Statistically stable ultrasonic imaging in random media

James G. Berryman*  LilianaBorcea®  George C. Papanicolaou!  Chrysoula Tsogka®

Abstract

Analysis of array data from acoustic scattering in a random medium with a small number of isolated
targets is performed in order to image and, thereby, localize the spatial position of each target. Because
the host medium has random fluctuations in wave speed, the background medium is itself a source of
scattered energy. We assume, however, that the targets are sufficiently larger and/or more reflective than
the background fluctuations so that a clear distinction can be made between targets and background
scatterers. In our numerical simulations we use nonreflective boundary conditions so as to isolate the
effects of the host randomness from those of the spatial boundaries, which can then be treated in a
separate analysis. We show that the key to successful imaging is finding statistically stable functionals
of the data whose extreme values provide estimates of scatterer locations. The best ones are related to
the eigenfunctions and eigenvalues of the array response matrix, just as one might expect from prior
work on array data processing in complex scattering media having homogeneous backgrounds. The
specific imaging functionals studied include matched-field processing and linear subspace methods, such
as MUSIC (MUItiple Signal Classification). But statistical stability is not characteristic of the frequency
domain, which is often the province of these methods. By transforming back into the time domain after
first diagonalizing the array data in the frequency domain, we can take advantage of both the time-domain
stability and the frequency-domain orthogonality of the relevant eigenfunctions.

PACS numbers: 43.60.Pt,43.60.Gk,43.30.Vh,43.30.Wi

1 INTRODUCTION

Imaging in ultrasonics is closely related to recent studies of time-reversal acoustics that have been expe-
riencing a very rapid growth in interest and research activity since the early work of (Fink et al., 1989),
(Jackson and Dowling, 1991), and (Prada et al., 1991). In particular, a series of review articles (Fink, 1997;
Fink, 1999; Fink et al., 2000; Fink and Prada, 2001; Fink, 2001; ter Haar, 2001) has appeared recently that,
when taken altogether, largely summarizes the current state-of-the-art.

It is important to distinguish physical time-reversal and re-emission of the acoustic signals by the array,
so as to produce optimal focusing on a target, from synthetic time-reversal processing in which the acoustic
array data are used to estimate the locations of the scatterers. The work of (Prada and Fink, 1994) and (Prada
et al., 1996) on the D.O.R.T. method (French acronym for a diagonalization of the array response matrix)
has clarified the connection between individual scattering objects and the eigenfunctions of the time-reversal
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operator. Scatterers can be associated directly with eigenfunctions except when they are not well separated
or when they are placed in some special, symmetric positions relative to the array (Devaney, 2002). Such
degeneracies are, however, not important in random media.

After decomposing the array response matrix using eigenfunctions (this is normally done in the fre-
guency domain), two alternatives are available for us to pursue. Either we can use the eigenfunctions to
refocus acoustic energy back onto the scattering target (for purposes either of communication or medical
ultrasound treatments — see, for example, (Thomas and Fink, 1996; ter Haar, 2001)), or we can try to make
use of them to localize or form an image of the scatterers’ spatial distribution. Both of these applications are
relatively straightforward if the background medium is itself homogeneous (Mast et al., 1997). But, if the
background medium is heterogeneous (i.e., the acoustic wave speed varies randomly with position), then the
difficulties rapidly mount for both applications even if there are no additional complications. Such compli-
cations might, for example, include (1) near/close boundaries as will commonly occur in waveguides (Tanter
et al., 1998; Mordant et al., 1999) (including the ocean bottom and surface for ocean acoustics (Kuperman
et al., 1998)), (2) drift of the actual acoustic medium itself or just its physical properties due to currents or
temperature fluctuations (Floch et al., 1999), (3) periodic changes such as expansion and contraction due to
the breathing of a patient while being diagnosed or treated with ultrasound.

Our focus in this paper will be to ignore any additional complications, and concentrate instead on what
difficulties are introduced just by the spatial heterogeneity of the acoustic medium, and what can be done
with acoustic array data to achieve reliable images or maps of any significant scatterers present in such
media. One companion paper (Blomgren et al., 2002) addresses the issues of refocusing sound at a target
in the presence of a heterogeneous acoustic background with significant multipathing (multiple scattering),
and some of the results on imaging presented here are an outgrowth of another companion paper (Borcea
et al., 2002) on acoustic imaging in random media.

