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We study detection and imaging of small reflectors in heavy clutter, using an array of

transducers that emits and receives sound waves. Heavy clutter means that multiple

scattering of the waves in the heterogeneous host medium is strong and overwhelms

the arrivals from the small reflectors. Building on the adaptive time-frequency filter

of [1], we propose a robust method for detecting the direction of arrival of the direct

echoes from the small reflectors, and suppressing the unwanted clutter backscatter.

This improves the resolution of imaging. We illustrate the performance of the method

with realistic numerical simulations in a non-destructive testing setup.

Keywords: array imaging, random media, time-frequency analysis, direction of

arrival, data filtering.

1. Introduction

We study detection and imaging of remote small reflectors in a strongly scattering

medium, aka heavy clutter, using an array of N transducers that emit and receive

sound waves. This is a difficult inverse problem because the echoes arriving directly

from the reflectors are weak by the time they reach the array and are overwhelmed

by the waves multiply scattered in clutter. We call these waves clutter backscatter

and note that they arrive at the array long before and after the direct echoes.

The array probes sequentially the medium with pulses emitted from one trans-

ducer at a time, and records the resulting acoustic pressure waves at all the N

transducers. These recordings form the N ×N array response matrix P (t), which

is a function of time t. The detection problem is to distinguish in P (t), which is

dominated by clutter backscatter, the time and direction of arrival of the weak

echoes from the small reflectors. For imaging we need to extract these echoes from

P (t), and use them to localize the reflectors.
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Heavy clutter arises in applications of imaging through foliage or the turbu-

lent atmosphere, in nondestructive testing of materials, and so on. It has received

much attention lately, specially in the context of imaging with passive arrays of

receivers which are either near the imaging region or are separated from it by a non

scattering medium [2]. In these problems the waves emitted from remote sources

travel through clutter before reaching the receivers and the small reflectors. Due

to the favorable placement of the receivers, the clutter effects can be suppressed

by computing the cross-correlations of the recordings and using appropriate time

windowing [2, 3]. The images formed with such cross-correlations are as good as if

there were no clutter, as shown with analysis and numerical simulations in [2].

In many applications it is not possible to place receiver arrays near the imag-

ing region, or behind the heavy clutter. For example, in nondestructive testing,

the measurements are necessarily confined to the surface of the tested body, and

the small reflectors (defects) are buried deep inside, as we assume in this paper.

The suppression of clutter backscatter is much more challenging in this case, and

requires carefully designed data filters.

A filter of waves backscattered by a randomly layered medium was proposed

and studied in [4]. It is efficient, but since it relies on the layered structure it does

not generalize to other clutter. The filter in [5–7] seeks to separate single from

multiple scattering waves by performing a rotation of the response matrix followed

by a projection. It uses that when the array aperture is small with respect to the

distance to the small reflectors, the single scattering part of P (t) i.e., the direct

arrivals from the small reflectors, is approximately a Hankel matrix. After the

rotation, which involves discarding a large part of P (t), the filtering is carried out

by a projection on the space of certain rank one matrices. The detection method in

[5–7] requires measurements of the response matrix from a part of the medium that

does not contain the small reflectors. It has been recently applied to experimental

data for ultrasound nondestructive testing in polycrystalline steel in [8].

The detection and filtering method proposed in this paper is an extension of that

in [1]. It analyzes the response matrix P (t) in sequentially refined time windows,

using the singular value decomposition (SVD) of the local-cosine transform (LCT)

of P (t). The point is that in time windows that contain only clutter backscatter,

P (t) resolved over frequencies is a ”noise” matrix1. Its SVD analysis reveals that

the larger singular values are clustered together, and have similar behavior across

frequencies. In the windows that contain echoes from the small scatterers, P (t)

is a perturbation of a noise matrix, and detection can be carried out by seeking

singular values that are significantly larger than the others across frequencies. The

success of the detection depends on the strength of the perturbation relative to

noise. This improves as we refine the time windows. However, there is a trade-off.

If the windows are too small, they cannot capture the arrival of the echoes from

the small reflectors at all the receivers in the array. The arrival times vary across

1The quote stands for the fact that clutter backscatter does not give a usual noise matrix with identically

distributed and uncorrelated entries, such as Gaussian.
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the array, and the window selection must take this into account. The adaptive

time-frequency algorithm in [1] is designed to address this trade-off.

An analysis of the adaptive time-frequency algorithm in [1] was carried out in [9]

in the case of randomly layered media, but the method applies to general clutter.

The main contribution of this paper is the extension of the algorithm so that it

also selects the direction of arrival of the echoes from the small reflectors. This

leads to significantly improved data filtering and better resolution of the images

obtained with any coherent method. We illustrate this using both the coherent

interferometric imaging method [10–12] and the Kirchhoff migration method [13,

14].

The paper is organized as follows: In section 2 we formulate the problem. In

section 3 we illustrate with numerical simulations the difficulty of imaging in heavy

clutter. In section 4 we present our detection and imaging algorithm. We review its

first step from [1] in section 4.1, and describe in detail the new step for direction of

arrival detection and filtering in section 4.2. The performance of the algorithm is

illustrated in section 5 using numerical simulations carried out in a setup relevant

to non-destructive testing. We end with a summary in section 6

2. Formulation of the problem

The array gathers the response matrix P (t) with entries P (t, ~xr, ~xs) by emitting

pulses f(t) from ~xs for s = 1, . . . , N , and recording the scattered waves at the

receiver locations ~xr for r = 1, . . . , N . The measurements are modeled by the

solution of the wave equation

1

v2(~x)

∂2P (t, ~x, ~xs)

∂t2
−∆P (t, ~x, ~xs) = f(t)δ(~x− ~xs), ~x = (x, z) ∈ Rd, (2.1)

for d ≥ 2 and time t > 0, with initial conditions

P (0, ~x) = 0,
∂P (0, ~x)

∂t
= 0. (2.2)

Here we introduced the system of coordinates with range axis z in the direction of

propagation of the waves, pointing from the array to the reflectors that we wish to

image, and cross-range x in the plane Rd−1 orthogonal to it.

We model the emitted pulse as

f(t) = e−iωotfB(t),

where ωo is the carrier frequency and fB is a function with Fourier transform f̂B
supported in the interval (−πB, πB), where B is the bandwidth. Then,

f̂(ω) =

∫ ∞
−∞

ei(ω−ωo)tfB(t)dt = f̂B(ω − ωo), (2.3)

3



February 22, 2017 Waves in Random and Complex Media BPT˙WRM

is supported at frequencies ω ∈ (ωo − πB, ωo + πB).

