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Abstract. A frequently used broadband array imaging method is Kirchhoff or travel

time migration. In smooth and known media Kirchhoff migration works quite well,

with range resolution proportional to the reciprocal of the bandwidth and cross range

resolution that is proportional to the reciprocal of the array size. In a randomly

inhomogeneous medium, Kirchhoff migration is unreliable because the images depend

on the detailed scattering properties of the random medium that are not known.

In [17] we introduced an imaging functional that does not depend on the detailed

properties of the random medium, that is, it is statistically stable. This is the Coherent

Interferometric (CINT) imaging functional, which can be viewed as a smoothed version

of Kirchhoff migration. Smoothing increases the statistical stability of the image but

causes blurring. In this paper we introduce an adaptive version of CINT in which there

is an optimal trade-off between statistical stability and blurring. We also introduce

optimal illumination schemes for achieving the best possible resolution of the images

obtained with CINT.

PACS numbers: 43.60.Gk, 43.60.Cg, 43.60.Rw, 43.60 Tj

1. Introduction

In broadband array imaging we want to determine small or distributed reflectors by

sending probing signals from one or more sources at the array and recording the scattered

echoes. A typical setup is shown schematically in Figure 1, where the reflectors are in

the domain S.

The source at xs emits a spherical wave convolved with the signal

f(t) = e−iωotfB(t) (1.1)

whose Fourier transform

f̂(ω) =

∫ ∞

−∞
ei(ω−ωo)tfB(t)dt = f̂B(ω − ωo), (1.2)
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Figure 1. Schematic for imaging distributed reflectors in S.

is supported in the frequency interval centered at ωo with bandwidth B. The time

traces of the scattered echoes P (xr,xs, t) are recorded at the array receiver locations

xr, for r = 1, . . . , Nr, over some time window t ∈ [tm, tM ]. Full array data are obtained

by sending sequentially probing signals from Ns sources and recording in each case the

traces P (xr,xs, t), s = 1, ..., Ns, r = 1, ..., Nr. The imaging problem is to estimate from

the recorded traces the support of the reflectors in S.

When the background medium is known and is smooth or piece-wise smooth then

the imaging of the reflectors can be done with Kirchhoff migration [31, 60, 30, 8, 9, 68,

49, 64, 10], as we recall in section 2. If the medium is not known then we may be able

to estimate it approximately during the image formation process with a background

velocity analysis [24, 66, 35]. However, this velocity estimation can only capture the

smooth part of the background. It cannot get the small scale inhomogeneities that

are naturally present in many important applications in geophysics, non-destructive

evaluation, foliage or ground penetrating radar, etc. Since we do not know these small

scale inhomogeneities we view them as clutter and we model them with spatial random

processes.

Imaging with Kirchhoff migration does not work well in cluttered media when there

is significant multipathing of the waves by the inhomogeneities. This is because there

is considerable delay spread or coda in the recorded traces at the array, which creates

noisy-looking and speckled images that are difficult to interpret. Moreover, the images

change unpredictably for different realizations of the cluttered background having the

same statistical properties. To make migration work in clutter, we need an efficient

method for compressing the delay spread in the traces. We introduced such a method

in [17, 18], called coherent interferometry (CINT), where the delay spread is reduced by

cross correlating the traces over appropriate space-time windows.

In this paper we introduce an adaptive algorithm for selecting the size of the space-
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time windows with a criterion that is based on both the stability and the quality of the

image. We show that in cluttered media there is a trade-off between statistical stability

and resolution of the image and that the adaptive algorithm that we propose selects the

space-time windows so as to achieve an optimal compromise between the two.

We also consider the question of choosing optimally the waveform sent by the array

in order to construct the best possible image of the reflectors. Optimal waveforms for

maximizing the received signal power at the array at each frequency are studied in

[53, 47, 43, 36]. This is done with the singular value decomposition of the response

matrix for each frequency. Time reversal or Kirchhoff migration images constructed

with this optimal illumination tend to enhance the image near the strongest reflector

or near the region of highest reflectivity. Maximization of the received power in the

time domain can be done with iterative time reversal [54, 27, 28]. However, the optimal

waveforms for maximum received power in the time domain are narrow-band signals

that are centered at a frequency which typically depends on the size of the reflectors,

such as a resonant frequency. They produce strong echoes at the array, which is what is

needed for detection, but they are bad for imaging because the lack of bandwidth gives

poor range resolution and poor statistical stability in clutter [11, 16, 15, 20, 21]. A way

to mitigate the limitations of narrow-band optimal waveforms is considered in [48].

In this paper we introduce a different method for determining optimal illumination

and pulse waveforms. We use an optimization criterion that is based on the quality of

the image. It is similar to what we do in adaptive coherent interferometry because it

uses the coherent interferometric functional to determine the optimal illumination in

essentially the same way as for smoothing clutter effects.

The paper is organized as follows: In section 2 we review the simplest form of

imaging with Kirchhoff migration and present some numerical results that illustrate its

lack of statistical stability in clutter. In Section 3 we consider coherent interferometric

imaging and explain in section 4 how it can be viewed as a statistically smoothed version

of Kirchhoff migration. The adaptive coherent interferometric approach is introduced

in section 5 and its performance is illustrated with numerical simulations. In Section 6

we address the optimal illumination problem and present some numerical simulations.

We end the paper with a summary and conclusions, in section 7.

2. Kirchhoff migration imaging

Imaging in known and piecewise smoothly varying environments can be done efficiently

with Kirchhoff migration [31, 60, 30, 8, 9, 68, 49, 64, 10], which in its simplest form is

the transformation of the array data P to an image by the functional IKM

IKM(yS) =

Nr∑

r=1

Ns∑

s=1

P
(
xr,xs, τ(xr,y

S) + τ(xs,y
S)

)
. (2.3)
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Equivalently, in the frequency domain we have

IKM(yS) =
Nr∑

r=1

Ns∑

s=1

∫ ∞

−∞
dωP̂ (xr,xs, ω) exp

(
−iω

[
τ(xr,y

S) + τ(xs,y
S)

])
, (2.4)

with the Fourier transform P̂ defined as in (1.2). The data traces are ”migrated” to

a search point yS, which sweeps a search domain D that includes the reflectors. The

migration is done with the travel times τ(xr,y
S)+τ(xs,y

S) of the waves from the source

at xs to the search point yS and then back to the receiver at xr. In a homogeneous

medium, τ(x,y) = |x−y|/co with co the propagation speed. In smoothly varying media

with propagation speed c(x), the travel time is given by

τ(x,y) = min

∫
1

c(X(s))
ds,

where the minimum is over all paths X that start at x and end at y.
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(a) The computational set-up for gath-

ering the signals scattered by the three

reflectors shown in red.
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(b) Traces received in a homogeneous background, when

signal f(t) is sent from the central array element. The

horizontal axis is time, scaled by the pulse width. The

vertical axis is the receiver location, scaled by λo.

Figure 2. Array imaging in a homogeneous medium

Migration methods work well in smooth or piece-wise smooth media because the

waves are scattered significantly only at the reflectors that we wish to image, or at

the known discontinuities in the medium. Consequently, the traces are clean and the

arrival times of the echoes are relatively easy to identify. We illustrate this in Figure

2-(b) for three small scatterers in a homogeneous background. The computational setup

is shown in Figure 2-(a). We consider a linear array with 185 elements separated by

distance λo/2, with an aperture of 92λo. The range of the scatterers is 90λo and they

are at distance d = 6λo apart. The reflectors are disks of radius λo/2 and they are

modeled as soft acoustic scatterers by setting the acoustic pressure to zero on their

boundary. The pulse f(t) is the derivative of a Gaussian with central frequency of

100 kHz and bandwidth 60 − 130 kHz, measured at 6 dB. For a background speed

co = 3 km/s, the central wavelength is λo = 3 cm. This is a typical configuration for
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non-destructive testing of concrete structures with ultrasound [41]. The data traces are

generated numerically by solving the acoustic wave equation as a first order velocity-

pressure system with the finite element, time domain method given in [5, 6]. We model

wave propagation in unbounded media by surrounding the computational domain with

a perfectly matched absorbing layer [7] as shown in Figure 2-(a).

We see clearly in Figure 2-(b) the three strong hyperbolas corresponding to the

direct echoes from each reflector, as well as the fainter hyperbolas coming from multiple

scattering of the waves between the reflectors. The traces are zero except in the vicinity

of these arrival times and the Kirchhoff migration functional (2.3) peaks at the search

points that give travel times near these arrivals, along the array. The image functional

IKM(yS) is shown in Figure 3 for a spatial window of 20 × 20 wavelengths λo that

is centered at the configuration of the reflectors, with a spatial sampling of λo/2. In

figure 3 and all the other figures in the paper where imaging results are displayed we

use a linear color scale and the image is normalized to have maximum 1. All three

reflectors are identified correctly, although there are some faint secondary peaks due to

the multiple scattering between the targets that is not accounted for in the Kirchhoff

migration functional.

Figure 3. The Kirchhoff migration image of three reflectors in a homogeneous

background as in Figure 2-(a), with the data traces of Figure 2-(b). The reflectors

are indicated with black dots.

In many applications in geophysical wave propagation, ground or foliage penetrating

radar, non-destructive evaluation of aging concrete structures, etc., the background

is not homogeneous or smoothly varying. It is rapidly fluctuating because of

inhomogeneities that can affect significantly the propagation of waves. An example

of such a medium is shown in Figure 4-(a). Depending on the application, we may know

the smoothly varying component of the background or we can estimate it from the data

with some velocity estimation method as the image is formed [30, 24, 66, 65]. However,

we usually do not know and we cannot estimate the inhomogeneities in detail, so it is

natural to view them as clutter and to model them with random processes.
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(a) Fluctuations in the sound speed c(x) in the

region between the array and the targets shown

here and in Figure 2-(a) with black dots. The

strength of the fluctuations of c(x) is given in the

color-bar. The axes are range and cross range in

units of λo.
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(b) Traces recorded at the array in the cluttered medium

shown in Figure 4-(a). The horizontal axis is time, scaled

by the pulse width. The vertical axis is the receiver

location in units of the reference wavelength λo.