It is beyond our current scope to review the literature on acoustics in random media, but we will mention
a few relevant references. Early work by (Keller, 1962; Keller, 1964) and (Karal Jr. and Keller, 1964;
Keller and Karal Jr., 1966) has shown that the averaged Green’s function in random media is a well-behaved
quantity and how the effective wave speed and apparent attenuation due to multiple scattering both depend on
the statistics of the fluctuating acoustic wave speed. These and many other topics are presented in (Ishimaru,
1978). Wave front stabilization in complex and especially in layered media has been observed (O’Doherty
and Anstey, 1971) and studied extensively in (Richards and Menke, 1983; Burridge et al., 1986; Burridge
etal., 1987; Burridge et al., 1988; Burridge et al., 1989; Clouet and Fouque, 1997; Solna and Papanicolaou,
2000).

There have been many methods of estimating target location using acoustic array data. Some of the most
popular ones in recent years have continued to be matched-field processing (Bucker, 1976; Baggeroer et al.,
1988; Baggeroer et al., 1993; Krolik, 1992; Jensen et al., 1994), MUSIC (MUItiple Signal Classification)
(Schmidt, 1979; Schmidt, 1986; Devaney, 2002), and other linear subspace methods (Johnson, 1982; John-
son and DeGraaf, 1982; Cheney, 2001). We will be discussing necessary modifications of these methods
here, since the randomness we consider has a different character than that usually envisioned in these tradi-
tional analyses of acoustic array data, because it comes from multipathing that is generated by the random
medium.

Typical array processing methods assume that a source is located at a great distance from the array,
while the propagating medium is homogeneous, so that from the point of view of the array the target looks
like a point source. The incident sound arriving at the array takes the form of a plane-wave having no
measurable curvature across the array aperture and, furthermore, has no measurable amplitude variation
across that aperture. Array noise has usually been treated as due either to diffuse sources of white noise
coming simultaneously from all directions, or to isolated “noise” sources having the same types of source
characteristics as the targets of interest. Because the applications of interest have often involved passive



bearing detection of active sources, most of the methods and their minor variations considered here were
first introduced for such passive data collection and processing problems. But, for time-reversal methods, it
quickly becomes clear that virtually the same methods — except for some obvious minor technical differences
—should be considered for both active and passive arrays.

Time-reversal processing of the array response data is most naturally based from the outset on the Sin-
gular Value Decomposition (SVD). This approach is consistent with the concept of real-space time-reversal
— involving an iterative procedure that amounts to using the power method for finding the singular vector of
the data matrix having the largest singular value. When the full response/transfer matrix has been measured
for a multistatic active array, the resulting data matrix can be analyzed directly by SVD to determine not
only the singular vector having the largest singular value, but all singular vectors and singular values —
simultaneously. There remain some issues about signal-to-noise ratios suggesting that the physical iterative
approach to finding these same singular vectors can be preferable to the purely computational alternative
both in acoustics (Sabra et al., 2002) and also in other inverse problems (Cheney et al., 1999). But it is also
important to recognize that the SVD of the transfer matrix does not require specialized hardware (any acous-
tic array can be used to do this), whereas the physical time-reversal approach for ultrasound does require
very specialized and often quite expensive hardware. Thus, SVD may have a distinct advantage in some
time-reversal imaging applications.

For acoustical imaging purposes, we do not need to propagate the actual time-reversed signal back into
the physical random medium, whereas for either communication or target retrofocusing applications, such
real-space backpropagation is always required. From this point of view, time-reversal imaging can also be
seen as a relatively inexpensive process. The drawback is that imaging is always done using a fictitious
medium for the simulated backpropagation that produces these images since the real medium is not known.
Its large-scale features could be estimated from other information, such as geological data obtained by
seismic methods. For example, migration methods (Claerbout, 1976; Aki and Richards, 1980; Bleistein
et al., 2001) can be used, where very large arrays — much larger than those we contemplate using here —
are required. However, the small-scale random inhomogeneities are not known and cannot be effectively
estimated, so the simplest thing to do is ignore them when imaging.

