
COMMUN. MATH. SCI. c© 2015 International Press

Vol. 13, No. 3, pp. 749–776

A QUANTITATIVE STUDY OF SOURCE IMAGING IN RANDOM
WAVEGUIDES∗

LILIANA BORCEA† , JOSSELIN GARNIER‡ , AND CHRYSOULA TSOGKA§

Dedicated to George Papanicolaou in honor of his 70th birthday

Abstract. We present a quantitative study of coherent array imaging of remote sources in ran-
domly perturbed waveguides with bounded cross-section. We study how long range cumulative scat-
tering by perturbations of the boundary and the medium impedes the imaging process. We show that
boundary scattering effects can be mitigated with filters that enhance the coherent part of the data.
The filters are obtained by optimizing a measure of quality of the image. The point is that there is an
optimal trade-off between the robustness and resolution of images in such waveguides, which can be
found adaptively, as the data are processed to form the image. Long range scattering by perturbations
of the medium is harder to mitigate than scattering by randomly perturbed boundaries. Coherent
imaging methods do not work and more complex incoherent methods, based on transport models of
energy, should be used instead. Such methods are neither useful, nor needed in waveguides with per-
turbed boundaries. We explain all these facts using rigorous asymptotic stochastic analysis of the wave
field in randomly perturbed waveguides. We also analyze the adaptive coherent imaging method and
obtain a quantitative agreement with the results of numerical simulations.
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1. Introduction
We present a theoretical and numerical study of imaging remote sources in random

waveguides, using an array of sensors that record acoustic waves. The waveguide effect
is caused by the boundary of the cross-section, which traps the waves and guides the
energy along the range direction z, as illustrated in Figure 1.1. We restrict our study
to two-dimensional waveguides, because the numerical simulations become prohibitively
expensive in three dimensions. The results are similar in three-dimensional waveguides
with bounded cross-section. We refer to [12] for an analysis of wave propagation and
imaging in three-dimensional random waveguides with unbounded cross-section.

Scattering at the boundary creates multiple traveling paths of the waves from the
source to the receiver array. Mathematically, we can write the wave field p (the acoustic
pressure) as a superposition of a countable set of waveguide modes, which are solutions of
the homogeneous wave equation. Finitely many modes propagate in the range direction
at different speeds, and the remaining infinitely many modes are evanescent waves
that decay exponentially with range. We may associate the propagating modes with
planar waves that strike the boundaries at different angles of incidence. The slow modes
correspond to near normal incidence. They reflect repeatedly at the boundary, thus
traveling a long path to the array. The fast modes correspond to small grazing angles
and shorter paths to the array.

In ideal waveguides with straight boundaries and wave speed that is constant or
varies smoothly with cross-range, the wave equation is separable and the modes are
uncoupled. In particular, each mode has a constant amplitude which is determined by
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the source excitation. We study perturbed waveguides with small and rapid fluctuations
of the boundaries and of the wave speed, due to numerous weak inhomogeneities. Such
fluctuations are not known and are of no interest in imaging. However, they cannot be
neglected because they cause wave scattering that accumulates over long distances of
propagation. To address the uncertainty of the boundary and wave speed fluctuations,
we model them with random processes, and thus speak of random waveguides. The
array measures one realization of the random field p, the solution of the wave equation
in one realization of the random waveguide. That is to say, for a particular perturbed
boundary and medium. When cumulative scattering by the perturbations is significant,
the measurements are quite different from those in ideal waveguides. Furthermore, if
we could repeat the experiment for many realizations of the perturbations, we would
see that the measurements change unpredictably; they are statistically unstable.

The expectation (statistical mean) E[p] of the wave is called the coherent field. This
is the part of the data that is useful for coherent imaging, because we can relate it to the
unknown location of the source, in spite of the uncertainty of the perturbations in the
waveguide. The challenge is to process (filter) the data in order to enhance the coherent
part E[p] and mitigate the unwanted reverberations p−E[p], the incoherent part. Co-
herent methods without such processing give images that are difficult to interpret and
unreliable. They change unpredictably with the realization of the random waveguide,
they are not statistically stable.

