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Abstract

We consider the inverse problem of array imaging of active sources (targets) in randomly
inhomogeneous media, in a remote sensing regime with significant multiple scattering of the
waves by the inhomogeneities. The active source emits a pulse that propagates through the
inhomogeneous medium and is captured by an array of aperture a that is far from the source.
We consider an analytical model for the matched field imaging functional and study the effect
of random inhomogeneities on the resolution of the images produced. In our model the effect of
the random medium is quantified by a single parameter, the narrow-band effective aperture of
the array ae. We give a robust procedure for estimating ae, which is of great interest in many
applications. In time reversal, knowing ae allows us to estimate the refocused spot size, that
is, the resolution of the time reversed, back-propagated field, which we can use in applications
such as secure communications. The effective aperture ae quantifies in an explicit way the
loss of resolution in imaging active sources embedded at unknown locations in a randomly
inhomogeneous medium, as well as the gain in resolution beyond the diffraction limit, the
super-resolution, in time reversal.

1 Introduction

In many important applications, such as ultrasound medical imaging [18–20, 28], foliage penetrating
radar [22, 34], land and shallow water mine detection [12], seismic inversion [5, 13], etc., one seeks
to detect and image small or extended scatterers embedded in inhomogeneous media. We consider
here randomly inhomogeneous media whose characterizing properties such as acoustic impedance,
bulk modulus, etc. have a known large scale variation and an additional, unknown, weak, small
scale variation, which we model as a random function of space. The scatterers are to be detected and
imaged via an array of 2N + 1 transducers (antennas), which can emit acoustic (electromagnetic)
pulses and record the backscattered echoes. Depending on the application, there are several types
of arrays. In ultrasound imaging, the arrays are usually linear, with N ≤ 100, and the data recorded
at the array, the response matrix P (t) = (Ppq(t)), can be measured and processed [20] efficiently.
In seismic imaging the arrays can be very large but they are mostly passive, consisting of receivers
and very few emitters [13]. In radar, the array may be fixed or it may be mounted on flying aircraft,
thus generating a large synthetic aperture [15, 23, 29], etc. To fix ideas, let us suppose that we have
a linear array of aperture a, that the targets are in the far field, at distance L � a, and that the
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response matrix P (t) is measured for a sufficiently long time interval (0, T ] that contains all echoes
from the targets.

Coherent array imaging of targets in known host media is well understood and there are several
methods that work well. For example, we have: (a) Time domain, broad-band methods which
use arrival time and/or amplitude information from the response matrix. This includes synthetic
aperture radar (sonar) imaging [10, 12, 15, 23, 26] where only the diagonal part Ppp(t) of the response
matrix is recorded, and synthetic aperture radar interferometry [29], where a few diagonals of the
response matrix are known. (b) Narrow-band methods, which use differential phase information
from the response matrix and they image by beam forming [15, 23], by subspace methods such as
MUltiple SIgnal Classification (MUSIC) [16, 24, 30, 33], or by least squares (maximum likelihood)
direction of arrival methods [23, 32].

We are interested in imaging in randomly inhomogeneous media, in a regime where multipathing
due to the inhomogeneities is significant. Such a regime arises in ultrasound imaging, underwater
acoustics, ground or foliage penetrating radar, etc. and, depending on the applications, there is
a variety of length scales that enter the formulation. For example, in underwater acoustics, the
average wave propagation speed is c0 = 1.5km/s, the central wavelength of the probing pulse may
be λ0 ∼ 1m, the target range L = 1 − 100km, the propagation speed fluctuates by 1 − 2% with
correlation lengths lH ∼ 100m and lV ∼ 10m in the horizontal and vertical directions, respectively.
In ultrasound imaging, λ0 ∼ 1mm, c0 = 1.5km/s, L ≤ 10 − 50cm, the fluctuations are around 1%
with a correlation length l ∼ 1mm, and so on. In spite of such a diversity of scales, we can roughly
classify remote sensing problems in weakly fluctuating random media as belonging to either high

frequency (λ0 � l � a � L) or radiative transport (λ0 ∼ l � a � L) regimes. In both cases, even
though the fluctuations in the medium are weak the waves travel over many correlation lengths
and multipathing due to the inhomogeneities is significant. Imaging in regimes with significant
multipathing is quite challenging and requires very different methods from the usual ones in a
homogeneous or known environment. In particular, it requires understanding of wave propagation
in random media.