If the small reflectors are penetrable inclusions, we can model them and the

clutter by v(~x) in (2.1), satisfying

1

v2(~x)
=

1

c2
[1 + εµ(~x) + ρ(~x)] . (2.4)

Here c is the constant reference speed and ρ(~x) is the reflectivity of the inclusions,

supported in the union of the disjoint domains Ωm, centered at points ~ym, for m =

1, . . . ,M . The inclusions are round and small, meaning that their volumes |Ωm|
satisfy |Ωm|1/d < λo, where λo = 2πc/ωo is the central wavelength. However, they

have a much larger reflectivity than the heterogeneities in the cluttered medium.

This is why we can hope to image them.

If the small reflectors are impenetrable, they are modeled with boundary condi-

tions at ∂Ωm. In the simulations they are soft scatterers, so

P (t, ~x, ~xs) = 0, ~x ∈ ∂Ωm, m = 1, . . . ,M, (2.5)

and the wave speed v(~x) satisfies

1

v2(~x)
=

1

c2
[1 + εµ(~x)] . (2.6)

The clutter is a conglomerate of small and weak heterogeneities, which are impos-

sible to know in detail. They introduce uncertainty in the wave propagation model

which translates into uncertainty of the waves measured at the array. This im-

pedes the imaging process. We model the uncertainty of v(~x) with the mean zero

random process µ, which is assumed statistically homogeneous, bounded almost

surely, with integrable autocorrelation

C(~x) = E[µ(~x + ~x′)µ(~x′)],

where E denotes expectation. We normalize the process by C(0) = 1, so ε � 1

scales the small amplitude of the fluctuations.

In imaging we probe a single heterogeneous medium, corresponding to one re-

alization of the process µ. Any heterogeneity in this medium is a weak scatterer

when compared with the reflectors that we wish to image, as modeled by ε � 1.

However, there are many heterogeneities and their cumulative scattering effects

add up over long distances of propagation of the waves. This cumulative scatter-

ing is responsible for the strong reverberations registered at the array, the heavy

clutter backscatter.

The detection problem seeks to identify the time and direction of arrival of the

single scattered waves at the reflector locations ~ym, for m = 1, . . . ,M . The goal

of filtering is to suppress the heavy clutter backscatter and emphasize these direct

arrivals, so that better estimates of {~ym}1≤m≤M can be obtained with coherent

imaging methods such as coherent interferometry (CINT) [11, 12] or Kirchhoff
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migration (KM) [13, 14].

The KM imaging function is

J KM(~y) =

N∑
r=1

N∑
s=1

P (τ(~xs, ~y) + τ(~y, ~xr), ~xr, ~xs)

=

N∑
r=1

N∑
s=1

∫ ∞
−∞

dω

2π
P̂ (ω, ~xr, ~xs) exp {−iω [τ(~xs, ~y) + τ(~y, ~xr)]}, (2.7)

where ~y are the search points in the imaging region. It adds the entries of the

response matrix delayed by the travel time from the sources to the imaging point

and then back to the receivers. The travel times are calculated in the reference

medium, at wave speed c,

τ(~x, ~y) = |~x− ~y|/c, (2.8)

and the evaluation of P (t, ~xr, ~xs) at the round trip travel time τ(~xs, ~y) + τ(~y, ~xr)

is called backpropagation to ~y. The estimates of the reflector locations are the

peaks of J KM(~y). The direct arrivals from the reflectors add constructively at

points ~y ∈ {~y1, . . . , ~yM}, and the KM imaging method works well when the clutter

backscatter is weak.

The CINT imaging function is given by

J CINT(~y) =

∫ ∞
−∞

dω

2π

∫
|ω−ω′|≤Ωd

dω′

2π

∑
r,r′∈Sd(ω+ω′)

∑
s,s′∈Sd(ω+ω′ )̂

P (ω, ~xr, ~xs)P̂ (ω′, ~xr′ , ~xs′)

exp
{
−iω[τ(~xr, ~y) + τ(~y, ~xs)] + iω′[τ(~xr′ , ~y) + τ(~y, ~xs′ ]

}
. (2.9)

It also uses backpropagation to ~y via travel time delays, but it does not sum di-

rectly the measurements. It sums their local cross-correlations, calculated at nearby

frequencies ω and ω′ satisfying |ω−ω′| ≤ Ωd, and at nearby sources and receivers,

with indexes in the frequency dependent sets

S (ω + ω′) =

{
r, r′ = 1, . . . , N, |~xr − ~xr′ | ≤ Xd

(
ω + ω′

2

)}
.

Here Ωd and Xd are the decoherence frequency and length. They define the fre-

quency and sensor location offsets over which the waves scattered in clutter decor-

relate statistically. They play an important role in the statistical stabilization of

the CINT imaging function, and can be obtained adaptively during the image for-

mation as explained in detail in [11, 12, 15]. CINT can mitigate moderate clutter

backscatter. Explicitly, it can image at distances that do not exceed a few transport

mean free paths in the cluttered medium. In this paper we consider stronger clut-

ter backscatter, which cannot be handled by CINT alone, as shown with numerical

simulations in the next section.
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(a) The imaging problem setup. (b) Time traces

Figure 1. (a) Two small, sound soft reflectors embedded in a strongly scattering medium. The array is

on the top. The velocity of the medium fluctuates around the constant c = 1Km/s. The fluctuations are

shown with colors. The horizontal axis is cross-range and the vertical axis is range, in units of λo. (b)

The display of P (t, ~xr, ~xs) as a function of time on the abscissa and xr on the ordinate, for the source at

~xs = (44λo, 2λo).

3. Illustration of heavy clutter effects on imaging

To illustrate how clutter impedes imaging, we present here the results of a numerical

simulation in two dimensions, in the setup depicted on the left in Figure 1. There are

two small reflectors to image, shown with the black dots. They are modeled as sound

soft disks of radius λo/4, centered at ~y1 = (42λo, 75λo) and ~y2 = (52λo, 65λo). The

array is linear, and consists of N = 80 transducers. The range axis is orthogonal

to it, and points downward in the figure. The transducer locations are

~xr = (xr, 2λo) , xr = 24λo + (r − 1)
λo
2
, r = 1, . . . , 80,

so the array has aperture a ≈ 40λo, which is about half the range of the reflectors.