The following results are based in part on another analytical and computational study of time-reversal
in random media by the present authors (Borcea et al., 2002). In the first section, we briefly present the
problem to be studied and then elucidate the notation to be used in the following sections. Then, we present
a series of examples — in order to compare and contrast the results. Section Il focuses on the standard
matched-field and MUSIC objective functionals in the frequency domain. These methods do not provide
statistically stable results and, therefore, are not useful for imaging in media with randomly fluctuating
acoustic wave speed and strong multipathing. Section Il then shows how these same objective functionals
may be transformed into the time domain in order to produce statistically stable and, therefore, useful images
that localize the target cross-range (or bearing) in a satisfactory manner. Section IV then goes further to
show how range information may be obtained from the time-domain arrival data after careful processing
and subsequent averaging of multiple copies of the pertinent singular vectors contained in the multistatic
array data. Synthetic Aperture Imaging (SAI) is also used to provide another source of comparison to a
familiar data processing scheme. Our conclusions are summarized in Section V.

2 Problem Statement and Notation

Anarray has N transducers located at spatial positions x,,, forp = 1,..., N. When used in active mode, the
array probes the unknown acoustic medium containing M small scatterers by emitting pulses and recording
the time traces of the back-scattered echos. We call the resulting data set the multistatic array response (or
transfer) matrix P(t) = (Ppq(t)), where p and ¢ both range over all the array elements. For our simulations,



we consider a linear array where two adjacent point transducers are a distance A/2 apart, with A being
the carrier (central) wavelength of the probing pulses. Such an arrangement ensures that the collection of
transducers behaves like an array having aperture a = (N — 1)A/2 and not like separate entities, while
keeping the interference among the transducers at a minimum (Steinberg, 1983). Our goal is to detect and
then localize all M of the targets in the random medium, if possible.

The array response matrix ﬁ(w) in the frequency domain is, in our linear acoustics simulations, sym-
metric but not Hermitian. The singular value decomposition (SVD) of the response matrix is given explicitly
by

P(w) = U(w)S(w)V " (w). (1)
The eigenvectors of P(w)PH (w) having unit norm, denoted by U, (w), for r = 1,..., N, are the columns
of matrix U/ (w). The eigenvalues of P(w)PH (w) are o%(w), with o,.(w) being the singular values of P(w)
that form the diagonal matrix ¥(w). The significant singular vectors IAJT(w) [i.e., those in the range of P(w)]
corresponding to singular values o,(w) > 0 for 1 < r < M, where M is either the number of targets, or
the size of the array (/) — whichever is smaller. For definiteness, we usually assume that the number of
targets is smaller than the array size N, so that M is in fact the number of distinguishable targets. In our
setup, the left singular vectors ﬁ,(w) are the complex conjugates of the right singular vectors \A/'T(w), for
r = 1,...,N. Most physical arrays, however, are not constructed with isotropic point transducers and,
furthermore, the amplitude response (especially in transmission mode) does not have to be linear (with
strong deviations from linearity generally occurring at both high and very low amplitudes), so measured
response matrices are not necessarily symmetric. We assume symmetry here for simplicity, and this is
fully consistent with our linear acoustics simulations. All of our analysis nevertheless carries over to the
non-symmetric case.

We denote by go(y*,w) the vector observed at the array for a source located at y* in a deterministic
medium (i.e., the medium with the wave speed cq given by the averaged velocity of the random medium).
In our simulations, ¢ is constant but, in general, it could vary in space — assuming prior knowledge of the
environment. Then, gy(y,w) is given by

~

Go(ys, X1, w)

~ s aO(ysa X2, U.))
Bo(y"w) = : : e

Go(y*, xn,w)

where éo(ys, x;,w) is the deterministic two-point Green’s function, and x; is the location of the j-th array
element. .
We also define the projection Pxgo(y,w) of g (y*,w) onto the null-space of PP (w) by

M
Prgo(y*w) = Boly*sw) = Y [0 (@)8o(y*,0)] Tr(w), @

r=1

for each frequency in the support of the probing pulse f(w).

Our simulations assume that A < £ << a = (N — 1)A\/2 << L, where X is the central wavelength, ¢ is
a characteristic length scale of the inhomogeneity (like a correlation length), a is the array aperture, and L
is the approximate distance to the targets from the array. This is the regime where multipathing, or multiple
scattering, is significant even when the standard deviation of sound speed fluctuations is only a few percent.