There have been recently some theoretical and experimental developments in time reversal,
where signals emitted by a source in the medium are recorded at the array, time reversed and
sent back into the same medium. Because of the time reversibility of the wave equation we have
(diffraction limited) refocusing of the time reversed signal at the source, in any non attenuating
medium. For example, in a homogeneous medium we get a refocusing spot of approximate size
λ0L/a, together with spurious Fresnel zones [11]. However, in random media, experimental [20,
25, 31] and theoretical [1, 6, 17, 27] studies show that the refocusing is much better and the Fresnel
zones are eliminated. This is the phenomenon of super-resolution and it is due to the random
inhomogeneities, which distribute the waves over a larger part of the medium than they would
in the homogeneous case, and therefore carry more information about the source location. One
can then say that the array appears to have an effective aperture ae � a and this leads to
super-resolution and the elimination of Fresnel zones because of random phase cancellations. A
quantitative assessment of super-resolution can be made, for example, by looking at the average,
time reversed backpropagated field, calculated explicitly in [17]. However, it is remarkable that
in appropriate regimes this phenomenon does not happen just in the mean but for almost all
realizations of the random medium. This is the self-averaging phenomenon which has been
explored numerically and analytically in [1, 6, 27], and for layered random media in [14, 21] and the
references therein.
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Since any reflection based imaging method involves some form of time reversal or backpropaga-
tion into the real (or a fictitious) medium, we can introduce statistically stable inversion method-
ologies for random media by taking advantage of our understanding of time reversal. In [4, 9] we
developed such an approach to statistically stable imaging of small targets buried in a randomly
inhomogeneous, isotropic, infinite medium. In this paper we study the resolution limit of images
in such media. We consider a model for matched field imaging which accounts in a simple and
explicit manner for the effect of the random medium on the image. This effect is quantified by a
single parameter, the effective aperture ae, which is unknown. We use our matched field model
to estimate ae and we demonstrate the feasibility of our approach with numerical simulations. In
particular, we show that the estimated ae predicts very accurately the spot size in time reversal in
random media.

This paper is organized as follows. In section 2, we formulate the problem and the mathematical
model. Time reversal in both deterministic and random media is discussed in section 3. Our results
on matched field imaging in random media are given in section 4. In section 5 we use the matched
field model derived in section 4 to estimate the effective aperture ae, which depends on the random
medium and on the range. We demonstrate the feasibility of the estimation process with numerical
simulations in section 5.3. Finally, in section 6, we give a brief summary and conclusions.

2 Formulation and mathematical model

For simplicity we assume throughout the paper that there is a single target to be identified in
the noisy medium. We distinguish between two types of targets: (1) Active ones, which emit a
signal f(t) that propagates through the medium and is received at the array and (2) passive ones,
which are quiet and which can be detected from the scattered signals which have traveled from the
emitting array elements to the target and back to the array. The target can be small, point like,
or extended but of finite support. Imaging passive, small or extended targets in random media is
considered in [8]. In this paper we focus attention on the case of a small, active target located at
y = (0, 0, L) with respect to the center of the array, where L is the range and the cross-range

is zero. The array contains point transducers located at xp = (ph/2, 0, 0), for p = −N, . . . , N .
The separation h/2 between the array elements is chosen so that in a remote sensing regime the
transducers behave like an array of aperture a = Nh � L and not like separate entities, while
interference is kept at a minimum. Often, h = λ0, the wavelength of the carrier frequency of the
pulse.