Figure 4. Array imaging in a cluttered medium.

Imaging in cluttered media, in regimes with significant multiple scattering of the

waves by the inhomogeneities, is a challenging problem because the traces have a lot of

delay spread or coda, as illustrated in Figure 4-(b). This delay spread cannot be viewed

as additive, uncorrelated noise that can be reduced by simply averaging (stacking) the

traces over the array. Therefore, the Kirchhoff migration images obtained by adding

the noisy traces migrated to the search points yS, with the travel times computed in

the smooth and known part of the medium, deteriorate significantly in clutter as seen

in Figure 5. The images are not only noisy but they also change unpredictably with the

realizations of the clutter, that is, they are statistically unstable.

Figure 5. Kirchhoff migration images for two realizations of the clutter, with the same

statistical characteristics. The data traces are as in Figure 4-(b). The support of the

reflectors is indicated with black dots.
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To make migration work in clutter we need an efficient technique for compressing

the delay spread in the traces. We consider this in the next section.

3. Coherent interferometry

We take for simplicity the noisy traces produced with illumination from a single source

located at xs. An effective way to reduce the delay spread in the traces is to cross

correlate them and obtain the interferograms

P (xr,xs, ·) ∗t P (xr′,xs − ·)(t) =

∫
dt′P (xr,xs, t

′)P (xr′,xs, t
′ − t),

= 1
2π

∫
dωP̂ (xr,xs, ω)P̂ (xr′ ,xs, ω)e−iωt,

(3.5)

where the bar indicates complex conjugate. These interferograms are better suited for

migration than the traces themselves because by cross correlation we achieve significant

cancellation of the random phases in the Fourier coefficients P̂ . Equivalently, we reduce

the unwanted effects of the clutter and we emphasize the coherent arrivals from the

reflectors that we wish to image. The migration of the interferograms to the search

points yS is done with the travel times computed in a smooth background that we

assume is known. The interferometric imaging function is

IINT(yS) =
∑

xr ,xr′

P (xr,xs, ·) ∗t P (xr′,xs,−·)|τ(xr,yS)−τ(xr′ ,y
S). (3.6)

We evaluate the interferogram at the difference of the travel times because it will have

a peak at that lag time when yS is near a reflector.

Interferometric methods have been used before in many different contexts. For

example, in geophysics, seismic traces recorded at an array of receivers are cross

correlated for simulating reflection data [56, 63, 45] that can then be migrated in

deterministic media to image subsurface reflectors [61]. Interferometry is also widely

used in connection with matched field imaging [23, 4, 40, 34] because (3.6) takes the

form of a matched field imaging functional in the frequency domain

IINT(yS) =

∫ ∞

−∞
dω

∣∣∣∣∣

Nr∑

r=1

P̂ (xr,xs, ω) exp
(
−iω

[
τ(xr,y

S) + τ(xs,y
S)

])
∣∣∣∣∣

2

. (3.7)

This matched filter form of the imaging functional has optimal noise reducing properties

for data contaminated with additive, white (instrument) noise at the receivers. We use

it for traces with delay spread caused by multipathing in clutter, which have much

more complicated statistical structure, because we are interested in interferometry as a

statistically stable imaging technique. We point the reader to our recent work in [16, 15]

for a resolution study of IINT in deterministic and cluttered media. Interferometric

functionals for imaging in clutter are also used in [25], in a very different way than we

do with coherent interferometry, as we explain next.
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The main drawback of IINT is that it provides no range resolution in clutter

[16, 15], unless we have a very large array or multiple arrays that allow us to do

geometric triangulation. To recover range resolution we introduced in [17, 18] a coherent

interferometric imaging (CINT) functional that uses all the residual coherence in the

data. While in (3.7) we treat the traces P̂ (xr,xs, ω) as if they are uncorrelated

at different frequencies, in CINT we exploit the correlations of P̂ (xr,xs, ω) and

P̂ (xr′ ,xs, ω
′) at different frequencies and at different receivers. We can then have some

range and cross range resolution even with small arrays.

There are two intrinsic and characteristic coherence parameters in the data

P̂ (xr,xs, ω):

• the decoherence frequency Ωd which is the difference in frequencies ω and ω′

over which P̂ (xr,xs, ω) and P̂ (xr,xs, ω
′) become uncorrelated, and

• the decoherence length Xd that is the difference in receiver locations xr and xr′

over which P̂ (xr,xs, ω) and P̂ (xr′,xs, ω) become uncorrelated.

The decoherence frequency Ωd depends on the clutter and the range L of the reflectors

and when there is significant delay spread in the traces it can be much smaller than

the bandwidth B. The decoherence length Xd is also determined by the clutter and the

range L but it depends on the frequency as well. According to [17] it can be estimated

by

Xd(ω) =
co

ωκd

=
coL

ωae

, (3.8)

where ae is the effective aperture in time reversal [11, 16] and the dimensionless

parameter κd quantifies the uncertainty in the direction of arrival of the echoes in clutter,

as explained in detail in section 4. Note that the right side in (3.8) is the time reversal

spot size in the cross range direction [32, 36, 11, 16, 51], which can be much smaller than

the array aperture a in strong clutter where super-resolution of time reversal occurs.

The coherent interferometric functional is given by

ICINT(yS; Ωd, κd) =

∫ ∫

|ω−ω′|≤Ωd

dωdω′
Nr∑

r=1

Nr∑

r′ = 1

|xr − xr′ | ≤ Xd

“
ω+ω′

2

”

P̂ (xr,xs, ω)P̂ (xr′,xs, ω′)

exp{−i(ω(τ(xr,y
S) + τ(xs,y

S)) − ω′(τ(xr′,y
S) + τ(xs,y

S))} (3.9)

and it depends on the decoherence parameters Ωd and Xd (i.e., κd) that are not known

and must be determined from the data. Note that ICINT is equal to the square of the

Kirchhoff migration functional IKM when Ωd = B and Xd = a, that is, when there is no

significant decoherence in the data. Note also that the matched field functional IINT,

defined by (3.7), can be considered as a special case of ICINT, where the decoherence

frequency Ωd is zero.
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The parameters Ωd and κd can, in principle, be estimated directly from the data.

However, this estimation is rather delicate in practice, especially in inhomogeneous

random media where Ωd and κd are variable. We introduce in this paper, in section 5,

an adaptive algorithm for selecting these parameters using an optimization process that

is based on the stability and the quality of the image that ICINT produces.

4. Coherent interferometry as statistically smoothed migration

We assume that the receivers at the array are closely spaced so we can approximate it

by a continuum and we replace the sums over discrete locations xr and xr′ by integrals

over continuous variables x and x′ on the aperture of the array. For simplicity, we

take a planar array in the domain A and we measure the range of the reflectors in the

direction orthogonal to the array and the cross range in directions parallel to it. With

this convention, points x on the array have zero range so they can be identified with

their two dimensional cross range that we also denote by x.

Introducing the mid point and offset two dimensional vectors on the array

x =
x + x′

2
, x̃ = x − x′ (4.10)

and the central and difference frequencies

ω =
ω + ω′

2
, ω̃ = ω − ω′, (4.11)

we rewrite the CINT functional (3.9) in the form

ICINT(yS; Ωd, κd) ∼
∫

|ω−ωo|≤B

dω

∫

x∈A
dx

∫
dω̃ Ψ̂(ω̃; Ωd)

∫
dx̃ Φ̂

(
ω

co

x̃; κ−1
d

)

P̂

(
x +

x̃

2
,xs, ω +

ω̃

2

)
P̂

(
x − x̃

2
,xs, ω − ω̃

2

)

exp

{
−iω

[
τ(x +

x̃

2
,yS) − τ(x − x̃

2
,yS)

]}

exp

{
−iω̃

[
τ(x + ex

2
,yS) + τ(x − ex

2
,yS)

2
+ τ(xs,y

S)

]}
. (4.12)

Here ∼ stands for approximate equality up to a multiplicative constant. We restrict

the difference frequency ω̃ to be less than the decoherence frequency with the window

function Ψ̂(ω̃; Ωd), which is centered at zero and has support Ωd. Similarly, we use

the window function Φ̂
(

ω
co

x̃; κ−1
d

)
, supported in a ball of radius κ−1

d = ωXd(ω)/co, to

ensure that at central frequency ω the offset between the receivers |x̃| is less than the

decoherence length Xd(ω) given by (3.8).

We have already noted that in a cluttered medium the decoherence length Xd(ω)

is usually small compared to the array size. This is because it can be thought of as the



Adaptive interferometric imaging in clutter and optimal illumination 10

focusing spot size in time reversal. We can therefore approximate the phase in (4.12)

by linearizing the travel times for small x̃. This gives

τ(x + ex
2
,yS) − τ(x − ex

2
,yS) ≈ x̃ · ∇xτ(x,yS),

τ(x + ex
2
,yS) + τ(x − ex

2
,yS)

2
≈ τ(x,yS),

(4.13)

where both x and x̃ are two dimensional vectors in the aperture of the array. Therefore,

∇x is the tangential to the aperture gradient operator. With this phase linearization

the CINT imaging functional (4.12) becomes

ICINT(yS; Ωd, κd) ∼
∫

|ω−ωo|≤B

dω

∫

x∈A
dx

∫
dω̃ Ψ̂(ω̃; Ωd)

∫
dx̃ Φ̂

(
ω

co

x̃; κ−1
d

)

P̂
(
x + ex

2
,xs, ω + eω

2

)
P̂

(
x − ex

2
,xs, ω − eω

2

)

exp
{
−iωx̃ · ∇xτ(x,yS) − iω̃

[
τ(x,yS) + τ(xs,y

S)
]}

.