The clutter is a realization of

µ(~x) =
1√
2

[
µi(~x) + µl

(
z
)]
, (3.1)

where µi and µl are mean zero, statistically homogeneous random processes. The

first models an isotropic random medium with autocorrelation

E[µi(~x)µi(~x
′)] =

(
1 +
|~x− ~x′|

`

)
e−
|~x−~x′|
` , (3.2)

and correlation length ` = λo/4. The second models a randomly layered medium

with autocorrelation

E[µl(z)µl(z
′)] =

(
1 +
|z − z′|
`z

)
e−
|z−z′|
`z , (3.3)

and correlation length `z = λo/50. The amplitude scale of the fluctuations µ(~x)

is ε = 0.1, and the actual wave speed v(~x) used in the simulation is shown with

colors in Figure 1.
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Figure 2. Kirchhoff migration (a) and CINT (b) images obtained for the data shown on Figure 1(b). The

full array response matrix is used to obtain these images and not just the central illumination data. The

true location of the scatterers is shown with black circles.

The simulation parameters are typical for an ultrasonic non-destructive testing

experiment [5]. The array probes the medium with Ricker pulses, which are second

derivatives of a Gaussian, with central frequency ωo/(2π) = 10MHz and standard

deviation 10MHz. The reference velocity is c = 1Km/s, so λo = 0.1mm. All the

lengths in Figure 1 are scaled by λo.

The array response matrix P (t) is obtained by solving numerically the wave

equation (2.1) in R2, using the perfectly matched absorbing layer technique [16].

The numerical method uses a finite element discretization in space of (2.1), writ-

ten as a first order hyperbolic system [17, 18]. The discretization in time is with

standard finite differences.

We display on the right in Figure 1 the recordings P (t, ~xr, ~xs) for r = 1, . . . , 80

and s = 41. Borrowing terminology from the seismic literature, we call the record-

ings time traces. The direct arrivals from the two sound soft disks are weak and

cannot be seen because they are dominated by the clutter backscattered waves,

which arrive before and after them.

The KM and CINT images are shown in Figure 2, where the two sound soft

reflectors are indicated with black circles. We note that both images have peaks

near the locations of the reflectors. In particular, CINT produces a strong peak

at the reflector that is closer to the array. However, there are many other peaks,

which are stronger than the peak at the second reflector. The algorithm described

in the next section is designed to mitigate the clutter backscatter, and therefore

improve the quality of the images.

4. Detection and filtering of clutter backscatter

Our method of detection of the arrival of the weak echoes from the small reflec-

tors, and of filtering the unwanted clutter backscatter, consists of two main parts,

outlined here.

The first part is as in [1], and we review it in section 4.1. It analyzes the response

matrix P (t) in sequentially refined time windows using the discrete local cosine

transform (LCT). Time windowing is useful because over the entire duration of the
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recordings the energy carried by the clutter backscatter (the ”noise”) overwhelms

that of the useful echoes (the ”signal”). As the time windows containing these

echoes become smaller and smaller, the signal to noise ratio (SNR) improves. The

LCT allows a systematic window refinement and search, using a tree structure. It

decomposes the entries of P (t) over frequencies, locally in each window, and the

detection is done by tracking the behavior of the leading singular values of the

transformed matrix. Data filtering consists of zeroing the LCT coefficients in the

windows where no signal is detected, projecting on the subspace spanned by the

singular vectors of the distinguished singular values, and then inverting the LCT

transform. We call the filtered response matrix P
TF

(t), where the index TF stands

for time filtering.

The second part of the method is the main contribution of this paper, and is

described in section 4.2. It seeks to detect the direction of arrival of the desired

echoes from the small reflectors, in addition to the arrival time, and to improve

the data filter for better resolution of the images. To do so, we begin with the

backpropagation of P
TF

(t) using travel time delays from the array transducers to

a reference point in the imaging region. This reference point is at range equal to

half the center time of the selected time window, multiplied by the wave speed c. If

more time windows are selected, than the backpropagation is done for each of them.

The purpose of the backpropagation is to remove the large phase of the entries of

P
TF

(t), so that we can better analyze the data around the detected arrival time.

We call the backpropagated matrix P
BP

(t) and its Fourier transform P̂
BP

(ω).

Its entries are indexed by the receivers located at ~xr and sources at ~xs, and we

rotate it next by representing it in the center and difference coordinates (~xs+~xr)/2

and ~xr − ~xs. The motivation for the rotation is similar to that in [5–7]. Assuming

that the array aperture is small with respect to the range of the reflectors, we

may use the paraxial approximation to model the direct arrivals from the small

reflectors, the useful (coherent) part of the data. After the backpropagation, this

part is approximately independent of the difference ~xr − ~xs, which is why it is

advantageous to rotate P̂
BP

(ω).

We denote the rotation by R, and to suppress the remaining clutter backscatter,

we calculate the best approximation of RP̂ BP

(ω) by a rank one matrix which is

independent of ~xr−~xs. The approximation is with respect to the Frobenius norm,

and the result is denoted by RP̂ AF

(ω).

To determine the direction of arrival of the coherent echoes i.e., the wave vectors

associated with the single scattered waves, we decompose RP̂ AF

(ω) in plane waves

using Fourier transforms. The detection amounts to seeking maxima of the Fourier

coefficients (the plane wave amplitudes), and the filtering is done by careful taper-

ing over the other directions. The output of the algorithm is the inverse Fourier

transform of the result, rotated back to the coordinates ~xr and ~xs. This is the

filtered data to be used in the image formation.
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4.1. Adaptive time-frequency detection and filtering

We review here the steps of the algorithm introduced in [1]. The input is the

array response matrix P (t), for time t ∈ [0, T ] sampled in uniform NT time steps,

where NT equals an integer power of 2. The LCT decomposition [19] is done in

time windows arranged in a binary tree structure. At each level l = 0, . . . , Nl, the

recording window [To, T ] is divided in 2l windows, of size ∆l = (T − To)/2l. The

minimum size of the time windows is determined by the user defined maximum

tree level Nl.

Let us index the nodes of the tree by (j, l), with j = 0, . . . , 2l−1 and l = 0, . . . , Nl.

Each node is associated with the subspace spanned by the orthonormal bases

Bl
j =

{√
2

∆l
χ
( t− tlj

∆l

)
cos[ωln(t− tlj)], n ∈ Z+

}
, (4.1)

with discrete times tlj = To + j∆l and frequencies ωln = π (n+ 1/2)/∆l of the

decomposition in the smooth windows χ. For any l, the union over j of the bases

Bl
j forms an orthonormal basis of L2[To, T ], and at the next tree level the span of

Bl
j is split in two orthogonal subspaces, with bases Bl+1

2j and Bl+1
2j+1. We refer to

[19] for details2.