Suppose that we have an active target (source) which emits a pulse

f(t) = − d

dt

(
1√
2πσ2

t

e−iω0te
− t2

2σ2
t

)
=

iω0 + t
σ2

t√
2πσ2

t

e−iω0te
− t2

2σ2
t , (2.1)

where ν0 = ω0/2π is the carrier frequency and B = 1/(σtν0) is the bandwidth of

f̂(ω) =

∫ ∞

−∞
f(t)eiωtdt = iωe−

σ2
t (ω−ω0)2

2 . (2.2)

Clearly, there are many choices for f(t). For example, chirps such as f(t) = eiω0t+iαt2 are com-
monly used in synthetic aperture radar imaging [10, 12, 15, 23, 26]. We take the pulse (2.1) just for
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simplicity in the calculations. The signal received at xp (see Figure 1) is

sp(t) = f(t) ? G(xp,y, t) =
1

2π

∫ ∞

−∞
f̂(ω)Ĝ(xp,y, t)e−iωtdω, (2.3)

where Ĝ is the two point Green’s function at radian frequency ω, and where ? denotes convolution
in time.

o
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= (0,0,L)

Figure 1: The setup for array time reversal and imaging

We choose the scalar wave equation as our mathematical model for wave propagation in the
medium and we let c(x) be the propagation speed at a point x ∈ IR3. This scalar model is
appropriate for sonar and ultrasound regimes but not for electromagnetic waves or for seismic
inversion, although it is often used there too. At frequency ν = ω/2π, the two point Green’s
function satisfies the reduced wave equation

∆Ĝ(x,y, ω) + k2n2(x)Ĝ(x,y, ω) = −δ(x − y), (2.4)

where k = ω/c0 is the wavenumber, c0 is a reference speed of propagation and

n(x) =
c0

c(x)
(2.5)

is the index of refraction of the medium. At infinity Ĝ satisfies the radiation condition

lim
r→∞

r

(
∂Ĝ

∂r
− iknĜ

)
= 0, (2.6)

where r = |x− y|.
Note that in this model we neglect the presence of boundaries and interfaces in the medium

and focus attention just on the scattering by the random inhomogeneities. For simplicity we also
neglect large scale background variations, although they can be accounted for easily in numerical
calculations, and we let the fluctuations of the index of refraction be

σµ
(x

l

)
= n2(x) − 1, (2.7)
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where l is the correlation length (the scale at which the medium fluctuates), σ � 1 (weak fluctua-
tions) and µ is a stationary, isotropic random field with mean zero and covariance

R(x) = R(|x|) = E
{
µ(x′ + x)µ(x′)

}
. (2.8)

In imaging, we seek the unknown location y of the source that is buried in the unknown
random medium by reversing in time the signals sp(t), p = −N, ..., N, and back-propagating them
numerically into a fictitious medium, which is here homogeneous with constant sound speed c0.
This process, which is also referred to as migration [5, 13], or backprojection [26] in geophysics and
in X-ray crystallography, respectively, is a form of time reversal [6, 14, 18–20, 25, 31]. In time
reversal, the signals sp(t), p = −N, ..., N, received at the array, are time reversed and re-emitted
into the actual medium. They back-propagate to the source and focus near it.

Thus, in both imaging and time reversal, we consider the back-propagated field at a “search”
point ys as shown in Figure 1. We take ys in the plane determined by y and the array, at range
L + η and cross-range ξ. The point-spread function for time reversal is defined by

ΓTR(y,ys, t) =
1

2π

∫ ∞

−∞
e−iωtΓ̂TR(y,ys, ω)dω, (2.9)

where

Γ̂TR(y,ys, ω) = f̂(ω)

N∑

p=−N

Ĝ(xp,y, ω)Ĝ(xp,ys, ω), (2.10)

and where the bar in (2.10) stands for complex conjugation. The point-spread function for imaging
is given by

ΓIM (y,ys, t) =
1

2π

∫ ∞

−∞
e−iωtΓ̂IM(y,ys, ω)dω, (2.11)

where

Γ̂IM (y,ys, ω) = f̂(ω)
N∑

p=−N

Ĝ(xp,y, ω)Ĝ0(xp,ys, ω) =
N∑

p=−N

ŝp(ω)Ĝ0(xp,ys, ω), (2.12)

and where Ĝ0(xp,ys, ω) is the Green’s function in a homogeneous medium

Ĝ0(x,y, ω) =
eik|x−y|

4π|x − y| . (2.13)

We note that ΓIM differs from ΓTR only insofar as the back-propagation is done in a homogeneous
or reference medium in imaging.

