scale the frequencies by 1/ε, as explained in
section 3.2, and we let the dual variable to x in the plane wave decomposition be the
slowness vector (with units of time over length) K ∈ Rd−1.

Let us eliminate û from the Fourier transformed equations (A.1) and obtain for
each random slab

iω

ε

[
|K|2 − 1

v2(z)

]
p̂+ ρ

∂û

∂z
= 0,

− iω
ε
ρû+

∂p̂

∂z
= 0, −Lj < z < −Lj−1, j = 1, . . . ,M.(A.3)

This is a one-dimensional wave equation for plane waves propagating in the direction
of K at speed v(z)/

√
1− v2(z)|K|2. At z = 0 we have the jump conditions

p̂
(ω
ε
,K, 0+

)
− p̂
(ω
ε
,K, 0−

)
= ε

d+1
2 f̂(ω)e−iωε K·xs ,

û
(ω
ε
,K, 0+

)
− û
(ω
ε
,K, 0−

)
=
ε

d+1
2 K · F̂(ω)

ρ
e−iωε K·xs ,(A.4)

due to the source excitation (3.10) at �xs = (xs, 0). The scattering interfaces at
z = −Lj, for j = 1, . . . ,M , are modeled later using transmission and reflection
coefficients.

A.2. The Up- and Down-Going Waves. In order to study scattering in the
layered medium, we decompose the wave field into up- and down-going waves. The
decomposition is done separately in each random slab −Lj < z < −Lj−1, and then
the fields are mapped between the slabs via scattering operators at the separation
interfaces z = −Lj for j = 1, . . . ,M .
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For the slab −Lj < z < −Lj−1 we write

p̂
(ω
ε
,K, z

)
=

√
γ(K, z)

2

[
α̂ε(ω,K, z)ei

ω
ε τj(K,z) − β̂ε(ω,K, z)e−iωε τj(K,z)

]
,

û
(ω
ε
,K, z

)
=

1

2
√
γ(K, z)

[
α̂ε(ω,K, z)ei

ω
ε τj(K,z) + β̂ε(ω,K, z)e−iωε τj(K,z)

]
,(A.5)

where αε and βε are the amplitudes of the up- and down-going waves. These ampli-
tudes are random variables, but the remaining coefficients in (A.5) are deterministic.
Explicitly,

(A.6) γ(K, z) =
ρc(z)√

1− c2(z)K2

is the acoustic impedance of the plane waves propagating in the direction of K in the
smooth background, at speed c(z)/

√
1− c2(z)K2, with K = |K|. The exponents in

(A.5) are the travel times computed in the smooth medium, relative to the top of the
slab:

(A.7) τj(K, z) =

∫ z

−Lj−1

√
1− c2(s)K2

c(s)
ds.

Substituting (A.5) into (A.3), we obtain a coupled system of stochastic differential
equations for αε and βε. We write these equations using the matrix valued propagator
Pε
j(ω,K, z), satisfying

∂Pε
j

∂z
=

[
iω

ε
μ
( z
ε2

) γ(K, z)
2ρc2(z)

Hε
j +

∂

∂z
ln
√
γ(K, z)Mε

j

]
Pε
j ,

Pε
j = I at z = −L+

j ,(A.8)

with

Hε
j =

(
1 −e−2iωε τj(K,z)

e2i
ω
ε τj(K,z) −1

)
and Mε

j =

(
0 e−2iωε τj(K,z)

e2i
ω
ε τj(K,z) 0

)
.

The propagator Pε
j(ω,K, z) maps the amplitudes at the bottom of the slab z = −L+

j

to the amplitudes at an arbitrary depth z in the slab:

(A.9)

(
α̂ε(ω,K, z)

β̂ε(ω,K, z)

)
= Pε

j(ω,K, z)

(
α̂ε(ω,K,−L+

j )

β̂ε(ω,K,−L+
j )

)
.