We solve the wave equation in 2D with a numerical method based on the discretization of the mixed
velocity-pressure formulation for acoustics. For the spatial discretization we use a new finite element method
(Bécache et al., 2000), which is compatible with mass-lumping techniques (i.e., it leads to explicit time
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discretization schemes) and for the time discretization we use a centered second order finite difference
scheme. In the numerical simulations, we have statistically homogeneous Gaussian random velocity fields
generated using a random Fourier series, with constant mean ¢y = 1.5km/s, and exponential correlation
function having correlation length £ = 0.3mm and standard deviation ranging from 1% to 5%. The probing
pulse is given by (4).

10 =2 (1 ) 1, @
The central frequency is v = 3MHz and f(w), (w = 2mv) is supported over the band of frequencies
0.159 — 7.958MHz. The carrier wavelength is A = 0.5mm and the aperture of the array is a = 2.5mm.
Then, the targets, which are soft scatterers, are modeled by small squares. The size of a small target is
A/30 x A/30, while the size of a larger one is A/15 x A/15. Simulations are done on individual realizations,
to be consistent with what happens in practice; there is no averaging of results from many realizations here.
Furthermore, the same realization is typically used for the tests of all the imaging methods. Whenever
the parameters (s and M.F.) are fixed, the realization is also fixed; but when the parameters change, the
realization necessarily has changed. More details concerning the simulations may be found in (Bécache
et al., 2000; Borcea et al., 2002).

We purposely present all the formulas in their most general form in terms of Green’s functions. Thus,
these formulas are valid either in 2D, as is relevant specifically to our simulations, or in 3D. The comparisons
shown here use the Hankel-function fields in free space for the 2D simulations, but these functions would
be replaced by point source Green’s functions of the form e®" /4xr for realistic data applications in 3D.
Due to the high cost of numerically simulating wave propagation in a random medium, with significant
multipathing, we only did 2D simulations up to now.

3 Frequency domain methods: not statistically stable

Two well-known frequency-domain imaging methods, matched-field processing (Bucker, 1976; Baggeroer
et al., 1988; Baggeroer et al., 1993; Jensen et al., 1994; D’Spain et al., 1999) and MUSIC (Schmidt, 1979;
Johnson, 1982; Johnson and DeGraaf, 1982; Schmidt, 1986; Stoica and Nehoral, 1989; Stoica and Moses,
1997; Devaney, 2002), will be presented next to show how these methods behave in the types of random
media we are considering.

3.1 Matched field — central frequency

For matched-field processing, we compute

G ") = [OF (@)go(y", )| (5)
and display the objective functional
M (4) s
) GME?)
RMF(Y*) = 3 — M, (6)

for a discrete set of points (usually regularly spaced on a grid which then aids in the ultimate computer
display) y* in the target domain.
Examples of matched-field processing with one or two targets are displayed in Figs. 1 and 2.



The standard matched field (SMF) processing (Jensen et al., 1994) uses a somewhat different functional
operating directly on P(w)P¥ (w). In our notation, the Bartlett-type objective functional of (Jensen et al.,
1994) is

M
RME(Y®) = D02 (@) ), 7
j=1

where of-(w) is the singular value corresponding to the singular vector ﬁj (w) and
2

TF (@)o(y*,w)

8
B o) ©
If there is a small number of targets and these targets do not differ significantly in strength at the central
frequency (as is the case in our simulations), then there is no essential difference between the two imaging
functionals. If, for example, we want to identify only the strongest scatterer, then we may consider only
the first term in either sum, since the singular vectors are ordered according to their corresponding singular
values from largest to smallest.

G

3.2 MUSIC - central frequency
For the MUSIC algorithm, we compute
Gmusicy?) = Prgo(y®,w)I, )

with Py go(y*,w) defined by (3). We display the objective functional
min Gpmusic(y®)

Sy —
Rmusic(y®) oMU (10)
for points y* in the target domain.

Examples for MUSIC with one or two targets in homogeneous and random media are displayed in Figs.
3and 4.

When there is only one target in a homogeneous medium, then there is only one significant eigenvector
of the array response matrix and it is proportional to gy (y?, w), where y? is the target location. It is clear in
this case that both the MF and the MUSIC functionals have only a single term which peaks when y* = y*.
Similarly, in the case of several targets in a homogeneous medium, the significant eigenvectors are linear
combinations of /g\o(y;-, w), where y§- are the target locations and the functionals will have local maxima at
the target locations.