The steps of the time-frequency detection and filtering algorithm are:

(1) Computation of the discrete LCT transform of the array response matrix on

a binary tree with maximum level Nl. This gives the N ×N matrices

P̂ l(tlj , ω
l
n) =

{
P̂ l(tlj , ω

l
n, ~xr, ~xs)

}
r,s=1,...,N

, (4.2)

for j = 0, 1, . . . , 2l − 1 and l = 0, . . . , Nl, with entries

P̂ l(tlj , ω
l
n, ~xr, ~xs) =

∫
dt P (t, ~xr, ~xs)

√
2

∆l
χ
( t− tlj

∆l

)
cos[ωln(t− tlj)]. (4.3)

(2) Calculate the singular value decomposition of P̂ l(tlj , ω
l
n). Let σl,jq (ωln) be the

singular values, for q = 1, . . . N .

(3) Choose the frequency band B ∈ (0, πNT /T ) and the number q̄ of largest sin-

gular values to be used in the detection.

(4) Detect the time window of interest as follows:

For l = 0 : Nl

Decide if there is at least one window indexed by (j, l), where the largest

singular values are distinguished from the others across the frequencies

2 In the simulations the basis (4.1) is discretized at the NT points t of the interval [To, T ], and the

frequencies ωl
n sample the same bandwidth (0, πNT /T ) , in steps π/∆l, that increase with the tree level

l. The implementation uses the Wavelab 850 MATLAB package [20] with window χ option ”Sine”.
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in B. If yes, let lo = l and jlo? = j and stop.

For l = l0 + 1 : Nl

Let j ∈ {2jl−1
? , 2jl−1

? + 1} and decide in which of the two windows the

largest singular values are better separated from the rest. Call the deci-

sion jl? = j. If the selection is ambiguous, set l = l − 1 and stop.

(5) Let the chosen time window be indexed by (jl?, l). Set to zero the LCT coeffi-

cients in all other windows at level l. This is equivalent to multiplying (4.3)

with the Kronecker δj,jl?.

(6) Project δj,jl?P̂
l(tlj , ω

l
n) on the subspace of low rank matrices with singular

vectors corresponding to the distinguished top singular values. The projection

is done for frequencies ωn ∈ B. All other coefficients are set to zero.

(7) The output of the algorithm is the filtered response matrix P
TF

(t) obtained

with the inverse LCT of the entries of the matrix obtained at step (6).

Remarks

The number q̄ of singular values at step (3) should be larger than the number M

of reflectors that we wish to image. We also should have enough measurements,

meaning that N � q̄ > M . The bandwidth B is the part of the frequency support

of the probing pulse over which the reflectors are detectable. This B depends on

the clutter, but in general it is at the lower frequencies that the detection is easier.

The details on how the algorithm searches for the distinguishable, leading singu-

lar values are given in [1]. Note that at step (4) we search first from the bottom to

the top of the tree. At the root level l = 0, the data is expected to be dominated by

the clutter backscatter, so P̂ 0(To, ω
0
n) are like noise matrices. This is illustrated in

Figure 12 and the numerical simulations in [1] by the fact that all singular values

σ0,0
q (ω0

n) are clustered together across the frequencies. There is no distinguished

or significant singular value. When the window sizes become small enough, the

SNR in the windows that contain the useful echoes from the reflectors (the signal)

improves, and the largest singular values become well separated from the others.

This is the level lo at step (4). The second part of the search at step (4) refines

sequentially the windows of interest until the selection becomes ambiguous.

The filters at steps (5) and (6) are for suppressing the clutter backscatter. First,

they remove all the arrivals outside the selected time window and then, they project

the result on the subspace spanned by the singular vectors corresponding to the

distinguishable singular values.

4.2. Direction of arrival detection and filtering

The filtered array response matrix P
TF

(t) given by the first part of the algorithm

is localized in a small time window which contains the echoes from the reflectors

that we wish to image. Here we explain how we can detect the direction of arrival

10
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~yo = (0, L)

y
η

a θ
L

~y = (y, L + η)

Figure 3. Illustration of an imaging setup with array aperture a that is small compared to the range L.

The reference point ~yo is determined from the center time of a selected window and is along the range

axis originating at the center of the array.

of these echoes and how we can improve the data filtering.

Suppose that a small reflector at ~y is detected in the selected time window

centered at to. Its distance to the center of the array, the origin of coordinates,

is approximately L = c/(2to), and we define the reference point ~yo = (0, L). As

illustrated in Figure 3, ~yo is offset from ~y by y in the cross-range plane and η in

range, meaning that ~y = (y, L+ η).

The useful echoes for imaging, which are single scattered at ~y, have the de-

terministic phase k(|~y − ~xs| + |~y − ~xr|) for the source receiver pair (s, r), where

k = ω/c is the wavenumber. Assuming that the array is planar, with small aper-

ture with respect to the range L, we let ~xr = (xr, 0) and obtain with the paraxial

approximation that

|~y − ~xs|+ |~y − ~xr| =
√

(L+ η)2 + |xr − y|2 +
√

(L+ η)2 + |xs − y|2

≈ 2(L+ η) +
|xr − y|2 + |xs − y|2

2L

= 2(L+ η) +
|x̄rs|2

L
+
|x̃rs|2

4L
+
|y2|
L
− 2x̄rs · y

L
, (4.4)

where x̄rs = (xr + xs) and x̃rs = xr − xs. For the reference point ~yo we have

similarly

|~yo − ~xs|+ |~yo − ~xr| =
√
L2 + |xr|2 +

√
L2 + |xs|2

≈ 2L+
|x̄rs|2

L
+
|x̃rs|2

4L
, (4.5)

so when backpropagating the filtered data P
TF

(t) to ~yo we achieve the following

phase reduction of the direct arrivals in the selected time window

k(|~y − ~xs|+ |~y − ~xr| − |~yo − ~xs|+ |~yo − ~xr|) ≈ k
(

2η +
|y2|
L
− 2x̄rs · y

L

)
. (4.6)

The observation that these reduced phases are independent of the difference coor-

dinates x̃rs leads to the detection and filtering algorithm described below.

The algorithm can be used for three dimensional problems, but to avoid cum-

bersome index notation we present it here in two dimensions, for a linear array.