The boundary conditions at z = −L+
j are not known a priori and are to be deter-

mined recursively, as we explain in the following sections. We do know, however, the
boundary conditions at the surface z = 0, where the source and the array are

αε(ω,K, 0+) = αε(ω,K, 0−) +
ε

d+1
2 e−iωε K·xs√
γ(K, 0)

[
f̂(ω) +

γ(K, 0)

ρ
K · F̂(ω)

]
,(A.10)

βε(ω,K, 0−) =
ε

d+1
2 e−iωε K·xs√
γ(K, 0)

[
f̂(ω)− γ(K, 0)

ρ
K · F̂(ω)

]
.(A.11)
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These equations follow from (A.4), (A.5), and identity

(A.12) βε(ω,K, 0+) = 0,

which says that there are no down-going waves above the source in the homogeneous
half space z > 0.

We refer to

(A.13) βε(ω,K, 0−) =
ε

d+1
2 ϕ̂(ω,K)√
γ(K, 0)

e−iωε K·xs , ϕ̂(ω,K) = f̂(ω)− γ(K, 0)

ρ
K · F̂(ω),

as the amplitude of the incident waves impinging on the layered medium. The up-
going wave amplitude αε(ω,K, 0+) consists of two parts: the direct arrival, which we
remove from the data, and the scattered part

(A.14) αε(ω,K, 0−) = Rε(ω,K)βε(ω,K, 0−),

where Rε(ω,K) is the reflection coefficient of the layered medium below the surface
z = 0. The pressure field scattered by the layered structure is obtained by Fourier
synthesis:
(A.15)

p(t, �x) =
ε

d+1
2

2

∫
dω

2πε

∫
dK
( ω

2πε

)d−1

ϕ̂(ω,K)Rε(ω,K)e−iωε t+iω
ε K·(x−xs), �x = (x, 0).

It remains to write in the next sections the reflection coefficient Rε(ω,K) in terms of
the propagators Pε

j of the random slabs and the scattering operators at the interfaces
z = −Lj for j = 1, . . . ,M .

Similar to (A.15), we obtain by Fourier synthesis the incident field pi(t, �y) at a
point �y in the support S of the reflectivity (recall Born formula (3.7)). The layered
medium appears in pi(t, �y) in the form of transmission coefficient T ε(ω,K) between
z = 0 and z = −L, where �y = (y,−L). This transmission coefficient is also deter-
mined by the propagators Pε

j of the random slabs and the scattering operators at the
interfaces z = −Lj, for j = 1, . . . ,M , as we show in the following sections.

A.3. The Transmission and Reflection Coefficients in the Random Slabs. It
follows easily from (A.8) (see [50]) that the propagators Pε

j(ω,K, z) are of the form

(A.16) Pε
j =

(
ζεj ηεj
ηεj ζεj

)
,

where ζεj (ω,K, z) and η
ε
j(ω,K, z) are complex valued fields satisfying

(A.17) detPε
j(ω,K, z) =

∣∣ζεj (ω,K, z)∣∣2 − ∣∣ηεj(ω,K, z)∣∣2 = 1, −Lj < z < −Lj−1.

The bar stands for complex conjugate.
It is not convenient to work directly with the entries of Pε

j, so we introduce instead
the “transmission” and “reflection” coefficients T ε

j (ω,K, z) and R
ε
j(ω,K, z):

(A.18) Pε
j(ω,K, z)

(
0

T ε
j (ω,K, z)

)
=

(
Rε

j(ω,K, z)
1

)
.

This definition can be understood as follows: Imagine that we had a random slab in
the interval (−Lj , z) and homogeneous half spaces above and below it, as shown in
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Fig. A.1 Schematic of transmission and reflection by an imaginary random slab in the interval
(−Lj , z), with homogeneous half spaces above and below it. We show on the left the
illumination of the slab from above. The illumination from below the slab is shown on the
right.

Figure A.1. Then if we sent a down-going wave of amplitude 1 at z, we would observe
a down-going transmitted field T ε

j (ω,K, z) at −Lj and a reflected up-going field of
amplitude Rε

j(ω,K, z) at z. There would be no up-going field at −Lj, because there
is no scattering below the imaginary slab.