(4.14)

From this form of the CINT functional we can give a geometrical interpretation to

the parameter κd. We see from the exponential factor in (4.14),

exp
{
−iωx̃ · ∇xτ(x,yS)

}
,

that ωx̃/co is the dual variable of co∇xτ(x,yS), which is the direction of arrival from

the search point yS to the midpoint x at the array when there is no clutter. Therefore,

limiting the length of ωx̃/co by κ−1
d is equivalent to limiting the variation in the direction

of arrival vector by a factor proportional to κd. With this interpretation, a large κd

means that the spatial coherence window is small and there is a lot of uncertainty in

the direction of arrival from the targets in clutter, as estimated by CINT.

We explain next how limiting the integrals over the space and frequency difference

variables x̃ and ω̃ amounts to smoothing in the CINT imaging functional. Smoothing

is what gives the statistical stability of the image but it also results in blurring and loss

of resolution.

4.1. Statistical stability in coherent interferometric imaging

Let us begin by defining the space-frequency Wigner distribution W of the array data

in the form

W
(
x, ω

co
k, ω, t

)
=

∫
dω̃

∫
dx̃ P̂

(
x +

x̃

2
,xs, ω +

ω̃

2

)

P̂

(
x − x̃

2
,xs, ω − ω̃

2

)
e−ieωt−i ω

co
ex·k,

(4.15)

and introduce W(x, t,k), the integral of the Wigner distribution over the center

frequency ω,

W(x, t,k) =

∫
dω W

(
x,

ω

co

k, ω, t

)
. (4.16)
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Here t is time and k is a two dimensional vector that is the dual variable of ω
co

x̃, in the

Fourier transform with respect to x̃. The vector k is dimensionless.

Next, define the convolution of W with Ψ and Φ, the inverse Fourier transforms of

the window functions Φ̂ and Ψ̂, respectively,

F(K, T ; Ωd, κd) =

∫
dt

∫
dk W(x, t,k)Φ(K − k; κd)Ψ(T − t; Ω−1

d ). (4.17)

We used here the fact that the support of the window functions Φ and Ψ is proportional

to the reciprocal of the support of their Fourier transforms Φ̂ and Ψ̂. Substituting (4.16)

in (4.17), we have

F(K, T ; Ωd, κd) =

∫
dx̃

∫
dω

∫
dω̃ P̂

(
x +

x̃

2
,xs, ω +

ω̃

2

)
P̂

(
x − x̃

2
,xs, ω − ω̃

2

)

∫
dt Ψ(T − t; Ω−1

d )e−ieωt

∫
dk Φ(K − k; κd)e

−i ω
co

ex·k

∼
∫

dx̃

∫
dω

∫
dω̃ P̂

(
x +

x̃

2
,xs, ω +

ω̃

2

)
P̂

(
x − x̃

2
,xs, ω − ω̃

2

)

Ψ̂(ω̃; Ωd)Φ̂
(

ω
co

x̃; κ−1
d

)
exp

{
−iω̃T − i ω

co
x̃ · K

}
.

(4.18)

Recalling expression (4.14) of the CINT imaging functional we can write

ICINT(yS; Ωd, κd) ∼
∫

dx F
[
co∇xτ(x,yS), τ(x,yS) + τ(xs,y

S); Ωd, κd

]
. (4.19)

At any given ω and k, the Wigner distribution (4.15) is highly fluctuating for

different realizations of the clutter. However, by integrating it over ω and by convolving

it with the window functions Φ and Ψ we obtain the statistically stable CINT functional

(4.19). A simpler version of this functional is discussed and analyzed in [51] for particular

models of random media. Extensions to the statistical stability analysis of (4.19) are

given in [14].

4.2. Resolution limits in coherent interferometry

In order to see more clearly the resolution limits implied by the smoothing, we rewrite

the imaging functional (4.19) in the time domain

ICINT(yS; Ωd, κd) ∼
∫

dx

∫
dx̃ P

(
x + ex

2
,xs, t + k·ex

2co

)
P

(
x − ex

2
,xs, t − k·ex

2co

)
⋆k

Φ(k; κd)|k=co∇xτ(x,yS) ⋆t Ψ(t; Ω−1
d )

∣∣
t=τ(x,yS)+τ(xs,yS)

,

(4.20)

where we denote by ⋆k and ⋆t the convolution with respect to the direction of arrival

vector k and time t, respectively.
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When there is no smoothing, the window functions Φ and Ψ are essentially delta

functions and the approximations (4.13) make the right hand side in (4.20) the square

of the Kirchhoff migration functional
∫

dx

∫
dx̃ P

[
x +

x̃

2
,xs, τ(x,xs) + τ(xs,y

S) +
∇xτ(x,yS) · x̃

2

]

P

[
x − x̃

2
,xs, τ(x,xs) + τ(xs,y

S) − ∇xτ(x,yS) · x̃
2

]

≈
∫

dx

∫
dx̃ P

[
x +

x̃

2
,xs, τ

(
x +

x̃

2
,xs

)
+ τ(xs,y

S)

]

P

[
x − x̃

2
,xs, τ

(
x − x̃

2
,xs

)
+ τ(xs,y

S)

]
∼

[
IKM(yS)

]2
.

(4.21)

As already noted, Kirchhoff migration is not stable in clutter so, to stabilize it we

smooth it in (4.20) at the expense, however, of loss in resolution. The arrival times are

blurred in (4.20) by the convolution with window Ψ whose support is proportional to

1/Ωd. Therefore, the resolution in range is reduced to co/Ωd. Similarly, the directions

of arrival are blurred by convolution with the window function Φ whose support is

proportional to κd. Therefore, the resolution in the cross range direction is proportional

to Lκd.

In homogeneous media the range resolution is proportional to co/B, where B is

the bandwidth. In clutter the bandwidth is replaced by the decoherence frequency,

which is usually smaller than B, so the range resolution deteriorates to co/Ωd. We have

recovered here, in a model independent way, the range resolution derived in [17] by

analyzing specific models of the random medium.

The cross range resolution in clutter depends on κd, which quantifies the uncertainty

in the direction of arrival of the echoes. Since κ−1
d limits the length of ωx̃/co in (4.12)

and since |x̃| is limited by Xd(ω), we have κd = co/(ωXd(ω)) and

Lκd =
coL

ωXd(ω)
= ae,

where Xd = coL/(ωae) is the time reversal spot size. We have obtained, in a model

independent way, that the cross range resolution is determined by the effective aperture

for the time reversal process in clutter. This is precisely the result derived in [16, 17]

using specific models for the random medium.

In a homogeneous medium there is no loss of coherence, so we may take Xd = a

and obtain

Lκd = L
co

ωXd

=
Lco

ωa
.

This is just the Rayleigh cross range resolution formula [22]. In clutter, the array

aperture is replaced by Xd, which is usually less than a, so we lose cross range resolution.
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We have the implied inequalities

Xd(ω) =
coL

ωae

≤ coL

ωa
≤ coL

ωXd(ω)
= ae, (4.22)

which are consistent with the effective aperture ae being greater than the physical

aperture a that, in turn, is greater than the decoherence length Xd,

Xd ≤ a ≤ ae.

The effective aperture ae determines the enhanced focusing of time reversal in random

media, where the multiple scattering effects are important and the array aperture a is

small [11, 51, 16]. Inequality a ≤ ae holds in typical imaging applications in random

media, but there exist cases, such as in reflection seismology, where the array size a is

larger than ae.

In the next section we discuss in more detail how to quantify the transition from

imaging with a lot of coherence, as in Kirchhoff migration, to incoherent imaging.

Imaging with the CINT functional (4.20) gives good results when there is residual

coherence in the array data. This is an intermediate regime that is best characterized

by the behavior of the imaging functional (4.20) itself with the decoherence parameters

Ωd and κd estimated by the adaptive algorithm of Section 5.

We summarize in Table 1 the range and cross range resolution limits for

deterministic and random media in the regime of significant multiple scattering. The

first column in the table gives the Rayleigh resolution limits for imaging in homogeneous

media with Kirchhoff migration. The last column in the table gives the resolution

limits for the coherent interferometric imaging functional (4.20). Note that this column

coincides with the first one when Ωd = B and Xd = a since in that case the CINT

imaging function becomes the square of the Kirchhoff function, as shown in (4.21). In

the middle column of the table we give the resolution limits of physical time reversal

in clutter [36, 11], which is equivalent to back propagation when the medium is known

exactly. It is clear that the cross range resolution is best with time reversal, which is the

super-resolution phenomenon [32, 36, 11], it is intermediate with Kirchhoff migration in

a homogeneous medium and it is worst when the random medium is not known, as is

the case in coherent interferometry. Clutter helps in physical time reversal but it does

not help in imaging.

4.3. Incoherent imaging

Imaging with the Kirchhoff migration functional (2.3) assumes that there is a lot of

coherence in the array data, which means that clutter effects are not important. If

clutter effects are important but there is still some coherence in the array data, then

the coherent interferometric functional (3.9) works well, provided that the decoherence

frequency Ωd and the decoherence length Xd are chosen appropriately. This has been
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Deterministic
Known Random

(TR)

Unknown Random

(CINT)

Range
co

B

co

B

co

Ωd

Cross Range
coL

ωa

coL

ωae

∼ Xd

coL

ωXd

∼ ae

Table 1. Resolution limits in deterministic media and in random media, when the

random medium is known, as in physical time reversal and, when the random medium

is not known, as in coherent interferometry.

discussed in section 4.2, it has been summarized in Table 1 and it is illustrated with

numerical simulations in section 5.