In both of these frequency domain examples, it is clear from the Figures that no range information is
obtained from these objective functionals in random media, and even the cross-range information is often
quite haphazard. Indeed, as the random fluctuations in the velocity increase, there are false peaks and the
functionals may not peak at the targets at all. (Note that MUSIC does provide the correct range for the
zero variance case.) Lack of statistical stability prevents these imaging approaches from being useful in
random media with significant multipathing considered here. When the realization of the random medium
is changed, the images obtained typically change also — which is what we mean by the phrase “lack of
statistical stability” for these methods.

4 Statistically stable time domain methods

Next we consider the same two methods of the previous section, but now we transform back to the time-
domain to take advantage of the statistical stability that can be gained this way.



4.1 Matched field in time

For matched-field processing, we compute
2

G, 1) = [ ¢ y() [OF @Ry )| do GEN

Since the factor multiplying e~** in the integrand is real and nonnegative, this integral clearly takes its
maximum value for ¢ = 0 — which is also, therefore, the location of the peak of the corresponding pulse in
the time domain. We then display the objective functional

M g(j) (y*,t=0)
s MF ’
RME, (") = o) : (12)
j=1 H;%X gMFT (y*,t=0)

for points y* in the target domain.
Examples of matched-field processing in the time domain with one or two targets are displayed in Figs.
5and 6.

4.2 DOA (time domain MUSIC)

The next method is a time domain variant of MUSIC which we will label DO A, because it gives very
good estimates of the direction of arrival. (Note that matched field in time also gives good estimates of the
direction of arrival).

To define a time variant of MUSIC, we first normalize the projection Pngo(y*,w) (given by (3)) by the
singular value o (w) and then take the inverse Fourier transform to go to the time domain,

FO(y*,1) = [ e oj(w)Boly*s w)dw
—J e Moy w) D, [Uﬁ (@)8o(y*,w)| Tr (w)d.
Theoretical analysis shows that the functionals (%) (y*, ¢) are statistically stable, i.e they behave like deter-

ministic quantities, and thus it seems natural to evaluate them at deterministic times (i.e., simple geometrical
spreading times). We then form the sum

(13)

N
} . 2
GD(y*) = 3 |FD (3" v (14)
p=1
and display the objective functional
M misng(j)(ys)
Rpoa¥’) =Y ) (15)
o g(])(y )
for points y* in the target domain.
The arrival time ¢, (y*) is the deterministic travel time from the p-th transducer to the search point,
X, —y°
(y) = 2= Y1 (16)

Co

Examples for time-domain MUSIC with one or two targets are displayed in Figs. 7 and 8.

The cross-range results are now dramatically improved in both methods. Range information is still not
to be found here, but the statistical stability of the universal “comet tails” is now easily observed. The
images shown are for specific realizations, but the results do not change significantly when the underlying
realization of the random medium is changed. This fact has been repeatedly shown in our simulations, and
is the main characteristic of statistically stable methods.



5 Timedomain processing and range estimation methods

To complete the localization of the targets, we also need an estimate of the range. Good range estimates can
be obtained in the near field either from amplitude moveout information or from arrival time information.
In the far field, only the arrival time information is useful, and we will concentrate on arrival times in the
present analysis.

One commonly used range estimator is Synthetic Aperture Imaging or SAI. Another alternative that
arises in the time-reversal approach is the use of arrival time information in the singular vectors. This arrival
time information can also be averaged for random media — see (Borcea et al., 2002) — to obtain very stable
estimates of arrival times. Both of these methods will now be combined with the time-domain methods of
the previous section to obtain well-localized images of the targets.

5.1 Matched field in time combined with SAI

The SAI objective function is
Rsally Z 17

At a search point y* in the domain of interest, we compute the deterministic arrival time for diagonal entry
P,,(t). That is, the time to go from the p-th transducer to the search point y* and then come back to the
p-th transducer. This is twice the arrival time ¢,,(y*) given by (16). Note that the SAI functional gives good
range information even in random media (see (Borcea et al., 2002)).