In this paper, we analyze the point-spread functions for time reversal and imaging, both in the
frequency and in the time domain, for randomly inhomogeneous media, in a remote sensing regime.

3 Time reversal

Because of the time reversibility of the wave equation, it is clear that if we capture waves at the
array, time reverse them and send them back, they will focus near y, the location of the source.
The focusing is perfect if all the waves are captured by a time reversal mirror which encloses the
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source. However, when only part of the waves are captured by an array of receivers/transmitters
of aperture a, then the focusing resolution is diffraction limited and the point-spread function ΓTR

is not entirely concentrated at y but is spread out around it.
It is well known that the point-spread function for time reversal is tighter in random media than

in homogeneous ones [6, 20]. This is due to multiple scattering (multipathing) in the random
medium, which makes rays that are directed initially away from the array to be scattered onto it
by the inhomogeneities. Thus, the random medium creates the illusion of a larger aperture and
an improved refocusing resolution. This is the super-resolution phenomenon. It manifests itself
by a smaller refocused spot and by the disappearance of the spurious Fresnel zones, because of
random phase cancellations. Of course, multipathing has a negative effect on the captured signal
as well, through the diminution of intensity carried away by rays scattered away from the array.
However, the intensity loss can be compensated by amplification of the retransmitted signal, since
the problem is linear.

In order to quantify the refocusing resolution in random media we use the effective aper-

ture. We distinguish two types of effective apertures: (1) The narrow-band effective aperture ae,
determined by the random medium [6, 27] and the range, and (2) the broad-band effective aperture
Ae, which depends on ae and on the probing pulse f(t), its bandwidth in particular. As shown
in section 3.2, the effect of the random medium on the TR point-spread function ΓTR is given
explicitly by ae and Ae, in the frequency and in time domain, respectively. Since the randomly
scattering medium is not known, ae is not known either, although, as we show in section 5, it can
be accurately estimated.

Another remarkable property of time reversal, besides super resolution, is its deterministic
nature, at least in the time domain, in a suitable remote sensing and multiple scattering regime
[6, 27], where ΓTR does not depend on the particular realization of the random medium, that is, it is
self-averaging. In ultrasound and underwater sound experiments [20, 31] the statistical stability
is a time domain phenomenon which does not apply to narrow-band signals. However, in high
frequency regimes such as those occurring in optical or infrared applications, the time reversal
point-spread function can be self-averaging even for narrow-band signals [27]. We focus attention
on the lower frequency regimes with ordering of scales

λ0 ∼ l � a � L, (3.1)

and we require that the signals be broad-band in order for ΓTR to be self-averaging.

3.1 Time reversal in homogeneous media

The time reversal point-spread function in homogeneous media is

ΓTR
0 (ys; t) =

1

2π

∫ ∞

−∞
Γ̂TR

0 (ys;ω)e−iωtdω, (3.2)

where

Γ̂TR
0 (ys;ω) = f̂(ω)

N∑

p=−N

Ĝ0(xp,y;ω)Ĝ0(xp,ys;ω) = f̂(ω)

N∑

p=−N

eik(|xp−ys|−|xp−y|)

(4π)2|xp − y||xp − ys|
. (3.3)

In a remote sensing regime (a � L), we can use the parabolic approximation of the phase

|xp − y| =
(
L2 + x2

p

) 1
2 ≈ L +

x2
p

2L
, (3.4)
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and, after some calculation [6, 7], we obtain