When there is a lot of clutter and therefore little coherence in the array data,

imaging methods based on travel time migration or back propagation give poor

resolution, even with interferometry as we see from the third column in Table 1. In

terms of the observable coherence parameters Ωd and Xd, strong clutter means that

Ωd << B and Xd << a. Although time reversal works well in such strong clutter and

it can be used for delivering focused energy or for detection, that is, for deciding if a

reflector is in the clutter or not, this is very different from imaging.

Imaging with incoherent data is usually done with large arrays or, even better, with

arrays that surround the reflectors, using diffuse imaging methods [2]. These methods

are based on modeling the propagation of wave energy with the diffusion equation. It is

therefore important to know under what circumstances the propagation of wave energy

can be modeled by diffusion. The derivation of transport and diffusion equations for

waves in random media is considered in detail in [59], in the asymptotic regime of weak

random fluctuations in the medium properties, long propagation distances compared to

correlation lengths and wavelengths comparable to correlation lengths. An overview of

the passage from waves to transport and diffusion from a more physical perspective is

given in [70].

The dependence of the decoherence parameters Ωd and Xd on the statistical

properties of the random medium is carried out in [17] when backscattering can be

neglected and in [19] for randomly layered media. As we have already pointed out,

the advantage of using these parameters is that they can be estimated from the array

data and that they also give an estimate of the resolution of the image. The diffuse

transport of wave energy is, however, best assessed by estimating the associated diffusion

coefficient, which in general requires more measurements in the random medium. The

wave energy diffusion coefficient D can be written in the form [59, 70]

D =
col

∗

3
, (4.23)
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where co is the background speed of propagation and l∗ is the transport mean free

path. It is a length scale that is characteristic of the onset of wave diffusion in a random

medium. If the distance between the target to be imaged and the array, the range L, is

larger than l∗ then wave migration or interferometric imaging methods will not work. In

the numerical simulations that we presented in sections 2 and 3, the transport mean free

path is estimated to be 75λo, which is comparable to the range of the targets. Therefore,

we have significant coherence in the data and coherent interferometry works well. When

we contrast our numerical simulations to the time reversal experiments reported in [33],

we note that in these experiments the width of the region of scatterers between the

source and the time reversal array is 5−10 transport mean free paths. This means that

basically all coherence in the array data is lost and CINT imaging cannot possibly work

in this environment.

5. Adaptive coherent interferometry

We have seen in the previous section that the coherent interferometric imaging functional

(4.12) depends on the decoherence parameters κd and Ωd, which are unknown at first.

We introduce in this section an adaptive algorithm for estimating these parameters as

minimizers of a functional of the image produced with ICINT.

The decoherence parameters depend on (i) the statistical properties of the random

medium, which are usually unknown, and (ii) the range of the reflectors that is either

unknown or it can be estimated with a rough arrival time analysis. Since these

parameters quantify the coherence in the data, they can be determined, in principle,

by standard statistical signal processing techniques such as the variogram [57, 29, 52].

This gives quantitative estimates for κd and Ωd, but the estimation is not sharp and it

does not give the best image, in general. By best we mean here a stable image with the

least blurring as described in the next section.

An alternative approach is to estimate κd and Ωd directly from the image ICINT, so

that it is as stable and speckle free as possible while the blurring is kept to a minimum.

We describe in section 5.1 an algorithm that quantifies this trade-off between blurring

and speckle suppression and we assess its performance with numerical simulations in

section 5.2.

5.1. The adaptive algorithm

The key idea behind the adaptive algorithm can be understood from Figure 6. We show

three images obtained with ICINT, with the same data but using three different values for

the decoherence parameters: (left) no smoothing Ωd = B, Xd = a, which is the Kirchhoff

migration image, (middle) optimal smoothing Ωd = Ω⋆
d and Xd(ω) = X⋆

d(ω) = co/(ωκ⋆
d),

which is the image given by the adaptive CINT algorithm and (right) too much
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smoothing Ωd < Ω⋆
d, Xd(ω) < X⋆

d (ω). The numerical setup is the same as in Figure

2-(a). The clutter is shown in Figure 4-(a) and the data traces are in Figure 4-(b).

From Figure 6 we draw two conclusions: (i) The left picture in Figure 6 compares

poorly with the good image, shown in the middle, because of the spurious fluctuations

caused by the coda in the traces. (ii) The picture on the right also compares poorly with

the good image but for an entirely different reason: it is too blurry. Another conclusion

emerges from repeating the experiment over many realizations of the clutter. While

the picture on the left changes unpredictably (see for example Figure 5), the other two

remain essentially unchanged. They are statistically stable.

Figure 6. The coherent interferometric imaging function for three choices of smoothing

parameters. The left picture is with no smoothing, the middle picture is with optimal

smoothing, and the right picture with too much smoothing. The three small reflectors

are indicated with black dots.

This numerical experiment shows that the two decoherence parameters Ωd and

κ−1
d = ωXd(ω)

co
can be obtained adaptively by using an optimization criterion that is

based on the quality of the images as they are being formed. This criterion should

account for the trade-off between statistical fluctuations and blurring, which is the

usual bias-variance trade-off in spectral estimation of time series [55] and elsewhere. It

should penalize spurious fluctuations by minimizing the gradient of the image in some

appropriate norm and to control the blurring a sparsity promoting norm like L1 should

be used.

There are, of course, many criteria that meet these two objectives. In our numerical

experiments we use the bounded variation norm [38] of the normalized square root of

the image

J (yS; Ωd, κd) =

√
|ICINT(yS; Ωd, κd)|

supyS∈D
√

|ICINT(yS; Ωd, κd)|
. (5.1)

We choose the square root of ICINT so that when there is no smoothing we recover the

Kirchhoff migration functional. The normalization by the maximum is done so that it

is the geometric features of the images that matter in the optimization process and not

the magnitudes. The adaptive coherent interferometric algorithm is as follows.
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Algorithm 1 Select a search domain D and its sampling on some grid. For any given

parameters Ωd and κd, calculate J (yS; Ωd, κd) as the piecewise constant interpolation

of its values at the grid points. Choose the segmentation parameters Ωd and κd by

minimizing

O(Ωd, κd) =
∥∥J (yS; Ωd, κd)

∥∥
L1(D)

+ α
∥∥∇ySJ (yS; Ωd, κd)

∥∥
L1(D)

, (5.2)

over all possible Ωd ∈ [0, B] and κd ≥ 0 and for an appropriately chosen value of the

weight α > 0.

In the objective function (5.2) we can replace L1 by some other sparsity promoting

measures, such as Lp, for 0 < p < 1, or the Shannon entropy [62]. The parameter α

controls the amount of smoothing. The larger α is, the more smoothing we do and

therefore the image is blurrier. We see this in our simulations, in the right picture of

Figure 6. Similarly, the smaller α is the less penalty there is on the oscillations or

speckles in the image. Actually, when setting α = 0 we found that the optimization

chooses the Kirchhoff migration images, as on the left picture in Figure 6, because they

have smaller L1 norm than the good images, as in the middle of Figure 6. The parameter

α should be chosen so that the two terms in (5.2) are roughly of comparable size when

the objective is close to its minimum. In our numerical experiments we have found that

α = 1 works well. The choice of α does affect the results significantly and therefore it

should be properly calibrated.

The optimization criterion (5.2) looks at first like any other image denoising

functional used in image processing [50, 58, 26]

O(I) = ‖P − I‖prox + α ‖I‖reg , (5.3)

where P(x, y) is the data, in the form of a noisy image, I(x, y) is the denoised image to

be found, ‖·‖prox is a proximity norm, for example the L2 or H−1 norm and ‖·‖reg is a

regularization norm, such as the total variation norm. However, there is a fundamental

difference between (5.2) and (5.3): We do not have an image to denoise, so there is no

proximity norm in (5.2). Instead, we take the L1 norm of the image, formed during

the optimization process, in order to control the blurring. Both (5.2) and (5.3) have

a regularization part, the total variation of the image, but the weights α are chosen

differently. In image denoising, α is usually determined with a discrepancy principle,

which asks that ‖P − I‖prox be at the estimated noise level. In (5.2), α is chosen so

that the two terms are balanced at the minimum.

Given that there are well-established image denoising techniques based on

minimizing functionals like (5.3) or, by harmonic analysis methods [46], one may ask

why we do not denoise the array data P (xr,xs, t) directly and then do Kirchhoff

migration on the denoised traces. Kirchhoff migration with denoised traces from a

homogeneous medium, contaminated with additive white noise, has been done in [39]

with harmonic analysis methods. We have not tried to denoise the traces in clutter for
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two reasons. First, the optimization in (5.3) is computationally demanding because it

is in a high dimensional space, associated with the parametrization of the traces to be

denoised. In adaptive coherent interferometry we seek to estimate just two parameters:

Ωd and κd. Second, we do not think that denoising traces works as well as adaptive

coherent interferometry because the clutter affects the traces in a complicated way and

phenomena such as pulse spreading and coda cannot be modeled as additive noise, which

is the implicit assumption when (5.3) is used.