The idea here is to combine the functional S AT which give good range information with the functional
M F which provide good cross range resolution in order to get good images. One way of doing this
combination is to display

L ONiF-sal”)
RME,-SAIY®) = % —, (18)
=1 max G sa ()
where
N
gMFT sally Z p(2tp(y GMF (y°,t=0). (19)

=1

Examples of time-domain matched-field processing with Synthetic Aperture Imaging as the range es-
timator for one or two targets are displayed in Figs. 9 and 10. The method is statistically stable and gives
good estimates of the target locations.

5.2 Matched field in time combined with times from averaged singular vectors

We would like to use the singular vectors ﬁj(w) to estimate the travel times from target j to the array.
Remark though that the singular vectors ﬁj(w) which are normalized (||ﬁj (w)|| = 1) carry an arbitrary,
frequency dependent, phase. Because of this U () look incoherent in the time domain. We can, however,
calculate IV, coherent in time, versions of singular vectors by projecting the columns of the response matrix
onto them R R R R

0P (w) = [Uj(w)HP(p) (w)] Ujw), p=1,...,N, j=1,..., M. (20)



Here P® is the pt" column of the response matrix P(w). Clearly ﬂ'§-”) (w) are singular vectors of P(w) and
carry the phase of its pth column. We use these various versions of the singular vectors to estimate g ), for

j=1,...,M,andp =1,..., N, the travel times from target j to the array element p as the minimizers of
4 () 1 (9) 2
; }: Py 20y — 4 _ )
Iggl/o o Y (t=7") Nq—1Uj (t—77)| dt. (21)

M
RaTsv(y®) = Z 5 : (22)

where N
. X 2
g,(aj;)rs\/(ys) = Z [T;zg]) - 2tp(y5)] . (23)

We combine M Fr with AT'SV to obtain

M g(j) (y*)
s MF-ATSV
RMF,-ATSV(Y®) = 0 . (24)
j=1 max Gie, arsy(Y)
where ©) (4) (7)
J sy — gV s J s
gI\/IFT—ATSV(y ) = gMFT(y )/ gATSV(y )- (25)

Examples of time-domain matched-field processing with arrival-time estimates from the averaged sin-
gular vectors for one or two targets are displayed in Figs. 11 and 12. This method is also statistically stable
and gives good estimates of the target locations. The results look somewhat better than those in Figs. 9 and
10, and considerably better for stronger fluctuations.

5.3 DOA combined with SAI
The DOA-SALI estimator is

M. 98basal®)
RpoA-sAIlY’) =D —= 7 -, (26)
j=1 max Gpoa g (¥7)
where
N
GBon-saly’) = Zl P2ty (y*))| /69 (v*), @7
p:

and GU9) (y*) is given by (14).

Examples of time-domain MUSIC with Synthetic Aperture Imaging estimates as range estimator for
one or two targets are displayed in Figs. 13 and 14. This method is also statistically stable and gives good
estimates of the target locations.



5.4 DOA combined with arrival times from averaged singular vectors

For each search point y,, we compute the objective functional

M
RAT(Y) =D~ (28)

where

: N 20 2
GO = 2| FD )| [1) - toy)] (29)

p:

—_

Here F)(y*, 1) is defined by (13), tp(y®), forp = 1,..., N, are the deterministic arrival times given by
(16) and 7-,5’), forp=1,...,N,and j = 1,..., M, are the arrival times computed in (21). We call (28) the
Subspace Arrival Time (SAT) estimator.

Examples of SAT or time-domain MUSIC with arrival time estimates from the averaged singular vectors
for one or two targets are displayed in Figs. 15 and 16. This method is again statistically stable and gives
good estimates of the target locations. The results again look somewhat better than those in Figs. 13 and
14. These localization results have apparently degraded the least of all those considered here at the highest
values of the random fluctuations.