ΓTR
0 (ξ, η; t) ≈ − 1

2π

∫
dω

iωe−
σ2

t (ω−ω0)2

2

8π2L2h
e
−iω

»
t− 1

c0

„
η+ ξ2

2(L+η)

«–∫ a/2

−a/2
dx e

−i ω
c0

„
ηx2

2L(L+η)
+ xξ

L+η

«

. (3.5)

In particular, if we place a screen at the exact range (η = 0) and we observe the point-spread
function for various cross ranges ξ, we have, after evaluating at the arrival time,

ΓTR
0 (ξ, η = 0; t =

ξ2

2c0L
) ≈ c0

4π2Lhξ

−i√
2πσ2

t

sin

(
ω0ξa

2c0L

)
e
− a2ξ2

8c20L2σ2
t . (3.6)

Thus, for pulse (2.1), the time reversal point-spread function in homogeneous media is determined

by the product of sinc
(

πξa
λ0L

)
= sin

(
πξa
λ0L

)
/
(

πξa
λ0L

)
and a Gaussian e−

ξ2

2s2 with standard deviation

s =
2c0σtL

a
= 2ν0σt

λ0L

a
=

2

B

λ0L

a
(3.7)

where ω0 = 2πν0 and B = 1/(ν0σt) is the bandwidth, 0 < B < 1. For a narrow-band pulse s is
large, the deterministic resolution limit λ0L

a comes from the sinc function and the Fresnel zones are
visible. For a broad-band pulse s is comparable to λ0L/a, which is the spot size determined by the
Gaussian factor and the Fresnel zones are now eliminated. In either case, the larger the aperture a
is the better the focusing.

3.2 Time reversal in random media

The time reversed, back-propagated field in the random medium is

ΓTR(ys, t) =
1

2π

∫
Γ̂TR(ys;ω)e−iωtdω, for Γ̂TR(ys;ω) = f̂(ω)

N∑

p=−N

〈
Ĝ(xp,y;ω)Ĝ(xp,ys;ω)

〉
,

(3.8)
where Ĝ is the random, time harmonic Green’s function and where, because of the self-averaging

property of ΓTR(ys, t) (see [6, 7, 27]), we can take the expectation of ĜĜ. Then, using the moment
formula [6, 7, 27]

〈
Ĝ(xp,y;ω)Ĝ(xp,ys;ω)

〉
≈ Ĝ0(xp,y;ω)Ĝ0(xp,ys;ω)e−

k2ξ2a2
e

2L2 , (3.9)

where ae = ae(L) =
√

DL3 is a length that defines the effective aperture and D is a reciprocal length
parameter that depends on the statistics of the random fluctuations of the speed of propagation.
We then have [6, 7]

Γ̂TR(ys;ω) ≈ f̂(ω)e−
k2ξ2a2

e
2L2

N∑

p=−N

Ĝ0(xp,y;ω)Ĝ0(xp,ys;ω) = Γ̂TR
0 (ys;ω)e−

k2ξ2a2
e

2L2

≈ e
ik(η+ ξ2

2(L+η)
) bf(ω)
8π2L2h

∫ a/2

−a/2
e
−ik

„
ηx2

2L(L+η)
+ xξ

L+η

«
−

k2ξ2a2
e

2L2
dx

(3.10)
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and, as in the homogeneous medium, we evaluate the point-spread function at the exact range
(η = 0) and for a ξ which is smaller than the focal spot

ξ <
σtc0L

ae
=

ω0σt

2π

λ0L

ae
, (3.11)

to obtain (see [6, 7])

ΓTR(ξ, 0;
ξ2

2c0L
) ≈ c0

4π2Lhξ

−i√
2πσ2

t

sin

(
ω0ξa

2c0L

)
e
−

A2
eξ2

8c2
0

L2σ2
t = ΓTR

0

(
ξ, 0;

ξ2

2c0L

)
e
−

2π2a2
e

L2λ2
0

ξ2

. (3.12)