5.2. Numerical results

The numerical results presented in this section are for the two dimensional setup shown

in Figure 2-(a), for two configurations of the three reflectors. The first configuration is

just as in Figure 2-(a) and the second one has the reflectors closer together, at distance

d = 3λo. The fluctuations in the sound speed are generated with random Fourier series,

with constant mean co = 3km/s and standard deviation 3%. We use two different

correlation functions:

(i) A mono-scale, Gaussian correlation,

R(x1, x2) = R(|x1 − x2|) = e−
|x1−x2|

2

2l2 , (5.4)

with correlation length l = λo/2.

(ii) A correlation function with a range of scale sizes,

R(x1, x2) = R(|x1 − x2|) =

(
1 +

|x1 − x2|
l

)
e−

|x1−x2|
l , (5.5)

where l = λo. For large spatial frequencies, the Fourier transform of (5.5) has power

law behavior, as it is typical in multiscale random media, so it provides a simple

model for assessing the effect of a range of scale sizes in the random medium [69].

An illustration of the Gaussian clutter is shown in Figure 4-(a) and an example of the

traces in clutter is given in Figure 4-(b).

Algorithm 1 is implemented as follows. For any given parameters Ωd and κd we

compute the coherent interferometric image ICINT(yS; Ωd, κd) by segmenting the array

- bandwidth data space in rectangles Rx,ω. The bandwidth B is divided into an integer

number nω of intervals of size hω = B/Nω, centered at frequencies ωj = (j−1/2)hw, for

j = 1, . . . , nw. For each ωj , we divide the aperture a in nx(ωj) = round(2aωjκd/co)

intervals of size hx(ωj) = a/nx(ωj), centered at xq = (q − 1/2)hx(ωj), for q =

1, . . . , nx(ωj). This creates a nonuniform partition of the data space by rectangles

Rxq ,ωj
. We cross correlate the data in each rectangle Rxq,ωj

with the data in Rxq ,ωj

itself and in its replicas centered at (xq ± hx(ωj), ωj ± hw). This makes Ωd = 2B/nw

and Xd(ωj) = 2hx(ωj) ≈ co/(ωjκd). The image is computed in a square search domain

D of size 20λo × 20λo that is centered on the configuration of the reflectors and the
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Figure 7. Images and segmentations for the cluster of three reflectors at distance 6λo

apart. On the left the images obtained using central source illumination, in the middle

a combination of three sources illumination, and on the right the segmentation shown.

Top: Mono-scale, Gaussian clutter. Bottom: Multi scale random medium.

sampling is in steps of λo/2. We obtain the desired smoothing parameters Ωd, κd by

minimizing (5.2) with the matlab NOMAD optimization routines [3, 1].

We show in Figure 7 the results for the first configuration of reflectors, which are at

distance d = 6λo apart. First we consider a single illumination from the central element

in the array and we show the optimal images and the partitioning (segmentation)

of the data space in the left and right columns. The top row is for the mono-scale,

Gaussian clutter and the bottom row is for the multiscale clutter. The values of the

decoherence parameters can be inferred from the segmentations, as explained above.

For the examples illustrated in Figure 7, we have: In the Gaussian medium Ωd = B/8

and κd = 41.4 and in the multiscale medium Ωd = 2B/21 and κd = 41.4. In theory, we

expect these numbers to stay the same for different realizations of the clutter having

the same statistics. However, the optimization returns slightly different results, with

Ωd ranging between B/8 − 2B/23 for four realizations of the Gaussian clutter and

between B/7 − 2B/21 in the multiscale clutter. While these fluctuations cannot be

predicted theoretically, because they depend on the details of the clutter realization, it

is important to note that when we calculated images with the same segmentation for

all four realizations of the Gaussian and multiscale media, we obtained images that are

nearly as good as the optimal ones.

The middle column in Figure 7 shows images obtained with a combination of three

different illuminations of the reflectors, by the central source in the array and by two
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other sources at a quarter of the aperture distance above and below the array center,

respectively. The combination is done as follows. First, we take a weighted average

(stack) of the migrated traces

m̂(xr,y
S, ω) =

3∑

s=1

wsP̂ (xr,xs, ω)e−iω[τ(xr ,yS)+τ(xs,yS)], (5.6)

with some weights w = (w1, w2, w3) to be determined. We note here that the summation

is over all sources xs, keeping the search point yS fixed. Next, we cross correlate the

stacked data (5.6) and sum over the array to obtain the imaging function

Ĩ(yS;w, Ωd, κd) =

∫

|ω−ωo|≤B

dω

∫

|ω′ − ωo| ≤ B

|ω′ − ω| ≤ Ωd

dω′

∑

xr∈A

∑

x′
r ∈ A

|xr − x′
r | ≤ 2co

(ω+ω′)κd

m̂(xr,y
S, ω)m̂(x′

r,y
S, ω′), (5.7)

with the smoothing parameters determined by the adaptive CINT algorithm, with the

central illumination. We leave the smoothing unchanged because Ωd and κd should

depend just on the clutter and the distance traveled by the waves, which is roughly the

same for all three sources. We also choose to combine the illuminations at the level of

the traces and not of the images because, as can be seen from section 4.2, the CINT

images are positive nearly everywhere and so almost no error cancellation is achieved

by summing them.

In (5.7) we cross correlate traces that come from three sources and they should

not be further apart than the decoherence length. From the segmentations in Figure

7 we find that, depending on the frequency, the decoherence length, which is twice the

size of each window as explained above, can be as small as a quarter of the aperture.

However, this is just for the highest frequencies where the signal is small. For most

of the bandwidth the separation of a/2 between the second and the third source falls

within the allowed spatial offset.

We choose the weights by minimizing the bounded variation norm of the normalized

square root of Ĩ, subject to constraints
3∑

s=1

ws = 1, ws ≥ 0, s = 1, 2, 3. (5.8)

In Figure 8 we show the results for the second configuration of the reflectors, which

are at a distance 3λo apart. Because the imaging is done in the same clutter as in Figure 7

we keep the same segmentations of the data space. We note that the central illumination

image in the Gaussian clutter is better than in the multiscale medium. However, in both

cases the results improve considerably by taking the optimal combination of the three

available illuminations. The reflectors are not as well resolved as in Figure 7 because

they are closer together. We can improve the results further by deblurring, which we

do using the level set approach described in [44].
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Figure 8. Images of the cluster of nearby reflectors, separated by distance 3λo. Left: the

central source illumination. Middle: illumination with a combination of three sources.

Right: The deblurred images. Top: Mono-scale, Gaussian clutter. Bottom: Multi scale

random medium.

We describe very briefly the preliminary results of the deblurring, shown on the

right in Figure 8. The blurring kernel is taken as a Gaussian

K(yS,y) = βe
− (ys−y)2

2s2x
− (zs−z)2

2s2z , for y = (y, z), yS = (ys, zs), (5.9)

with parameters β, sx and sz that depend on the random medium and on the range

L. These parameters are related to the decoherence parameters but here they are

estimated by fitting the kernel to the image obtained with the adaptive CINT algorithm

of the target behind in Figure 7. The form (5.9) of the blurring kernel can be justified

analytically for some specific models for the clutter as we do in [17]. Although the

numerical simulations are in a different regime than the one analyzed in [17], we find

that the results are qualitatively similar to those predicted in [17], which is why we use

the same type of blurring kernel.

6. Optimal illumination and waveform design

We have already seen in section 5.2 that we can improve significantly the quality of the

coherent interferometric images by appropriate averaging (stacking) over the different

illuminations. In this section we explore further the question of optimal illumination

and introduce a new variational approach for its solution. We separate the optimal

illumination problem from the estimation of the optimal segmentation discussed in

section 5 because the later is determined by the clutter. While the clutter is a fixed but
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unknown entity in the inverse problem, the optimal illumination question is part of the

data acquisition framework that we can change in order to improve the results.

As discussed in the introduction, the traditional approach to the optimal

illumination problem has focused on maximizing the power of the scattered echoes

recorded at the receivers [53, 47, 43, 36]. This is done with the singular value

decomposition of the response matrix for each frequency. Kirchhoff migration images

constructed with this optimal illumination enhance the image near the strongest

reflector. In the time domain, maximization of the received power can be done with

iterative time reversal [54, 27, 28]. The resulting optimal waveforms are, however,

narrow-band signals, which are bad for imaging because the lack of bandwidth gives

poor range resolution and poor statistical stability in clutter [11, 16, 15, 20, 21].

In this section we propose a different approach. We choose the illumination pattern

and the waveform by using an optimality criterion that is based on the image itself, as

we do in adaptive coherent interferometry.

6.1. Formulation of the optimal illumination problem

The idea behind our formulation of the optimal illumination problem is quite similar

to that of section 5.1. Since it is the image quality that we wish to improve, we should

choose the illumination using an optimization criterion that measures the quality of the

image. How we measure this depends on the problem. For example, when imaging small

reflectors in clutter the measure can be as in section 5.1, where we take the bounded

variation norm of the square root of the normalized images. Here, we take a simpler

choice, the L1 norm of the CINT image, normalized by its maximal value. We choose

this norm because it is easier to analyze and we discard the norm of ∇ICINT because

we suppose that spurious fluctuations such as those on the left in Figure 6 have been

eliminated by the prior estimation of the statistical smoothing parameters Ωd and κd.

Of course, other objective functions could be used for other problems, but this is not

the point that we wish to make here. Instead, let us fix the L1 norm as our measure

of the quality of the image and concentrate next on how to find the illuminations that

optimize it.

Assuming that we have Ns sources at locations xs, s = 1, . . . , Ns, we illuminate

the reflectors with one source at a time and we gather the scattered echoes P (xr,xs, t)

at receivers xr, r = 1, . . . , Nr. If we could send a flat pulse in the frequency domain

[ωo − B, ωo + B], we would have the impulse response matrix Π̂(xr,xs, ω) over the

bandwidth of interest. Then, the echoes due to an arbitrary waveform g(xs, t) sent from

xs, would be given by

P (xr,xs, t) =

∫

|ω−ωo|≤B

dωĝ(xs, ω)Π̂(xr,xs, ω)e−iωt. (6.1)

Alternatively, we could collect data P (xr,xs, t) for all the waveforms in the optimization
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process, which in most situations is quite expensive.