6 CONCLUSIONS

For imaging applications in randomly inhomogeneous acoustical media, the foregoing results lead us to the
following conclusions: (1) Single frequency methods (including MUSIC and D.O.R.T.) are not statistically
stable, and therefore cannot be used without modification in the presence of significant amounts of spatial
heterogeneity in the acoustic wave speed distribution. (2) In contrast, time domain methods are statistically
stable for any objective functional having the characteristic that the random Green’s functions appear in
Hermitian conjugate pairs of gg* (Borcea et al., 2002). This result has been shown here to be true for DOA
and Matched Field, and is expected to be true more generally. (Of course, statistical stability is a necessary,
but not a sufficient, condition for optimal imaging in random media, so satisfaction of this criterion is not
enough in itself.) (3) The DOA estimates seem superior to those of Matched Field, but a careful analysis
shows that this is only superficially so because of the quantity chosen for display in these plots. In the
homogeneous case, exact calculations show that this superficial difference is just related to shapes (not
the locations) of the peaks in each of the objective functionals, and therefore is only a display issue and
not fundamental. (4) Both DOA and Matched Field give only cross-range or bearing information. Range
information must be obtained separately.

To locate the targets in random media, we need either multiple views (using multiple arrays) so we can
triangulate, or we need to extract a direct measure of range from the data. Both arrival time and amplitude
moveout (i.e., changes in peak arrival time and amplitude correlated directly with the array element loca-
tions) contain sufficient information to extract range. Usefulness of amplitudes is limited by the range itself;
if the range is so large that the arrivals appear as planar across the array aperture then only the plane-wave
arrival time is useful. In the examples chosen here, we concentrated on arrival time and this information was
obtained by combining MF with either SAI or ATSV (arrival times from averaged singular vectors). As an-
ticipated, results obtained after intersection with SAI are not as good as the ones obtained after intersection
with ATSV. But the results were shown nevertheless to be a good compromise because this method does not
require a separate arrival time analysis (recall that SAI is not statistically stable (Borcea et al., 2002)).
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Our main conclusion is that there is no essential difference in imaging with MF or DOA when either
SAl or ATSV are used.
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Figure 1: The Matched Field central frequency [M F estimate (6)] estimate of the location of one target in
random media with different strength of the fluctuations of the sound speed. The exact location of the target
is denoted by the green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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Figure 2: Similar to Fig. 1 but with two targets.
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Figure 3: The MUSIC central frequency estimate [M U SIC estimate (10)] of the location of one target in
random media with different strength of the fluctuations of the sound speed. The exact location of the target
is denoted by the green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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Figure 4: Similar to Fig. 3 but with two targets.
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Figure 5: The Matched Field time estimate [M Fr- estimate (12)] of the location of one target in random
media with different strength of the fluctuations of the sound speed. The exact location of the target is
denoted by the green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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s = 0%, M.F. = 0% s = 2.53%, M.F. = 4.38%
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Figure 6: Similar to Fig. 5 but with two targets.
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Figure 7: The DOA estimate [DOA estimate (15)] of the location of one target in random media with
different strength of the fluctuations of the sound speed. The exact location of the target is denoted by the
green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the top of each view.
The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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Figure 8: Similar to Fig. 7 but with two targets.
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Figure 9: Combined M Fr and SAI [M Frr-S AT estimate (18)] estimation of the location of one target in
random media with different strength of the fluctuations of the sound speed. The exact location of the target
is denoted by the green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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Figure 10: Similar to Fig. 9 but with two targets.
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Figure 11: Combined M Fr and AT SV [M Fp-ATSV estimate (24)] estimation of one target location in
random media with different strength of the fluctuations of the sound speed. The exact location of the target
is denoted by the green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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Figure 12: Similar to Fig. 11 but with two targets.

s = 0%, MF. = 0% s = 2.36%, M.F. = 4.09%

o

5 10 15 20 0 5 10 15 20
s =4.67%, MF. = 8.10% s = 453%, M.F. = 7.84%

0 5

10 15 20

o
o

10 15 20

Figure 13: Combined DOA and SAI [DOA — SAI estimate (26)] estimation of one target location in
random media with different strength of the fluctuations of the sound speed. The exact location of the target
is denoted by the green star. The standard deviation s and maximum fluctuations (M.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross-range in mm.
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Figure 14: Same as Fig. 13 with two targets.
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Figure 15: The SAT estimate [estimate (28)] of one target in random media with different strength of the
fluctuations of the sound speed. The exact location of the target is denoted by the green star. The standard
deviation s and maximum fluctuations (M.F.) are indicated on the top of each view. The horizontal axis is
the range in mm and the vertical axis is the cross-range in mm.
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Figure 16: The SAT estimate as in Fig. 15 for two targets.
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