Equations (A.16) and (A.18) give T ε
j (ω,K, z) =

1

ζε
j (ω,K,z)

, Rε
j(ω,K, z) =

ηε
j(ω,K,z)

ζε
j (ω,K,z)

,

and by (A.17), we have the conservation of energy identity

(A.19)
∣∣T ε

j (ω,K, z)
∣∣2 + ∣∣Rε

j(ω,K, z)
∣∣2 = 1.

This holds for any z in the interval (−Lj,−Lj−1), where j = 1, . . . ,M .

We can also define the analogous coefficients T̃ ε
j (ω,K, z) and R̃ε

j(ω,K, z) corre-
sponding to illuminating the imaginary random slab from below (see Figure A.1):

(A.20) Pε
j(ω,K, z)

(
1

R̃ε
j(ω,K, z)

)
=

(
T̃ ε
j (ω,K, z)

0

)
.

These coefficients are given by T̃ ε
j (ω,K, z) = T ε

j (ω,K) and R̃ε
j(ω,K, z) = − ηε

j(ω,K,z)

ζε
j (ω,K,z)

.
They also satisfy the energy conservation identity

(A.21)
∣∣∣T̃ ε

j (ω,K, z)
∣∣∣2 + ∣∣∣R̃ε

j(ω,K, z)
∣∣∣2 = 1.

The random transmission and reflection coefficients are completely understood,
in the sense of their statistical distribution, in the limit ε → 0 [50, 5]. In this paper
we need just a few facts about the moments of these coefficients, which we quote from
[50, 5]:

(1) The transmission and reflection coefficients of different random slabs (i.e., for
different indices j) are statistically independent.

(2) Let z be fixed and consider Ulq(ω,K, z) =
[
T ε
j (ω,K, z)

]l [
Rε

j(ω,K, z)
]q

for
arbitrary and nonnegative integers l, q. We have

(A.22) E
{
Ulq(ω,K, z)Ul′q′(ω′,K ′, z)

}
→ 0,

if q 
= q′ or if q = q′ ≥ 1 and |ω − ω′| > O(ε), or |K −K ′| > O(ε). A similar result
holds for R̃ε

j(ω,K, z) replacing R
ε
j(ω,K, z).
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(3) The multifrequency and slowness moments of the transmission coefficients do
not vanish,

(A.23) E

⎧⎨
⎩
∏
q≥1

T ε
j (ωq,Kq, z)

⎫⎬
⎭→ E

⎧⎨
⎩
∏
q≥1

TODA

j (ωq,Kq, z)

⎫⎬
⎭ ,

and converge to the moments of the ODA kernel
(A.24)

TODA

j (ω,K, z) = exp

{
−ω

2l

8

∫ z

−Lj

ds

c2(s)[1− c2(s)K2]
+i
ω
√
l

2

∫ z

−Lj

dW (s+ Lj)

c(s)
√

1− c2(s)K2

}
.

Here W is standard Brownian motion and l = �/ε2 = O(1) is the rescaled correlation
length.

A.4. The Strong Scattering Interfaces. We model scattering at the interfaces
−Lj with propagators Lj that map the up- and down-going waves below the interface
to those above it.

If the interface is due to a jump discontinuity of c(z) at −Lj, we have

(A.25)

(
α̂ε(ω,K,−L+

j )e
iωε τj(K,−Lj)

β̂ε(ω,K,−L+
j )e

−iωε τj(K,−Lj)

)
= Lj(ω,K)

(
α̂ε(ω,K,−L−

j )

β̂ε(ω,K,−L−
j )

)
,

where we use τj(K,−Lj) on the left-hand side to increment the travel times (A.7)
that start from zero in each random slab. The entries in Lj are given by [50]

(A.26) Lj =

⎛
⎜⎜⎝

1
2

(
c+j
c−j

+
c−j
c+j

)
− 1

2

(
c+j
c−j

− c−j
c+j

)