The extension to three dimensions requires a modification of the indexing in the

rotation operation at step (2) below. The steps of the algorithm are:

11
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(1) For the selected time window, centered at to, define the N ×N input matrix

P
IN

(t) = P
TF

(t− to), (4.7)

and Fourier transform it with respect to time t,

P̂
IN

(ω) =

∫ ∞
−∞

eiωtP
IN

(t)dt = eiωto
∫ ∞
−∞

eiω(t−to)P
TF

(t− to)dt. (4.8)

Denote the entries of this matrix by P̂
IN

(ω, xr, xs), since for the linear array

~xr = (xr, 0), with r = 1, . . . , N .

Backpropagate P̂
IN

(ω) to the test point ~yo, and denote the resulting matrix

by P̂
BP

(ω), with entries defined by

P̂
BP

(ω, xr, xs) = P̂o(ω, xr, xs)e
−iωto−ik(|~yo−~xs|+|~yo−~xr|), r, s = 1, . . . , N.

(4.9)

(2) Rotate P̂
BP

(ω) by forty-five degrees, to form a larger (2N − 1) × (2N − 1)

matrix, with entries indexed by the center and difference coordinates

x̄rs =
xr + xs

2
, x̃rs = xr − xs.

The rotation is done with the following commands:

H = P̂
BP

(ω)

RH = zeros(2N − 1, 2N − 1)

For i =1:N

For j =1: N

i 1=i+j−1

i 2=i−j−(1−N)+1

RH( i1 , i 2 )= H( j , i )

end

end

The rotated matrix has a rhombus structure as illustrated in Figure 4. The

diagonals in H, which correspond to constant source receiver offsets x̃rs, form

the columns of RH. The anti-diagonals of H, which correspond to common

midpoints x̄rs, form the rows of RH. The resulting matrix is RP̂ BP

(ω).

(3) We know from equation (4.6) that the desired, coherent part of the matrix

calculated at step (2) should be independent of the source receiver offsets

x̃rs. Therefore, we calculate the best approximation of RP̂ BP

(ω) by a matrix

RP̂ AF

(ω) with identical columns p̂(ω), restricted to the support of RP̂ BP

(ω),

i.e., the non-zero elements of the rhombus. Let S be the set of indexes (i, j)

in this support, for i, j = 1, . . . , 2N−1 enumerating the center and difference

12
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Figure 4. Illustration of a square 4× 4 matrix H on the left and its rotation RH on the right.

locations, renamed henceforth x̄i and x̃j, and define the indicator function

1
S

(i, j) =

{
1, (i, j) ∈ S

0, otherwise
.

Then, p̂(ω) is the 2N − 1 column vector with entries p(ω, x̄i) that minimize

2N−1∑
i,j=1

1
S

(i, j)
∣∣∣RP̂BP

(ω, x̄i, x̃j)− p̂(ω, x̄i)
∣∣∣2 .

We obtain that

p̂(ω, x̄i) =
1

ni

2N−1∑
j=1

RP̂BP

(ω, x̄i, x̃j), ni =

2N−1∑
j=1

1
S

(i, j), (4.10)

where ni is is the number of non zero entries of the i−th row in the set S .

Here we used that RP̂ BP

(ω) is supported in S .

The approximation RP̂ AF

(ω) is the matrix with entries

RP̂AF

(ω, x̄i, x̃j) = 1
S

(i, j)p̂(ω, x̄i), i, j = 1, . . . , 2N − 1. (4.11)

(4) Take the Fourier transform of (4.10) with respect to x̄. This is a plane wave

decomposition, with wave vector samples κi, the dual variable to x̄i. The

transformed vector is

p̆(ω) = (p̆(ω, κi))i=1,...,2N−1 . (4.12)

(5) The detection of the direction of arrival of the direct echoes from the reflectors

amounts to seeking maxima of (4.12) that are above a user defined tolerance.

If there is one dominant reflector for the selected time window, we expect

a single maximum, denoted by κ?(ω). For multiple reflectors we may have

multiple maxima. If they are well separated, we use them one at a time.

(6) To filter the residual unwanted clutter backscatter, we taper off the arrivals

from the directions that are different than the selected κ?(ω) at step (5). The

13



February 22, 2017 Waves in Random and Complex Media BPT˙WRM

taper function is determined by the aperture a of the array, which defines the

resolution of order a/L in the plane wave decomposition. In theory, the taper

should be a sinc function, due to the support of the entries of p̂(ω) in the

interval [−a/2, a/2]. Since we are interested only in the vicinity of the peak

wave vector, we taper using a Gaussian centered at κ?(ω), with standard de-

viation β determined by minimizing the least squares error between p̆(ω) and

p̆(ω) exp[−(κ− κ?)2/(2β2)] in the vicinity of κ?. More precisely, the domain

over which we minimize the L2 norm of the difference between the tapered

and the original p̆(ω) is [κ?− κ−1/2, κ
? + κ+

1/2] with κ−1/2 (resp. κ+
1/2) the value

of κ on the left (resp. right) of κ? where p̆(ω) drops to half of its peak value.

We denote the tapered vector by p̆
DoA

(ω), with index DoA standing for di-

rection of arrival. Its entries are defined by

p̆
DoA

(ω, κi) = p̆(ω, κi)e
− [κi−κ

?(ω)]2

2β2 , i = 1, . . . , 2N − 1. (4.13)

(7) Compute the inverse Fourier transform (with respect to κ) of the tapered

vector (4.13). Its entries are

p̂
DoA

(ω, x̄i) ∼ p̂(ω, x̄i) ?x̄ eiκ
?(ω)x̄i−

β2x̄2
i

2 ,

where ?x̄ denotes convolution and ∼ denotes equal, up to a multiplicative con-

stant. The phase in the right hand side of this equation carries the direction

of arrival selected at step (6).

(8) Define the filtered, rotated matrix RP̂ DoA

(ω), with entries

RP̂DoA

(ω, x̄i, x̃j) = 1
S

(i, j)p̂
DoA

(ω, x̄i), i, j = 1, . . . , 2N − 1. (4.14)

Rotate it back to obtain the N×N matrix P̂
DoA

(ω) with entries P̂
DoA

(ω, xr, xs),

for r, s = 1, . . . , N .

(9) Undo the back propagation at step (1), equation (4.9), by multiplying

P̂
DoA

(ω, xr, xs) with exp [iωto + ik(|~yo − ~xs|+ |~yo − ~xr|)], for r, s = 1, . . . , N .

(10) The output of the algorithm is the inverse Fourier transform in time of the

matrix calculated at step (9). We call it P
OUT

(t).