6.1.1. Optimal illumination for detection Before formulating the new optimal

illumination problem that is based on the quality of the image, we recall the form

of the optimal illumination problem for maximum received power at the array and,

therefore, for detecting the presence of reflectors in the medium. If the sources at xs

emit simultaneously signals g(xs, t), then the echo received at xr is given in the frequency

domain by

Ns∑

s=1

Π̂(xr,xs, ω)ĝ(xs, ω) (6.2)

and the total power received at the array is

Ptot =

∫

|ω−ωo|≤B

dω
Nr∑

r=1

∣∣∣∣∣

Ns∑

s=1

Π̂(xr,xs, ω)ĝ(xs, ω)

∣∣∣∣∣

2

. (6.3)

The best signals ĝ(xs, ω) for detecting reflectors in the medium maximize Ptot, subject

to the normalization constraint
∫

|ω−ωo|≤B

dω

Ns∑

s=1

|ĝ(xs, ω)|2 = 1 (6.4)

of the power emitted from the sources. We denote the maximum power by

P = max
bg

Ptot.

Let us use the short notation Π̂(ω) for the Nr × Ns impulse response matrix

with entries Π̂(xr,xs, ω) and let λ(M)(ω) and ĝ(M)(ω) be the largest eigenvalue

and corresponding normalized eigenvector of the hermitian, positive definite matrix

Π̂⋆(ω)Π̂(ω), where the superscript ⋆ denotes the adjoint. Let also ωmax be the (resonant)

frequency, assumed unique, at which λ(M)(ω) is maximum. If for δ > 0 and small we

define

ĝ(xs, ω) =

{
1√
2δ

ĝ
(M)
s (ω) , |ωmax − ω| ≤ δ,

0, otherwise,
(6.5)

where ĝ
(M)
s (ω) is the s-th component of the eigenvector ĝ(M)(ω), it is easily seen that

the maximizer of Ptot is given by (6.5) in the limit δ → 0 and that P = λ(M)(ωmax). This

illumination is clearly a narrow-band signal and it is the one that arises with iterative

time reversal [27, 54]. The result is optimal for detection, but the lack of bandwidth is

bad for migration imaging, as we illustrate in Figure 11.

If the illumination is chosen to equal the eigenvector corresponding to the largest

eigenvalue

ĝ(xs, ω) =
1√
2B

ĝ(M)
s (ω) , |ω − ωo| ≤ B,
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then the received power is

1

2B

∫

|ω−ωo|≤B

dωλ(M)(ω) ≤ P.

For well separated targets, the largest eigenvalue of Π̂⋆(ω)Π̂(ω) is associated with echoes

received from the most strongly reflecting one, across the bandwidth. The Kirchhoff

migration image with this illumination is sharply peaked at the most strongly reflecting

target, as is seen from the numerical simulations shown in Figure 12. This is the DORT

method of selective focusing in time reversal [53, 36], which is implemented with the

singular value decomposition of the response matrix Π̂(ω). This approach was extended

to statistically stable imaging in random media in [20, 21].

6.1.2. Optimal illumination for imaging Illuminating with the source waveforms

ĝ
(M)
s (ω), which are the components of the leading eigenvector of matrix Π̂⋆Π̂, is an

efficient way of delivering energy or beamforming onto the target that sends back the

strongest echo. Such selective beamforming is not used in coherent interferometric

imaging, or in classic migration, because these are imaging methods that rely on

cancellation of phases by back propagation. When we have data from Ns sources we

combine them in the CINT imaging function in the form

ICINT(yS; f̂) =

∫

|ω−ωo|≤B

dω

∫

|ω′ − ωo| ≤ B

|ω′ − ω| ≤ Ωd

dω′
Nr∑

r=1

Nr∑

r′ = 1

|xr − xr′ | ≤ Xd

“
ω+ω′

2

”

e−iωτ(xr ,yS)
Nr∑

s=1

Π̂(xr,xs, ω)f̂(xs, ω)e−iωτ(xs,yS) (6.6)

eiω′τ(xr′ ,y
S)

Ns∑

s′ = 1

|xs − x′
s| ≤ Xd

“
ω+ω′

2

”

Π̂(xr′ ,xs′, ω′)f̂(x′
s, ω

′)e−iω′τ(xs′ ,y
S),

so that the source functions have the form

ĝ(xs, ω) = f̂(xs, ω)e−iωτ(xs,yS). (6.7)

The functions f̂(xs, ω) need only play the role of weights here because the ĝ(xs, ω)

beamform automatically, in the smooth and known background medium, to the search

point yS. We will see in the next section (below (6.17)) that the source functions ĝ(xs, ω)

have the form of a singular vector for an isolated point scatterer at yS.

In the case of one source, (6.6) reduces to the CINT functional (3.9). For many

sources, we cross correlate traces for sources and receivers that are not more than the

decoherence length Xd(ω) = co/(ωκd) apart. The segmentation parameters Ωd and

κd are assumed to have been determined prior to addressing the optimal illumination
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question, so we suppress them from the arguments of the imaging function which is a

quadratic form in f̂(xs, ω).

We wish now to determine the illumination functions f̂(xs, ω) by minimizing the

objective function

O(f̂) = ‖J (yS; f̂)‖L1(D), (6.8)

where J (yS; f̂) is the CINT image ICINT(yS; f̂) normalized to maximum value one. We

shall optimize over illuminations of the form

f̂(xs, ω) = wsf̂B(ω − ωo), s = 1, ..., Ns, (6.9)

which correspond to sending the same pulse f(t) = e−iωotf̂B(t) from all the sources in

the array. This is a simplifying assumption that is motivated partially by an analytic

result which shows that the product form (6.9) is optimal for imaging single point

scatterers in homogeneous media [13]. This does not hold in general, so (6.9) leads

to a suboptimal illumination problem, which is, however, numerically robust and less

costly to implement. This is discussed further in the Section 6.3. The minimization is

performed subject to the following constraints:

(i) We view w = (w1, . . . , wNs
) as a vector of weights assigned to the sources at xs,

after collecting the data traces f̂B(ω − ωo)Π̂(xr,xs, ω). This means that

Ns∑

s=1

ws = 1, ws ≥ 0, s = 1, . . . , Ns. (6.10)

(ii) The support of f̂B(ω−ωo) is restricted to the fixed frequency band [ωo−B, ωo +B]

and we ask that

f̂B(ω − ωo) ≥ 0, for all ω ∈ [ωo − B, ωo + B]. (6.11)
∫

|ω−ωo|≤B

dωf̂B(ω − ωo) = 1. (6.12)

The constraint f̂B(ω − ωo) ≥ 0 is a natural one in clutter because Ωd is usually

small relative to the scale of variation of the broadband waveforms that we seek, which

means that ICINT involves essentially absolute values squared of f̂B(ω − ωo). In the

absence of clutter, Ωd is replaced by B, so ICINT is like the square of the Kirchhoff

migration function and the image is determined by f̂B(ω − ωo) and not its absolute

value. However, after writing (IKM)2 as a double integral over the frequencies and after

integrating over yS ∈ D to get the objective function (6.8), we see that the contribution

from frequencies that are not equal is small. Thus, in both smooth and cluttered media

the objective function depends approximately on |f̂B(ω − ωo)| and this motivates our

restriction of fB to the class of correlation functions, which have nonnegative Fourier

transforms. This leads to a significant simplification in the optimization problem because

we can normalize the pulse, in the L1 sense, with a linear equality constraint. Other
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normalizations, such as L2, that have the physical meaning of fixing the power delivered

by each source can be considered as well, but at the expense of complicating the

numerical optimization.

Finally we also impose a quadratic constraint on the waveforms with a lower bound

N on the received power at the array

Nr∑

r=1

∫

|ω−ωo|≤B

dω
∣∣∣P̂ (xr,xs, ω)

∣∣∣
2

≥ N , for all s = 1, . . . , Ns. (6.13)

Here we take P̂ (xr,xs, ω) = Π̂(xr,xs, ω)f̂B(ω−ωo). This constraint is a very important

feature of our imaging algorithm and is essential for applications where instrument or

environmental noise at the array is an issue. Clearly the level N must be less than the

maximum received total power at the array, 0 < N < P. Setting the level N close to

P is appropriate when the signals received at the array are weak and instrument noise

affects them significantly. In this case, the images obtained with the optimal waveforms

are similar to those given by the optimal power illumination from (6.3) and (6.4). When

there is no clutter, this is clearly seen in the numerical simulations shown in Figures 13,

14 and 16 that we describe in the next section. When the level N is set significantly

below P, the optimal waveforms give images that have much better resolution than

those produced with optimal received power waveforms. The ratio P/N plays the role

of a signal to noise ratio so we define a proxy SNR by

SNR =
P
N . (6.14)

6.2. Optimal illumination and the singular value decomposition

In order to understand better the scope of the optimal illumination problem in section

6.1.2, we consider its analytical form for the case of M point scatterers at locations

y1,y2, ...,yM in a homogeneous medium. We assume for simplicity an equal number

N > M of sources and receivers collocated at points x1,x2, ...xN in the array.