− 1
2

(
c+j

c−j
− c−j

c+j

)
1
2

(
c+j

c−j
+

c−j
c+j

)
⎞
⎟⎟⎠ , c±j =

c(−L±
j )√

1− c2(−L±
j )K

2
,

and we can define, as in section A.3, the transmission and reflection coefficients

(A.27) Lj

(
0
Tj

)
=

(
Rj

1

)
, Lj

(
1

R̃j

)
=

(
T̃j
0

)

corresponding to illuminations from above and below the interface. They satisfy the
identities

(A.28) T̃j = Tj, R̃j = −Rj , T 2
j +R2

j = 1.

An alternative model of a strong scattering interface at −Lj is given by a sudden
blip of c(z) over a depth interval −Lj −O(λo) ≤ z ≤ −Lj. We can model such a blip
as a perturbation of a constant speed

(A.29) c(z) = c(−L+
j )

[
1 + σjχ

(
z + Lj

ε

)]
, −εdχ ≤ z + Lj ≤ 0,

using a window function χ(ξ) supported in the O(1) interval ξ ∈ [−dχ, 0]. We nor-
malize χ to have maximum value 1, and we let σj = O(1) be the relative amplitude
of the perturbation in (A.29).
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If χ were the indicator function of the interval [−dχ, 0], the propagator Lj would
be

Lj =

⎛
⎜⎜⎝

1
2

(
c+j

c−j
+

c−j
c+j

)
− 1

2

(
c+j

c−j
− c−j

c+j

)

− 1
2

(
c+j
c−j

− c−j
c+j

)
1
2

(
c+j
c−j

+
c−j
c+j

)
⎞
⎟⎟⎠
(
eiωdχ/c

−
j 0

0 e−iωdχ/c
−
j

)

×

⎛
⎜⎜⎝

1
2

(
c−j
c+j

+
c+j

c−j

)
− 1

2

(
c−j
c+j

− c+j

c−j

)

− 1
2

(
c−j
c+j

− c+j

c−j

)
1
2

(
c−j
c+j

+
c+j

c−j

)
⎞
⎟⎟⎠ .

Here c±j are as in (A.26), with c(−L−
j ) = c(−L+

j )(1 + σj) and Lj determined by the
product of two matrices of the form (A.26), accounting for the jump discontinuities at
−Lj and −Lj − εdχ. The travel time −εdχ/c−j , over the support εdχ of the perturba-
tion of c, appears in Lj as well. It is easy to check that this complex valued propagator
satisfies the analogue of conditions (A.16), (A.17). The transmission and reflection
coefficients are defined just as in (A.27), and they satisfy the energy conservation
identity

|Tj |2 + |Rj |2 = 1,

which is a consequence of detLj = 1.
In the case of a smooth χ, we can obtain the propagator Lj from (A.8), as follows.

Let z = −Lj+εξ, with ξ ∈ [−dχ, 0], and write the analogue of (A.8) for the propagator
Pε
j (ξ),

∂Pε
j

∂ξ
=

[
iωμj

(
ξ

ε

)
γj(K, ξ)

2ρc2j(K, ξ)
Hj +

∂

∂ξ
ln
√
γj(K, ξ)Mj

]
Pε
j ,

Pε
j = I at ξ = −dχ.(A.30)

Here we use the short notation

μj

(
ξ

ε

)
= μ

(
−Lj

ε2
+
ξ

ε

)
, γj(K, ξ) = ρcj(K, ξ),

cj(K, ξ) =
c(−L+

j )[1 + σjχ(ξ)]√
1− c2(−L+

j )[1 + σjχ(ξ)]2K2
,

and we define the matrices

Hj =

(
1 −e−

2iωξ
cj(K,ξ)

e
2iωξ

cj(K,ξ) −1

)
, Mj =

(
0 e

− 2iωξ
cj(K,ξ)

e
2iωξ

cj(K,ξ) 0

)
.