Remarks

Equation (4.6), which states that after the backpropagation the direct echoes from

the sought-after reflectors carry phases that are independent of the source-receiver

offset location, is used by the algorithm in two ways: First, it rotates at step (2)

the backpropagated data matrix to the center and difference system of coordinates

x̄i, and x̃j , and then approximates at step (3) the result by the closest matrix

with identical columns, independent of the offset coordinates x̃j . Second, it Fourier

transforms the result with respect to the center coordinates x̄i, to determine at

14
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steps (4) and (5) the wave vector κ?(ω) corresponding to the desired direct echoes.

Equation (4.6) says that this should be approximately κ?(ω) ≈ 2ky/L. The algo-

rithm then suppresses the returns with wave vectors away from κ?(ω) at step (6).

The remaining steps (7)-(9) undo the rotation and the Fourier transform to return

to the source-receiver coordinates and the time domain in which the array response

matrix is represented.

As stated before, the algorithm applies to three dimensions, with the only dif-

ference being in the indexing in the rotation operation at step (2), and the search

for the direction of arrival at step (5) in two dimensions instead of one.

The steps (1) to (3) of the direction of arrival detection and filtering algorithm

are at a high level similar to the ideas used in the single scattering filter approach

(SSF) [5–7]. To be more precise the objective of steps (1) to (3) which is to produce

a rank one matrix in the rotated coordinate system that is independent of the

source-receiver offset location is the same as in the SSF approach. However, the

actual procedure and the implementation proposed in this paper in order to achieve

this objective is very different. Let us highlight the differences between the two

approaches by reviewing the steps (1) to (3) of the proposed algorithm:

• Step (1) consists in back-propagating the windowed data to a reference point

in the imaging region. This back-propagation is an important step because it

removes the large phase of the entries corresponding to the long propagation

distance and allows us to better analyze the data in the selected time window.

There is no equivalent to step (1) in the SSF approach [5–7].

• Step (2) which is the rotation, is implemented in a different way than in

SSF. What is proposed in this paper is more efficient and no elements of the

response matrix are disregarded.

• The rank one projection step, which is step (3) of the proposed algorithm is

optimal in the sense that we are using the best rank-one approximation of

the rotated matrix. Best in the sense of the Frobenius norm. Again this is

very different from what is done in SSF.

The direction of arrival (DOA) filter which is the main original contribution of this

paper is performed in steps (4) to (6). As the name reveals, this filter seeks to detect

the direction of arrival of the desired echoes from the small reflectors. The use of

this filter is most important when echoes from multiple reflectors are contained

in the same window, or in other words, when multiple reflectors are located at

the same distance from the array. The first key aspect of the direction of arrival

filter is that it allows the detection in the data of multiple directions of arrival.

Consequently, after the main directions of arrival are identified, the use of the

Gaussian taper permits the selection of the data corresponding to each direction of

arrival separately. Therefore the filter allows us to focus the image in cross-range

around each reflector. This is important for imaging multiple reflectors in strong

clutter. We will illustrate the performance of the filter in the next section with

numerical simulations carried out in a realistic non-destructive testing setup.
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Figure 5. From left to right: the real part of P̂
BP

(ω), its approximation by the Hankel matrix P̂
AF

(ω)

and the filtered matrix P̂
OUT

(ω). The axes are the indexes of the transducers and ω/(2π) = 5MHz.

5. Numerical simulations

We begin in section 5.1 with the illustration of the direction of arrival detection

and filtering algorithm, for the setup considered in section 3. Then we present in

section 5.2 imaging results for two nearby reflectors in three location arrangements

and three different types of clutter.

5.1. Illustration of direction of arrival detection and filtering

The numerical simulations in this section are for the setup illustrated in Figure

1 and described in detail in section 3. We focus attention on the reflector that

is closer to the array, and illustrate how the algorithm introduced in section 4.2

detects the arrival of the direct echoes from it and removes the clutter backscatter.

Since there are N = 80 transducers in the simulation, the array response matrix

P (t) is of size 80 × 80, and the time recordings are NT = 213 for the duration

T − To = 13.7748µs. We start the recordings at time To = 6.2252µs and end them

at time T = 20µs. The selection of the time window containing the arrival of the

direct echoes is done as explained in section 4.1 and described in detail in [1]. It

identifies the window at the level l = 4 of the LCT tree, indexed by j4
? = 7, and

centered at time

to = To + (j4
? + 1/2)∆4, ∆4 = (T − To)/24.

The direction of arrival detection and filtering begins with the matrix P
IN

(t)

defined in equation (4.8). We Fourier transform it and backpropagate it to the

reference point ~yo = (0, c/(2to)) using equation (4.9), and display in the left plot of

Figure 5 the real part of the resulting matrix P̂
BP

(ω), at frequency ω/(2π) = 5MHz.

In the middle plot we display its approximation P̂
AF

(ω) obtained by rotating the

matrix defined in equation (4.11) to the system of coordinates corresponding to the

source and receiver locations. This is a Hankel matrix by construction. In the right

plot we display the filtered matrix P̂
OUT

(ω), the Fourier transform of the output

matrix at step (9) of the algorithm. We compare it in Figure 6 with the ideal array
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Figure 6. From left to right: the real part of the ideal response matrix P̂
HOM

(ω) in the homogeneous

medium, the filtered matrix P̂
OUT

(ω), and its rank one approximation. The axes are the indexes of the

transducers and ω/(2π) = 5MHz.
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Figure 7. Kirchhoff migration images formed with the filtered data matrix P
OUT

(t) (left) and the inverse

Fourier transform of its rank one approximation (right). They are almost the same. The abscissa is cross-

range in units of λo and the ordinate is range in units of λo.
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Figure 8. We display the absolute value of the entries of p̆(ω) defined in equation (4.12) (blue line) and

the Gaussian taper in green. The points used to determine the least squares fit by the Gaussian at step (6)

are shown with green stars. The abscissa is scaled by the wavenumber k so the peak corresponds to 2y/L.

response matrix in the homogeneous medium, which has rank one and entries

P̂
HOM

(ω, ~xr, ~xs) =
eik(|~xr−~y|+|~xs−~y|)

16π2|~xr − ~y||~xs − ~y|
.

We note that the matrices are quite close, so the filtering algorithm works well.

In the right plot of Figure 6 we display the rank one approximation of P̂
OUT

(ω),

the matrix with the leading left and right singular vectors and singular value of

P̂
OUT

(ω). The improvement is slight, and has little effect on the images displayed

in Figure 7. Comparing these images with those in Figure 2 we note the dramatic

improvement brought by the filtering algorithm.
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Figure 9. Combined cluttered medium modeled by the process µ in equation (3.1). Three configurations

of two reflectors. We call them configurations 1, 2 and 3 from left to right.
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Figure 10. The third configuration of reflectors in three different cluttered media. Isotropic on the left,

layered in the middle and combined on the right.