Here Ae is the broad-band effective aperture given by

A2
e = a2 + 4ω2

0σ
2
t a

2
e = a2 +

(
4πae

B

)2

. (3.13)

Comparing this result with the deterministic one (3.6) we note that the physical array aperture
a is replaced by a larger aperture (Ae > a) in random media, which explains the super-resolution
phenomenon. The narrow-band effective aperture ae(L) can be very large in a regime with signifi-
cant multipathing by inhomogeneities. In such a regime, the physical aperture a is negligible and
there is remarkable focusing of ΓTR on the source, even when the signal has been captured and
time reversed by a small array. In the numerical simulations the range L is limited by our compu-
tational capabilities so ae is roughly the same as a and the physical aperture still plays a role. The
broad-band effective aperture Ae depends also on the bandwidth B = 1/(ν0σt), 0 < B < 1, of the
pulse. The smaller the bandwidth, the better the focusing. However, the bandwidth cannot be too
small, since then statistical stability is lost. The precise trade-off between enhanced time-domain
spatial focusing and loss of statistical stability with reduced bandwidth is not known. If ∆ω is an
estimate of the decoherence frequency interval for Γ̂TR, then a good empirical rule for statistical
stability in the time domain is that the bandwidth B divided by ∆ω be large (∼ 30 − 50).

4 Matched field imaging

While the time reversal and imaging point-spread functions are the same in homogeneous (or
deterministic) media, they behave very differently in random media. First, unlike ΓTR, ΓIM is wider
in random media than in homogeneous ones, because multiple scattering impedes the identification
of the source location. Second, the imaging point-spread function is not self-averaging. However,
the time autocorrelation of ΓIM is self-averaging. At zero time-lag this is the matched field imaging
functional

ΓMF (ys) =

∫ ∞

−∞
|Γ̂IM (y,ys, ω)|2dω, (4.1)

which is statistically stable, and provides an estimate of the cross-range of the source. The range
is lost, however, and it must be estimated separately, say from arrival time information. Various
functionals for imaging the location of an active source and their relative performance are considered
in [4, 9]. Our main result in this paper (see also [7]) is an analytical formula for the matched field
functional ΓMF (ys) that can be used to estimate the narrow-band effective aperture ae, when the
range L is known.

The estimation of the effective aperture ae is important not only in assessing quantitatively
super-resolution in time reversal. As we show in section 4.2, ae also quantifies the loss of cross-
range resolution in matched field imaging.
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4.1 Matched field in homogeneous media

In homogeneous media, the matched field estimator is

ΓMF
0 (ξ, η) =

1

2π

∫
dω
∣∣∣Γ̂TR

0 (ξ, η;ω)
∣∣∣
2

≈ 1

2π

∫
dω
( ω

8π2L2h

)2
e−σ2

t (ω−ω0)2

∣∣∣∣∣

∫ a/2

−a/2
dx e

−i ω
c0

„
ηx2

2L(L+η)
+ xξ

L+η

«∣∣∣∣∣

2

. (4.2)

A contour plot is shown the left in Figure 2, for the parameters used in our simulations. Because this
functional is an autocorrelation, range information is lost but the cross-range can be estimated.
The cross-range resolution limit decreases as we search deeper in range (i.e. for large η) and it
improves as we increase the array aperture. To illustrate this we evaluate (4.2) at the exact range
(η = 0),

ΓMF
0 (ξ, 0) ≈ c2

0

64π4L2h2
√

πσ2
t




1 − e
− a2ξ2

4c2
0

L2σ2
t

ξ2
+ 2

sin2
(

ω0ξa
2c0L

)

ξ2
e
− a2ξ2

4c20L2σ2
t


 . (4.3)

We note now that, as in time reversal, the cross-range resolution of the matched field estimator is

Figure 2: The matched field estimator in deterministic media (left figure, equation (4.3)) and in
random media (right figure, equation (4.6)), for an effective aperture ae = 2a.

inversely proportional to the aperture a. The larger a is, the better the accuracy of the estimated
cross-range of the source. In the next section, we show that in random media matched field and
time reversal behave very differently and that the physical aperture of the array is less important.
In particular, we show that because of multiple scattering by the inhomogeneities the images are
blurred in a manner quantified by the narrow-band effective aperture ae.