The propagator Lj is given by the limit ε → 0 of the solution of (A.30), evaluated
at ξ = 0. The limit follows from a well-known averaging theorem (see [50, section
6.4.1]), and we obtain

(A.31) Lj = Pj(0),
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where

∂Pj

∂ξ
=

∂

∂ξ
ln
√
γj(K, ξ)MjPj ,

Pj = I at ξ = −dχ.(A.32)

Finally, we define the transmission and reflection coefficients just as in (A.27) and
check that they satisfy the energy conservation identity |Tj|2 + |Rj |2 = 1.

A.5. The Scattering Series. Let us call −L the maximum depth of propagation
of the waves in a bounded and fixed time window. Then, we can use the causality of
the wave equation to set the speed c(z) to the constant value c(−L) for z ≤ −L. Let
us also denote by Rε(ω,K) and T ε(ω,K) the reflection and transmission coefficients
of the layered medium in the interval (0,−L), at scaled frequency ω and slowness K,
with K = |K|. We obtain by iterating (A.9) and (A.25) that

(
Rε(ω,K)

1

)
= Pε

1(ω,K,−L1) diag
(
e−iωε τ1(K,−L1), ei

ω
ε τ1(K,−L1)

)
L1P

ε
2(ω,K,−L2) · · ·

diag
(
e−iωε τM(K,−LM ), ei

ω
ε τM (K,−LM)

)
LMPε

M+1(ω,K,−L)
(

0
T ε(ω,K)

)
.

(A.33)

Here we assume that there are M strong scattering interfaces above z = −L and,
due to the perfect matching at z = −L, we have no up-going wave coming from the
homogeneous half space z < −L.

Equations (A.33) define implicitly Rε and T ε. We invert them next to obtain the
scattering series. Note that from now on we use the following simplified notation:

αε,+
j = αε

j(ω,K,−L+
j ), βε,+

j = βε
j(ω,K,−L+

j ),

and similarly for z = −L−
j . We also let T ε

j = T ε
j (ω,K,−Lj−1), R

ε
j = Rε

j(ω,K,−Lj−1),
and τj = τj(K,−Lj).

A.5.1. The Series for Rε. Let us begin with (A.9). We have

(
αε,−
j−1

βε,−
j−1

)
= Pε

j

(
αε,+
j

βε,+
j

)
= αε,+

j Pε
j

(
1

R̃ε
j

)
+

(βε,+
j − R̃ε

jα
ε,+
j )

T ε
j

Pε
j

(
0
T ε
j

)
,

and from definitions (A.18) and (A.20), we get

(A.34)

(
αε,−
j−1

βε,−
j−1

)
= αε,+

j

(
T̃ ε
j −Rε

jR̃
ε
j/T

ε
j

−R̃ε
j/T

ε
j

)
+ βε,+

j

(
Rε

j/T
ε
j

1/T ε
j

)

for j = 1, . . . ,M + 1. Similarly, we obtain from (A.25) that at z = −Lj

(A.35)

(
αε,+
j ei

ω
ε τj

βε,+
j e−iωε τj

)
= αε,−

j

(
T̃j −RjR̃j/Tj

−R̃j/Tj

)
+ βε,−

j

(
Rj/Tj
1/Tj

)

for j = 1, . . . ,M . The boundary conditions are

(A.36) αε,−
0 = Rε, βε,−

0 = 1, αε,+
M+1 = 0, βε,+

M+1 = T ε,

and we set LM+1 = L.
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Fig. A.2 Diagram of the first few terms in the series (A.38) on the left and series (A.41) on the
right.

Let us start from the bottom in (A.34)–(A.36),

(A.37) T ε = βε,−
M T ε

M+1,
αε,−
M

βε,−
M

= Rε
M+1,

and use (A.37) in (A.35) for j =M to get

αε,+
M

βε,+
M

= e−2iωε τM

(
αε,−
M (T̃M −RM R̃M/TM) + βε,−

M RM/TM

βε,−
M /TM − αε,−

M R̃M/TM

)

= e−2iωε τM

(
RM +

Rε
M+1TM T̃M

1− R̃MRε
M+1

)
.