Let us denote by

ĝo(ω,yj) = [Ĝo(xp,yj, ω)]p=1...N (6.15)

the vector of Fourier coefficients of the received signals at the array, due to a delta

function impulse sent from a point source at yj . Here Ĝo is the free space Green’s

function

Ĝo(x,y, ω) =
eiωτ(x,y)

4π|x− y| . (6.16)

If we ignore multiple scattering between the point targets, the N ×N impulse response

matrix is

Π̂(ω) = [Π̂(xp,xq, ω)]p,q=1...N =

M∑

j=1

ξj(ω)ĝo(ω,yj)ĝo(ω,yj)
T , (6.17)
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where the superscript T stands for transpose and ξj(ω) is the scattering amplitude of

the j-th scatterer. In the case of well separated scatterers the vectors ĝo(ω,yj) are

approximately orthogonal and expression (6.17) is the singular value decomposition of

Π̂(ω). Its singular values are given by

σj(ω) = |ξj(ω)|‖ĝo(ω,yj)‖2

and the right singular vectors by

û(ω,yj) = ĝo(ω,yj)/‖ĝo(ω,yj)‖.
From (6.16) we see that ‖ĝo(ω,yj)‖ does not depend on ω. Therefore the right singular

vectors have approximately the form

ûs(ω,yj) = w̃se
−iωτ(xs,yj) (6.18)

for some weights w̃s. Up to allowing for more general frequency dependence, this is

the form that the illumination functions have in (6.7), with the product form (6.9) for

f̂(xs, ω) and with yj replaced by the search point yS.

Suppose now that we assign uniform weights ws = 1 (not normalized) to each source

in the array and that we image by migrating the data to search points yS, with the full

Green’s function. The resulting imaging functional is

I(yS; f̂B) =

∫
dωf̂B(ω−ωo)ĝo(ω,yS)

T
Π̂(ω)ĝo(ω,yS) ∼ IKM(yS; f̂B)(6.19)

and it behaves roughly like the Kirchhoff migration function, which uses just travel

times [67]. If we insert (6.17) into the expression of I(yS) we obtain

IKM(yS; f̂B) ∼
∫

dωf̂B(ω − ωo)
M∑

j=1

ξj(ω)
[
ĝo(ω,yS)

T
ĝo(ω,yj)

]2

. (6.20)

The terms ĝo(ω,yS)
T
ĝo(ω,yj) in the integral have small absolute value unless the search

point yS is close to a scatterer yj . In fact, |ĝo(ω,yS)
T
ĝo(ω,yj)| is the point spread

function for time reversal imaging of a point source at yj , at frequency ω and in the

homogeneous medium. When the range L is large compared to the array aperture a and

the wavelength is small, the support of this point spread function is of order λoL/a, in

cross range. This means that IKM(yS) peaks for search points yS within a cross range

distance of order λoL/a from some target location yj and that it is small elsewhere in

the search domain. This is for the usual Kirchhoff migration, without any optimization

of the weights.

If we weight differently the sources in the migration imaging function we get

IKM(yS;W, f̂B) ∼
∫

dωf̂B(ω−ωo)
M∑

j=1

ξj(ω)ĝo(ω,yS)
T
ĝo(ω,yj)ĝo(ω,yj)

TW ĝo(ω,yS),(6.21)
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where W is the N×N diagonal matrix with entries equal to the weights ws, s = 1, ..., N .

The square of this functional is the same as ICINT(yS), for Ωd replaced by B and Xd = a,

ICINT(yS;W, f̂B) ∼
[
IKM(yS;W, f̂B)

]2

. (6.22)

The L1(D) norm of IKM is given by

‖ICINT(yS;W, f̂B)‖L1(D) ∼ ‖IKM(yS;W, f̂B)‖2
L2(D) ≈

∫
dω|f̂B(ω − ωo)|2

M∑

j=1

|ξj(ω)|2
∫

D
dyS|ĝo(ω,yS)

T
ĝo(ω,yj)|2|ĝo(ω,yS)

TW ĝo(ω,yj)|2 (6.23)

and this determines our objective function (6.8), up to a normalization. Here we used

the fact that when integrating with respect to yS the square of IKM(yS), written as a

double integral over two frequencies, the cross terms in the double sum are small, as are

contributions from frequencies that are not nearly equal.

To complete the minimization problem under constraints (6.10), (6.11), (6.12) and

(6.13), let us write next the form of the power constraint (6.13), when Π̂ is given by

(6.17). Using the assumed orthogonality of ĝo(ω,yj), for j = 1, ..., M , we find
∫

dω|f̂B(ω − ωo)|2
M∑

j=1

|ξj(ω)|2‖ĝo(ω,yj)‖2diag(ĝo(ω,yj)ĝo(ω,yj)
T ) ≥ N I, (6.24)

where I is the identity matrix and notation diag(A) stands for a diagonal matrix, with

entries Aii, for i = 1, . . . , N and for an arbitrary A ∈ R
N×N . Finally, we note that

(6.15) implies that terms ‖ĝo(ω,yj)‖2diag(ĝo(ω,yj)ĝo(ω,yj)
T ) in (6.24) are independent

of frequency and we let cjs > 0 denote their s-element. Inequalities (6.24) become
∫

dω|f̂B(ω − ωo)|2
M∑

j=1

|ξj(ω)|2cjs ≥ N , s = 1, ..., N. (6.25)

We can now see the structure of the minimization problem for O(W, f̂), under the

constraints (6.10),(6.11),(6.12) and (6.25). When the objective does have approximately

the form (6.23), then the positivity constraint (6.11) is not a restriction since only the

absolute value of f̂B appears in (6.23) and (6.25). The interpretation of ws as weights

of the sources can be understood by noting that in (6.23), the steering of the array data

to the search points yS ∈ D is done by the migration vector ĝo(ω,yS), which has all

the relevant phase information. We have therefore, in this case of well separated point

targets, a robust optimization problem for optimal illumination without any essential

loss in generality. The results of the numerical simulations in section 6.5 support very

well this conclusion.

The main advantage of the optimal illumination problem that we have introduced

here is that it is robust in random media. This is because it uses the CINT functional,

which is statistically stable, and because the constraints that we have used, (6.11) in

particular, are compatible with the smoothing that adaptive CINT introduces.
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6.3. The implementation of the optimization problem

Let us discretize the frequency band on a uniform mesh, with Nf points and spacing

∆ω. We denote by f̂B the vector of components f̂B(ωj−ωo), for ωj = (j−1)∆ω+ωo−B

and j = 1, . . . , Nf . The vector of weights is w = (w1, . . . , wNs
). We wish to solve the

following optimization problem.

Problem 1 Minimize objective function

O(w, f̂B) =
∥∥∥J (yS;w, f̂B)

∥∥∥
L1(D)

, (6.26)

given by the L1(D) norm of the normalized image

J (yS;w, f̂B) =
ICINT(yS;w, f̂B)

maxyS∈D ICINT(yS;w, f̂B)
, (6.27)

over the weights w and the vector f̂B of the Fourier coefficients of the pulse, subject to

constraints (6.10) and

f̂B(ωj − ωo) ≥ 0, j = 1, . . . , Nf , (6.28)

∆ω

Nf∑

j=1

f̂B(ωj − ωo) = 1, (6.29)

w2
s



∆ω

Nf∑

j=1

Nr∑

r=1

∣∣∣P̂ (xr,xs, ωj)
∣∣∣
2

−N



 ≥ 0, s = 1, . . . , Ns, (6.30)

Note that we multiply the inequalities in (6.30) by the weights to ensure that only sources

that participate in the imaging, that is, have nonzero weights, restrict the feasibility

region of the waveform.

This optimization can be quite expensive. However, our numerical experiments

indicate that we can take a simpler, iterative approach that is based on the following

two sub-optimal problems:

Problem 2 Fix f̂B and minimize O(w, f̂B) over the weights w, with constraints (6.10).

Problem 3 Fix the weights w to those determined in Problem 2 and minimize O(w, f̂B)

over f̂B, subject to constraints (6.28) - (6.29). Then, return to Problem 2 to update the

weights and iterate.

While Problems 2 and 3 are sub-optimal, they can be solved with smaller computational

effort than Problem 1 and, at least for the numerical simulations presented in section

6.4, we can achieve numerical convergence after about three or four iterations, with

results that are identical to those of Problem 1, which we found to be significantly more

time consuming.

In the case of infinite SNR at the array (N = 0), Problems 2 and 3 are easier

to solve, because of the simple, linear constraints. For a finite SNR, the quadratic
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Figure 9. The three array-target configurations.

constraints (6.30) complicate Problem 3 and, in fact, we can have no feasible solution if

the level N is set higher than the maximal power P, which means very low SNR. In the

numerical simulations shown in section 6.4, we choose N as a fraction of the maximal

power at the array, so we always have a feasible solution.

6.4. The numerical setup

We illustrate the performance of our optimal illumination approach with numerical

simulations for three small targets in a homogeneous medium. It is computationally

very expensive to both generate and process the data needed for solving the optimal

illumination problem in clutter. The results of these simulations will be presented in a

forthcoming paper [12].

We take the three configurations of the targets shown in Figure 9. The array consists

of Ns = 51 elements, playing the dual role of sources and receivers, placed uniformly

in the aperture a = 11.02λo, where λo is the central wavelength for the frequency

band 0.1 − 1.3 MHz, at propagation speed co = 1.5 km/s. The range of the targets

is L = 12.79λo and it is measured with respect to the middle target. The distance

between the targets is d = 1.1λo. The background is homogeneous, with sound speed

co = 1.5 km/s and the targets are modeled as identical point scatterers, with scattering

amplitude given by a Gaussian function of frequency, centered at νo = 0.7 MHz and

of standard deviation 0.4 MHz. The impulse response matrix Π̂(xr,xs, ω) is computed

with the Foldy-Lax approach [37, 42, 20] described briefly in the next section.