To illustrate the use of the rotation and approximation at step (3) of the algo-

rithm, equation (4.10) in particular, we plot in Figure 8 the entries of the vector

p̆(ω) as a function of κ. We note that there is a clear peak, corresponding to the ar-

rival of the coherent echoes from the reflector at ~y, that is fitted with the Gaussian

taper shown in green.

5.2. Imaging two reflectors in different geometrical configurations

and types of clutter

We assess in this section the performance of the direction of arrival filtering algo-

rithm for different geometric configurations of two reflectors and different cluttered

media, as illustrated in Figures 9 and 10. We begin with the numerical setup in

section 5.2 and then we show the results in the following sections.

5.2.1. Description of the numerical setup

We consider three geometrical arrangements of two reflectors which are offset either

in range, in cross-range or both directions, as illustrated in Figure 9. The reflectors

are sound soft disks of radius λo/4, located at ~y1 = (37λo, 65λo), ~y2 = (37λo, 72λo)

for configuration 1, at ~y1 = (42λo, 75λo), ~y2 = (52λo, 75λo) for configuration 2,

and at ~y1 = (42λo, 75λo), ~y2 = (52λo, 65λo) for the third configuration.

We test the direction of arrival filtering algorithm in three different types of

clutter modeled by the isotropic random process µi in equation (3.2), the layered

one µl in equation (3.3), and the combined µ in equation (3.1). In all cases, the

smooth part of the speed is constant c = 1km/s, and the fluctuations are generated

with random Fourier series. In the isotropic medium the standard deviation of the
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Figure 11. KM images for the three configurations and clutter shown in Figure 9. The images are formed

with the unfiltered response matrix P (t). The abscissa is cross-range in units of λo and the ordinate is

range in units of λo. The reflectors are indicated with the black circles.

fluctuations is ε = 0.1 and the correlation length is ` = λo/4. For the layered

medium ε = 0.17 and ` = λo/50. For the combined medium (3.1) the standard

deviation is ε = 0.1. We display in Figure 10 the realizations of the wave speed

used in the simulations.

The array is linear, as described in section 3, and gathers the response matrix

by probing the medium with one source at a time, emitting the same Ricker pulse.

The receivers record the echoes in the time window [To, T ] with To = 6.2252µs and

T = 20µs. The time discretization is with NT = 213 steps.

5.2.2. Imaging results for the three reflector configurations

We present here imaging results in the clutter modeled by the process µ in equation

(3.1), for the three geometric arrangements of the reflectors. We begin with Figure

11, where we display the KM images formed with the unfiltered response matrix

P (t). Due to the strong clutter, the images are noisy and difficult to interpret.

Repeated simulations, in different realizations of µ, also show that the images

change dramatically, and unpredictably. We do not show the CINT images because

they are also not useful in this strong clutter, as illustrated in Figure 2.

The first part of the filtering algorithm selects the time windows that contain the

direct arrivals from the reflectors, at level l = 4 in the LCT tree. They are indexed

by j4
? = 7 and j4

? = 9 in configurations 1 and 3 and by j4
? = 9 in configuration 2,

where a single window is selected. This is because in the second configuration the

reflectors are at the same range location.

To illustrate the benefit of time windowing, we plot in Figure 12 the singular

values of the array response matrix for the second configuration, at level 0 of

the LCT tree, and then at level 4 for windows j4
? = 9 and j4

? = 15. The first

window is selected by the algorithm as containing echoes from a reflector, and

the second contains just clutter backscatter. We note that it is more difficult to

distinguish the singular values at the root level, because they are clustered together.

In the selected time window there is a clear separation of the larger singular values,

signaling the arrival of the coherent echoes. In the last window, containing the

clutter backscatter, the singular values are smaller and clustered together.

The input matrix P
IN

(t) of the detection of the direction of arrival and filtering

algorithm introduced in section 4.2 is calculated using equation (4.7), for each
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Figure 12. The singular values of the array response matrix as a function of frequency for configuration

2 in the combined medium. The left plot is at root level l = 0 of the LCT tree i.e., for the entire duration

of the recordings. The other plots are at the level l = 4 of the tree, corresponding to 24 time windows in

the recording interval. The middle plot is for the selected window indexed by j4? = 9 which contains direct

echoes from one of the reflectors. The right plot is for the unselected window indexed by j4? = 15 which

contains only clutter backscatter. The plots are normalized by dividing the singular values at each tree

level l by the maximum one over all windows and frequencies at level l.
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Figure 13. Absolute value of the entries of p̆(ω) defined in equation (4.12) (blue line) and the Gaussian

tapers in green and pink. The points used to determine the least squares fit by the Gaussian at step (6) of

the algorithm are shown with green and pink stars. The abscissa is scaled by the wavenumber k.

selected window centered at to = To + (j4
? + 1/2)∆4, with ∆4 = (T − To)/24. The

images displayed below are formed with the filtered matrix P
OUT

(t), the output

of the algorithm. The direction of arrival selection at step (5) is as easy as in

Figure 8 in configurations 1 and 3, because the selected time windows contain

the direct echoes form a single reflector. In the second configuration the echoes

from both reflectors arrive in the selected window, and the plot of the vector b̆(ω)

calculated at step (4) is shown in Figure 13. There are two peaks, corresponding

to the direction of each reflector.

The imaging results for configurations 1 and 3 are shown in Figures 14 and 15, and

are a significant improvement over those in Figure 11. Because the direct echoes

from the reflectors are well separated in time and are captured in two different

windows, we image one reflector at a time. The images are good even before the

filtering over the direction of arrival, but this filtering sharpens the focusing of the

images, specially in the third configuration.

The use of the direction of arrival filtering is important in the second config-

uration, where the echoes from both reflectors arrive in the same time window.

Without it, only one reflector can be seen in the left image in Figure 16. Using the

DORT method, or in other words projecting the filtered matrix on the singular

vectors corresponding to the largest singular values does not work as well as the
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Figure 14. Imaging results for configuration 1 and the clutter shown in Figure 9. Top row the images

obtained with the data in the first selected time window and bottom row in the second selected time

window. Left column: KM images formed with P
IN

(t). Center column: KM images formed with P
OUT

(t).