4.2 Matched field in random media

The matched field in random media is very different from the time reversal process because the back-
propagation is done numerically through a known, reference (homogeneous in our case) medium.
The matched field functional is now

Γ̂MF(yS ;ω) =
∣∣∣f̂(ω)

∣∣∣
2

N∑

p=−N

N∑

q=−N

〈
Ĝ0(xp,ys;ω)G(xp,y;ω)Ĝ(xq,y;ω)G0(xq,ys;ω)

〉
. (4.4)
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Because of its statistical stability in the time domain (see [6, 7, 27]),
∫

dωΓ̂MF(yS ;ω) is essentially
equal to its expectation. Using the moment formula [6, 7, 27]

〈
Ĝ(xp,y;ω)Ĝ(xq,y;ω)

〉
≈ Ĝ0(xp,y;ω)Ĝ0(xq,y;ω)e−

k2a2
e

2L2 |xp−xq |2 , (4.5)

we find after some calculations given in [7] that

ΓMF (ξ, η) ≈ C̃(L, a)e
− ξ2

2(L+η)2

“
L
ae

”2

, (4.6)

where C(L, a) is independent of the random medium and of the cross-range ξ.
We have now a simple analytical expression that allows us to assess the effect of the random

medium on imaging of the source by a matched field functional. Unlike time reversal, where a larger
ae (i.e. stronger multipath) gives a tighter point-spread function (see equation (3.12)), in imaging,
the resolution is worse with larger ae. Rich scattering environments produce blurry images.

5 Estimation of the effective aperture

Given the simple analytical expression for the matched field functional, in this section we estimate
ae by matching the formula (4.6) with the numerically calculated imaging functional ΓMF

n (ξ, η).
First we describe the numerical simulations and the numerical procedure for estimating ae. Then
we demonstrate the feasibility of the estimation with numerical tests.

5.1 Setup for the numerical simulations

λ

24λλ

48

(11.5,42)λ9.5

absorbing medium

x
x
x
xx transducers

Figure 3: The computational setup. The dimen-
sions of the problem are given in terms of the
central wavelength λ = 0.5mm. The medium is
considered to be infinite in all directions so in
the numerical computations an absorbing layer
surrounds the domain.

•

Figure 4: Typical realization of random sound
speed c(x). The target is shown as a large black
dot •. The units in the horizontal and vertical
axes are mm and, in the color bar, km/s. The
standard deviation for this example is s = 4.95%

In the numerical simulations we generate the field c(x) by a random Fourier series with mean
c0 = 1.5km/s, a Gaussian correlation function with correlation length l = 0.3mm and a standard
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deviation ranging from 1% to 5%. A typical realization of the random medium is shown on the
right in Figure 4. The width of the probing pulse (2.1) is σt = 0.2325µs, the central frequency is
2πω0 = 3MHz (i.e. λ0 = 0.5mm) and the bandwidth is 2 − 4MHz (measured at 6dB). We take
an array of 10 transducers at a distance h = λ0/2 from each other so the aperture is a = 2.5mm.
The source is at range L = 2cm and at zero cross-range, measured with respect to the center
of the array. To calculate the acoustic pressure at the array we solve the wave equation in the
time domain with a finite element method that discretizes the mixed velocity-pressure (first order
system) formulation [2, 3]. To simulate the infinite medium we surround the computational domain
by a perfectly matched absorbing layer, as shown on the left in Figure 4. To avoid excessive
computational cost we solve numerically the two dimensional problem, while all the analysis is
based on three dimensional Green’s functions. However, we have seen in the previous sections that
it is the phase of the Green’s function and not its amplitude that matters in imaging and time
reversal, especially in the remote sensing regime. In this regime the phases of the Green’s functions
are the same in two and in three dimensions so we expect that the results of our direct numerical
computations will be in good agreement with the theory.