6.4.1. The Foldy-Lax model The scattered field due to M isotropic point scatterers

can be modeled by the solution of a system of linear equations in the frequency domain.

This is the simplest form of the Foldy-Lax multiple scattering models [37, 42]. The

impulse response matrix Π̂ is given by

Π̂(xr,xs, ω) =
M∑

m=1

ξ̂m(ω)Ĝo(xr,ym, ω)Ĝ(ym,xs, ω),
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Ĝ(ym,xs, ω) = Ĝo(ym,xs, ω) +
∑

m′ 6=m

ξ̂m′(ω)Ĝo(ym,ym′ , ω)Ĝ(ym′ ,xs, ω) , m = 1, ..., M

where ξ̂m(ω) model the frequency dependent scattering amplitudes of the scatterers. As

noted above, in our numerical simulations, M = 3 and all the scattering amplitudes are

the same and equal to a Gaussian function of the frequency.

6.5. Numerical simulations

We consider first, in Figures 11 and 12, the optimal illumination for detection, discussed

in section 6.1.1. We show in Figure 11 the Kirchhoff migration images with the

illumination given by the monochromatic singular vector f̂ (M)(ωmax), corresponding to

the maximal eigenvalue λM(ω) of the response matrix, at the resonant frequency ωmax.

This ωmax depends on the configuration of the scatterers, as we can see from Figure 10,

where we display the first three singular values of the response matrix as functions of

frequency, for the three different configurations. It is clear from Figure 11 that although

this method gives the maximum received power at the array, it does not provide good

images.
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Figure 10. The first three singular values of the response matrix as a function of

frequency (in MHz) for the three scatterer configurations. In the first column we show

the results for configuration 1, in the second for configuration 2 and in the third for

configuration 3.

The second method discussed in section 6.1.1 uses as illuminating signal the singular

vector corresponding to the maximal singular value of the response matrix, frequency

by frequency in the bandwidth. Since the targets in our three configurations are not

well separated, the resulting images are not sharply peaked at a single target. We

see from Figure 12 that for the first configuration, where the rank of the response

matrix is deficient (1 instead of 3 as expected), all three targets are imaged. For the

second configuration, where the singular value curves cross at 0.6MHz, the image has

a stronger peak at central target but the other two are also imaged. It is only in the

third configuration that the image is peaked at the closest target to the array. While

this illumination images better than that for optimal detection, it is not optimal for
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Figure 11. Kirchhoff migration images obtained by illuminating the scatterers with the

singular vector corresponding to the maximal eigenvalue λM (ω) of the response matrix

at frequency ωmax for which λM (ω) is maximum. In the first column we show the results

for configuration 1, in the second for configuration 2 and in the third for configuration 3.

imaging, as can be seen by comparing the results in Figure 12 with those in Figures

13-16.
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Figure 12. Kirchhoff migration images obtained by illuminating the targets with the

singular vector corresponding to the maximal eigenvalue of the response matrix. In the

first column we show the results for configuration 1, in the second for configuration 2

and in the third for configuration 3.

We now turn to the numerical simulations using the optimal illumination approach

for imaging, described in section 6.3. Since we are in a homogeneous medium, we

calculate the image (6.6) for smoothing parameters Ωd = B and Xd(ω) = a. We also

took O(w, f̂B) as the bounded variation norm of the normalized image in order to be

consistent with what is done in section 5. However, since there is no clutter here, the

L1 norm of the image gives almost the same, slightly sharper results.

We implement Problems 2 and 3 by restricting the frequency band to 0.1 − 1.3

MHz, and we discretize f̂B(ω − ωo) by dividing the bandwidth in ten sub-bands of

width ∆ν = 0.12 MHz and by setting f̂B constant in each sub-band. Similarly, we

group the sources in blocks of three elements and we distribute the weights uniformly

in each group. This way we are left with seventeen blocks of weights and ten sub-band

values of f̂B to determine by iterating between Problems 2 and 3. In all cases we obtain

convergence of the iteration in three or four steps and for the first target configuration
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we verified that the solution coincides with that given by the computationally expensive

Problem 1. We also tested the solution by starting with different initial waveforms in

the optimization and we found that the results were always the same.
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Figure 13. Images with optimal waveform illumination for configuration 1. First

column: the image, weights and pulse given by the maximal received power criterion.

Second column: the initial image and the initial values of the weights and pulse. Third

column: the optimal image, weights and pulse for infinite SNR. Fourth column: the

optimal image, weights and pulse for low SNR.

The results are shown in Figures 13 - 16. We show four images in each figure,

from left to right: (i) the image given by the maximum received power criterion and

constraints (6.10), (6.28), (6.29); (ii) the image at the beginning of the optimization

process; (iii) the optimal image for infinite SNR (N = 0) and (iv) the optimal image

for low SNR, with N set to 75% of the maximal power achieved at the array, for any

source. The weights are shown in the second row, below the corresponding image, and

the Fourier coefficients f̂B are shown in the third row.

In these numerical simulations the maximal power can be achieved by illuminating

the reflectors from a central block of sources and by sending a narrow-band signal near

the resonant frequency of the reflectors. The corresponding images are very blurry.

For a fare comparison of these results with the results obtained by illuminating the

scatterers with the singular vector f̂ (M)(ωmax), we show in Figure 15 Kirchhoff migration

images obtained by illuminating the scatterers with the singular vector f̂ (M)(ωmax)

for all frequencies in a sub-band of width ∆ν = 0.12 MHz centered at ωmax (which

corresponds to using f̂ (M)(ωmax) constant in one sub-band). Note that for the first
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Figure 14. Images with optimal waveform illumination for configuration 2. First

column: the image, weights and pulse given by the maximal power criterion. Second

column: the initial image and the initial values of the weights and pulse. Third column:

the optimal image, weights and pulse for infinite SNR. Fourth column: the optimal

image, weights and pulse for low SNR.

and third configurations the two algorithms give very similar results. For the second

configuration the image in Figure 15 is better than the one given by our optimization

algorithm for maximal power (see Figure 14). For all the configurations, the initial

images are better than the maximal power ones because of the broadband initial pulse.
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Figure 15. Kirchhoff migration images obtained by illuminating the scatterers with the

singular vector f̂ (M)(ωmax) for all frequencies in a sub-band of width ∆ν = 0.12 MHz

centered at ωmax. In the first column we show the results for configuration 1, in the

second for configuration 2 and in the third for configuration 3.

The optimal images for the infinite SNR case are significantly sharper than the

initial ones and the optimization tends to put large weights on the sources at the opposite
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ends of the array. These are the sources that provide the best illumination of the target

configuration. The optimal pulses are also interesting because they display a general

increasing trend with the frequency, which is what gives better image resolution [13].

The images become blurrier, however, as we lower the SNR. This is expected because

for N set close to the maximum received power P, we recover the results shown in the

first column of Figures 13-16.
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Figure 16. Images with optimal waveform illumination for configuration 3. First

column: the image, weights and pulse given by the maximal power criterion. Second

column: the initial image and the initial values of the weights and pulse. Third column:

the optimal image, weights and pulse for infinite SNR. Fourth column: the optimal

image, weights and pulse for low SNR.

7. Summary and conclusions

In this paper we consider array imaging methods that perform well in cluttered media.

We also consider optimal illumination schemes that improve the quality of the images.

We introduce first the coherent interferometric functional (CINT) in section 3. It is

a travel time migration imaging functional of the array data, that is robust in cluttered

media. This is because migration or back propagation is done on local cross correlations

of the data traces and not on the traces themselves, which is what Kirchhoff migration

does. The cross correlations must be computed locally in space and time so as to

enhance information in the traces and reduce the delay spread due to clutter. The
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essential complexity of the CINT imaging method is in the determination of the space-

time, or space-frequency localization parameters, which are the decoherence parameters

introduced in section 3. They depend on the random medium and they are therefore

not known. We introduce in section 5 an adaptive method for determining optimally

the decoherence parameters. Optimality is based on the quality of the image that CINT

itself produces. We want to minimize the speckles in the image that are due to clutter

but we also want to limit the amount of blurring that speckle smoothing introduces.

This is the trade-off that adaptive CINT quantifies and out of which the decoherence

parameters are optimally estimated. In section 5.2 we present the results of extensive

numerical simulations that assess the performance of adaptive CINT.

We showed in [17] that the decoherence parameters are not only needed for

implementing CINT but they also determine the resolution of the image that CINT

produces. This was done in [17] for a class of models of random media for which

asymptotic analysis can be used, along with the paraxial approximation. We carried

out a similar resolution analysis for CINT in randomly layered media in [19]. In section

4 we show in a self consistent, model independent way, how the decoherence parameters

determine the resolution of the images that CINT produces. We do this by expressing

CINT as a smoothed Wigner function of the data that has a particular form, from which

the resolution limits of the image can be determined. This is done in section 4.2.

In section 6 we consider the problem of how to illuminate the object to be imaged,

so that the images that CINT produces have the best resolution. We first present

in section 6.1.1 the well-known optimal illumination algorithm for detection, which is

the illumination that gives array data with the highest received power. This is also the

illumination that results from iterative time reversal. Then, we introduce in section 6.1.2

a new optimal illumination algorithm that is based on the quality of the image that CINT

produces, for a given signal to noise ratio. In section 6.5 we show the results of numerical

simulations using this new optimal illumination algorithm. Generating data for realistic

optimal illumination simulations in clutter is very demanding computationally so in this

paper we only show results for media without clutter. When the signal to noise ratio is

high, then optimal illumination gives much better images than the optimal illumination

for maximum received power at the array. The optimal waveforms that give the best

images have an intricate form that is very different from that of the waveforms for

maximum received power.
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