Right column: CINT images formed with P
OUT

(t). The abscissa is cross-range in units of λo and the

ordinate is range in units of λo.
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Figure 15. Imaging results for configuration 3 and the clutter shown in Figure 9. Top row the images

obtained with the data in the first selected time window and bottom row in the second selected time

window. Left column: KM images formed with P
IN

(t). Center column: KM images formed with P
OUT

(t).

Right column: CINT images formed with P
OUT

(t). The abscissa is cross-range in units of λo and the

ordinate is range in units of λo.

direction of arrival filter as illustrated with the results in Figure 16. Note that the

two middle column images look very similar, which suggests that the DOA filter

corresponding to the first direction of arrival selects the same subspace of the data

as the projection on the singular vector corresponding to the first singular value.

The challenge is to image the second reflector which appears weaker. Note that the

two reflectors have the same size and the same reflectivity. However their appar-

ent or effective reflectivity as seen on the array is different due to the background

medium reverberations. As seen from the images on the right column, the DOA
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Figure 16. Imaging results for configuration 2 and the clutter shown in Figure 9. There is a single selected

time window containing the echoes from both reflectors. Left column: KM image formed with P
IN

(t). Top

row middle and right column: KM images obtained using steps 1-2-3 of the proposed algorithm followed

by the projection of the filtered matrix on the singular vector corresponding to the first and the second

singular value. Second row middle and right column: KM images formed with the filtered matrices P
OUT

(t)

for the two selected arrival directions in Figure 13. Bottom row: CINT images formed with P
OUT

(t) for

the two selected arrival directions. The abscissa is cross-range in units of λo and the ordinate is range in

units of λo.

approach works better than the SVD in selecting the information coming from the

weaker reflector. We also observe that the CINT method performs better than KM,

as it mitigates the reverberations between the reflectors and the medium in their

vicinity, as seen in the plots in the third row of the figure.

5.2.3. Imaging results for different types of clutter

We display in Figures 17 and 18 the images of the two reflectors in the more difficult

configuration 2, in layered and isotropic clutter, respectively. These complement

the images in Figure 16. We note that the results are better in the layered case, as

expected, because scattering in such clutter does not scramble the direction of the

arrivals. This is why we can clearly see both reflectors in the KM image formed

with the matrix P
IN

(t). The direction of arrival filtering does not improve the

focusing of the images, it just separates the two reflectors. In the isotropic clutter

the imaging is more difficult, and the direction of arrival filtering is essential for

focusing the images on the reflectors. As was the case in Figure 16, CINT gives

slightly better images, because it mitigates the reverberations between the reflectors

and the nearby clutter. We note here that in all cases considered the direction
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Figure 17. Imaging results for configuration 2 in the layered clutter. Left column: KM image formed with

P
IN

(t). Top row middle and right column: KM images obtained using steps 1-2-3 of the proposed algorithm

followed by the projection of the filtered matrix on the singular vector corresponding to the first and the

second singular value. Second row middle and right column: KM images formed with the filtered matrices

P
OUT

(t) for the two selected arrival directions. Bottom row: CINT images formed with P
OUT

(t) for the

two selected arrival directions. The abscissa is cross-range in units of λo and the ordinate is range in units

of λo.

of arrival filter with the Gaussian taper window works better than the SVD in

separating the two reflectors.

6. Summary

We introduced and tested with numerical simulations a novel detection and data

filtering method for coherent array imaging of small reflectors in strongly scattering

media, called heavy clutter. The array is a collection of N transducers which play

the double role of sources and receivers. It uses the sources to probe the medium

with pulses and records the scattered waves. The data is organized in the N ×N
response matrix P (t), which is a function of time. Because the medium reverbera-

tions (the clutter backscatter) dominate the recordings, it is difficult to distinguish

the sought-after reflectors in the coherent images formed with P (t). These are

noisy and difficult to interpret because they change from one clutter to another.

The clutter is not known in imaging applications, which is why we model the

uncertainty of the wave speed in the medium with a random process. A good
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Figure 18. Imaging results for configuration 2 in the isotropic clutter. Left column: KM image formed

with P
IN

(t). Top row middle and right column: KM images obtained using steps 1-2-3 of the proposed

algorithm followed by the projection of the filtered matrix on the singular vector corresponding to the first

and the second singular value. Second row middle and right column: KM images formed with the filtered

matrices P
OUT

(t) for the two selected arrival directions. Bottom row: CINT images formed with P
OUT

(t)

for the two selected arrival directions. The abscissa is cross-range in units of λo and the ordinate is range

in units of λo.

imaging method must produce results that are insensitive to the realizations of the

random wave speed i.e., be statistically stable. When the direct (coherent) arrivals

of the waves scattered at the reflectors are strong enough with respect to the

clutter backscatter, statistically stable imaging can be achieved with the coherent

interferometric method (CINT) [11]. Here we consider much stronger clutter, that

cannot be handled by CINT alone.

The detection and filtering method introduced in this paper is an improvement of

that in [1]. It determines both the arrival time and direction of the weak coherent

echoes, and suppresses all the other arrivals, which are clutter backscatter. The

arrival time detection involves an adaptive time-frequency analysis of the response

matrix in sequentially refined time windows, using the singular value decomposi-

tion (SVD) of the local cosine transform (LCT) of P (t). The SVD of the Fourier

transformed matrix P̂ (ω) has been used to improve imaging in many works, see

for example [21]. However, in our context it is not useful by itself, because the

clutter backscatter carries most of the energy over the duration of the recordings.

Therefore P̂ (ω) is essentially a ”noise” matrix, with no distinguishable singular

values. Our method uses the SVD in combination with the LCT analysis, to search

systematically for the time windows in which the coherent echoes arrive. These
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echoes are distinguishable from the clutter backscatter with the SVD, when the

time windows are small enough.

The detection of the direction of arrival of the coherent echoes is carried in the

selected time windows, using their paraxial approximation. This approximation is

justified for array apertures that are small with respect to the distance from the

array to the reflectors, as is usually the case in practice. To use the paraxial ap-

proximation, we localize the data in time by backpropagating it to a reference point

defined by the center time of the selected time windows, using travel time delays.

This eliminates the large phase of the coherent echoes and more importantly, it

removes their dependence on the source and receiver location offsets in the array.

That is to say, it makes the coherent part of the backpropagated data a Hankel

matrix. The method exploits this fact by seeking the best approximation of the

backpropagated data matrix by a Hankel matrix, and then uses plane wave de-

compositions of the result to detect the direction of arrival of the desired coherent

echoes. This leads to improved focusing of images, as shown with numerical simu-

lations carried in a realistic setup motivated by the application of non-destructive

testing.
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