Since the reflection coefficients are less than 1 in magnitude, we obtain

(A.38)
αε,+
M

βε,+
M

= e−2iωε τM

[
RM +Rε

M+1TM T̃M

∞∑
q=0

(
R̃MR

ε
M+1

)q]
.

This series says that, as indicated in the diagram in Figure A.2, the reflected field
at −L+

M consists of the following: (1) the direct reflection at the interface z =
−LM (RM in (A.38)); (2) the transmission through the interface and the reflec-
tion by the medium below, followed by another transmission from below the interface
(TMR

ε
M+1T̃M in (A.38)); (3) multiple iterations of the latter. Due to reflections at

−LM , we have multiple illuminations of the medium below z = −LM . These are
terms TM (R̃MR

ε
M+1)

qRε
M+1T̃M for q > 0 in (A.38).

The series for
αε,−

M−1

βε,−
M−1

is obtained in an analogous manner:

αε,−
M−1

βε,−
M−1

= Rε
M +

αε,+
M

βε,+
M

T ε
M T̃

ε
M

∞∑
q=0

(
R̃ε

M

αε,+
M

βε,+
M

)q

.

Iterating for all indices j, we obtain the full scattering series

(A.39)
αε,+
j

βε,+
j

= e−2iωε τj

[
Rj +

αε,−
j

βε,−
j

Tj T̃j

∞∑
q=0

(
R̃j

αε,−
j

βε,−
j

)q]
,

where j = 1, . . . ,M . At j =M we have (A.37) and

(A.40)
αε,−
j−1

βε,−
j−1

= Rε
j +

αε,+
j

βε,+
j

T ε
j T̃

ε
j

∞∑
q=0

(
R̃ε

j

αε,+
j

βε,+
j

)q

, j = 1, . . . ,M.

Finally, (A.36) gives Rε =
αε,−

0

βε,−
0

.
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A.5.2. The Series for T ε. The derivation of the series for T ε is analogous to
that for Rε. We directly state the result here: For j = 1, . . . ,M , we have

(A.41) βε,+
j = βε,−

j−1T
ε
j

∞∑
q=0

(
R̃ε

j

αε,+
j

βε,+
j

)q

and

(A.42) βε,−
j = βε,+

j e−iωε τjTj

∞∑
q=0

(
R̃j

αε,−
j

βε,−
j

)q

.

The first terms in (A.41) and (A.42) are the direct transmission through the jth
random slab and interface, respectively. The series arise because of the multiple
illuminations of the slab and interface, due to the reflection by the layered structure
below −Lj. See, for example, the diagram in Figure A.2 for series (A.41). At z = 0
we have the initial condition (A.13) and T ε = βε,+

M+1.

A.6. The Scattered Pressure Field. Assume first times t < τS , so that all the
echoes at the array are due to the layered structure. The pressure field at the receivers
is given by (A.15), in terms of the reflection coefficient Rε defined by the scattering
series derived in section A.5.1. The series involves random reflection and transmission
coefficients T ε

j and Rε
j , with moments given in section A.3, in the asymptotic limit

ε→ 0.
Note in particular statements (A.22) and (A.23). They say that when computing

the expectation of p(t, �x), we can drop all terms in Rε that involve reflections by the
random slabs and replace the transmission coefficients T ε

j by the ODA kernels TODA

j .
That is, we can write

(A.43) E {p(t, �x)} ≈ E {pODA(t, �x)} ,

where �x = (x, 0),
(A.44)

pODA(t, �x) =
ε

d+1
2

2

∫
dω

2πε

∫
dK
( ω

2πε

)d−1

ϕ̂(ω,K)RODA(ω,K)e−iωε t+iωε K·(x−xs),

and RODA =
αODA,−

0

βODA,−
0

is determined recursively from

αODA,+
j

βODA,+
j

= e−2iωε τj

[
Rj +

αODA,−
j

βODA,−
j

TjT̃j

∞∑
q=0

(
R̃j

αODA,−
j

βODA,−
j

)q]
,

αODA,−
j−1

βODA,−
j−1

=
αODA,+
j

βODA,+
j

[
TODA

j

]2
, j = 1, . . . ,M,(A.45)

αODA,−
M

βODA,−
M

= 0.