5.2 The estimation of ae

We estimate ae by matching (4.6) with the numerically computed function ΓMF
n (ξ, η) as follows.

With the simulation setup described in section 5.1 we solve the wave equation in the time domain,
with an approximate point source located at y = (0, 0, L) and supported in a square element of
size λ0/30. At time t = 0, the source emits the pulse (2.1) and we calculate numerically the signals
sp(t) received at the array elements p = −N, . . . , N , for a time interval of length T , which is long
enough to ensure that all is quiet for t > T . The numerical matched field functional at search point
ys = (ξ, 0, L + η) is then

ΓMF
n (ξ, η) =

∫
Γ̂MF

n (ξ, η, ω)dω, where Γ̂MF
n (ξ, η, ω) =

∣∣∣∣∣∣

N∑

p=1

ŝp(ω)Ĝ0(xp,ys, ω)

∣∣∣∣∣∣

2

. (5.1)

To find ae we sample the search domain in steps of λ0/2, we assume that we know the range
L of the source, and we minimize the discrepancy between the theoretical and numerical matched
field functionals (4.6) and (5.1), respectively,

min
β

5∑

j=−5

4∑

m=−4

[
γ

(
j
λ0

2
,m

λ0

2

)
− e

−
β(jλ0/2)2

2(L+mλ0/2)2

]2

. (5.2)

Here

β2 =
L

ae
, (5.3)

and for each η we normalize (5.1) by

γ(ξ, η) = ΓMF
n (ξ, η)/max

ξ
ΓMF

n (ξ, η). (5.4)

The minimization (5.2) is done in MATLAB with fminunc.
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Figure 5: Top: ΓMF(ys) computed numerically for two realizations of the random medium, the
estimation of ae is 1.43mm (resp. 1.47mm) for the data on the left (resp. right). The horizontal
axis is L + η in mm and the vertical axis is the cross-range ξ in mm. Bottom (left to right): the
theoretical prediction of the time reversed field in a homogeneous medium, in a random medium
(obtained using ae = 1.45mm in (3.12)) and the numerically calculated time reversed field for the
same two realizations of the random medium considered in the top matched field estimates. The
horizontal axis is time in µs and the vertical axis is the cross-range ξ in mm.

5.3 Estimation results

The estimated values of ae are 1.43, 1.54, 1.37, 1.46 in mm, for four realizations of the random
medium. We show in the top two panels of Figure 5 the numerically computed matched field
functional (5.1), for two such realizations. The theoretical matched field functional (4.6) when
calculated with the estimated ae looks the same as the numerical ones. In order to assess the
feasibility of our approach we use the estimated ae in the expression of the theoretical time rever-
sal point-spread function (3.12), and we compare the result with the numerically simulated time
reversed field. The results are shown in the bottom panels of Figure 5. First, we observe the super-
resolution phenomenon, because the point-spread function is tighter in a random medium than in
the homogeneous one. Second, we note that the theoretical model (3.12) with the estimated ae

gives a rather accurate spot size at the source. The fluctuations that we observe (for large ξ )in the
numerically computed field (right bottom panels) are not captured by the theoretical model (3.12),
as expected, but the refocused field is captured correctly near the source. Finally, the statistical
stability of both (5.1) and the time reversed field is observed in numerical simulations with several
realizations of the random medium.

6 Summary

We have analyzed matched field imaging of small, active sources at unknown locations in a random
medium, in a remote sensing regime with significant multipathing of the waves scattered by the
inhomogeneities. We have shown that the imaging resolution in random media can be quantified
by a single parameter, the narrow-band effective aperture ae. We have derived a simple analytical
expression for the matched field imaging functional which can be used for estimating the unknown
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ae in a robust way. We have assessed the feasibility of our estimation approach with direct numerical
simulations. We have obtained remarkably good agreement between the estimated effective aperture
and the observed refocused spot size in direct numerical simulations of time reversal.
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