Furthermore, due to the rapid decorrelation of the reflection coefficients Rε
j over fre-

quencies and slownesses K, we get from (A.15) and (A.22) that

(A.46) E
{
|p(t, �x)|2

}
= E

{
|pODA(t, �x)|2

}
+O(ε).
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Fig. A.3 Diagram of Snell’s law for reflection at z = −L1.

The ODA field (A.44) describes the coherent echoes recorded at the array. They
are due to scattering by the strong interfaces at z = −Lj, for j = 1, . . . ,M , but not
to scattering in the random medium. Scattering in the random medium produces
what we call the incoherent field. It has zero expectation and O(ε) variance (see the
second term in (A.46)). The coherent field pODA(t, �x) consists of a series of coherent
arrivals along scattering paths that we denote in short by P . Each such arrival can
be analyzed with the method of stationary phase [20].

Take, for example, the shortest path P , corresponding to a single reflection at
−L1, and assume for the purpose of illustration that c(z) = co and d = 3. We have

pODA

P (t, �x)=
ε2

2

∫
dω

2πε

∫
dK
( ω

2πε

)2
ϕ̂(ω,K)R1 [T

ODA

1 (ω,K)|2 e−iωε (t+2τ1)+iωε K·(x−xs),

with kernel TODA
1 (ω,K) given by (A.24), for j = 1 and z = 0. The travel time is

τ1 = −L1

√
1− c2oK

2

co

and

TODA

1 (ω,K) = exp

{
− ω2lL1

8c2o(1− c2oK
2)

+ i
ω
√
l

2co
√
1− c2oK

2
W (L1)

}
.

The leading term in the integral overK comes from the neighborhood of the stationary
point

K =
h

co
√
|h|2 + 4L2

1

, K = |K| = cos θ1
co

.

This corresponds to waves propagating along a straight path from the array to the
interface at −L1 and back. The reflection at −L1 obeys Snell’s law, as indicated in
Figure A.3. A straightforward application of stationary phase gives

pODA

P (t, �x) =
ε

4π
√
h2 + 4L2

1

∫
dω

2π

(
−iω

ε

sin θ1
co

)

×
(
f̂(ω)− h · F̂(ω)

2L1

)
R1e

− ω2t2ps

sin2 θ1
+2i

ωtps
sin θ1

W (L1)√
L1

−iω
ε

(
t−

√
|h|2+4L2

1
co

)
.

This result is similar to (3.25). It says that the coherent echo along path P looks
as if we had a homogeneous medium, except for the following: (1) the pulse spread
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controlled by parameter

tps =

√
lL1

2co

with units of time, and (2) the random arrival shift εδτP , with

δτP =
2tps
sin θ1

W (L1)√
L1

.

Obviously, the above illustration extends to all the coherent paths and to variable,
but smooth c(z). Consistent with the notation in (3.22), we denote the pulse shape
for each coherent arrival by

ΦP

[
t− τP (h)− εδτP (h)

ε
,h

]
.

We use the second argument to point out that ΦP changes with h. This is a slow
change due to geometrical spreading and the convolution with the ODA kernel. The
rapid variation with h is due to the travel time τP (h) in the first argument of ΦP .

Finally, let us point out that the results in this section extend obviously to the
echoes from the reflectivity support S using the series derived in section A.5.2 for T ε

and the Born approximation.
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[14] E. Bécache, P. Joly, and C. Tsogka, Étude d’un nouvel élément fini mixte permettant la

condensation de masse, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), pp. 1281–1286.
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