Coherent imaging methods time reverse the filtered data and migrate them to the
points in the imaging domain. Migration means numerical propagation of the waves in
the unperturbed waveguide, because the true (perturbed) waveguide is unknown. It is
different than the physical backpropagation in the true waveguide that occurs in the
time reversal process. This difference is profound. The random perturbations impede
the imaging process but are beneficial in time reversal. The refocusing of the waves
at the source is improved in time reversal (super-resolution) and it is robust (statisti-
cally stable) with respect to different realizations of the perturbations. This has been
demonstrated experimentally in the ocean [27, 28, 31] and with numerical simulations
in [32]. Theoretical studies of time reversal in random waveguides can be found in
[24, 23, 26, 12]. The super-resolution phenomenon of time reversal in random media
was first observed and demonstrated in [20], in strongly scattering unbounded media.
The statistical stability and super-resolution of the refocusing have been analyzed theo-
retically in several regimes of wave propagation in random media in [10, 35, 5, 8, 22, 23].

Studies of coherent imaging methods in random media, in weakly scattering regimes,
can be found in [15, 16, 13]. They introduce the coherent interferometric (CINT) imag-
ing approach that is better suited for random media than the conventional coherent
(reverse-time migration) methods. CINT calculates local cross-correlations of the array
data over proper time and receiver-offset windows and migrates them to the imag-
ing points. The local cross-correlations are ideally suited for extracting the residual
coherence of the data, and can be related mathematically to the Wigner transform
of the random wave field. The Wigner transform has the important property of weak
self-averaging [5, 35, 22], meaning that it becomes deterministic when smoothed over its
arguments. The CINT imaging function can be written mathematically as the migrated
and smoothed Wigner transform of the data [16, 13], and therefore it is statistically sta-
ble with respect to different realizations of the random medium, as shown in [17, 13].
The smoothing is needed for stability, but it comes at the expense of loss of resolu-
tion, as quantified in detail in [16, 13]. The results in [15, 16, 13] apply to imaging in
unbounded weakly scattering random media, where the coherent part of the data is suf-
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ficiently strong. In stronger scattering media the imaging may sometimes be improved
with filters designed to enhance the coherent part of the data [11, 2, 18, 4]. Nevertheless,
coherent imaging cannot be expected to work when the source is further than one or
two scattering mean free paths from the array, because then the waves are essentially
incoherent. Only incoherent methods based on inverting the energy transport equations
can be used in such media. We refer to [7, 6] for studies of transport based imaging
in strongly scattering unbounded random media and to [14, 12] for imaging in random
waveguides.

In this paper we study coherent imaging in random waveguides, and show how
to use the theory of wave propagation in random media for improving the imaging
process. We refer to [1] for the rigorous asymptotic stochastic analysis of the wave
field p in waveguides with randomly perturbed boundaries, and to [29, 21, 23, 24] for
waveguides with randomly perturbed media. The analysis shows that p can be modeled
as a superposition of ideal waveguide modes that are coupled by scattering at the random
perturbations (which is a standard approach in mode coupling theory [19, 21, 33, 37]).
Explicitly, the modes have amplitudes that are random functions of frequency and range,
and satisfy a coupled system of stochastic differential equations. Their expectations
decay exponentially with range, on mode- and frequency-dependent length scales called
scattering mean free paths. The decay means that the incoherent fluctuations of the
amplitudes gain strength, and once they become dominant, the modes should not be
used in coherent imaging.

It is not surprising that the scattering mean free paths are longer for the fast
propagating modes than the slower ones. This is because the latter are waves that take
longer trajectories from the source to the array, and interact more with the perturbations
of the boundaries and the medium. We show in this paper that a successful imaging
strategy depends on which perturbations play the dominant role in the waveguide.
If scattering from perturbed boundaries dominates, the fast modes have much longer
scattering mean free paths than the slower modes. Therefore, the data remain partially
coherent at long ranges and we can seek an adaptive imaging approach that detects the
slow modes with incoherent amplitudes and suppresses them. The longer the range,
the fewer the modes that remain coherent, so there is a trade-off between the statistical
stability and the resolution of the images, which can be optimized with the adaptive
method.

When we compare the effect of perturbed boundaries to that of perturbed media,
for similar amplitude and correlation length of the fluctuations, we find two essential
differences: the latter gives much shorter scattering mean free paths for the faster modes,
and the rate of change of these scales with the mode index is much slower. There
is no trade-off between statistical stability and resolution of coherent images in such
waveguides. As the range increases, the mode amplitudes become incoherent on roughly
the same range scale, so there is no gain in removing the slow modes. Coherent imaging
fails and should be replaced by incoherent methods, based on transport equations for the
energy resolved locally in time and over the modes, i.e. over the direction of propagation
of the associated plane waves. We refer to [14] for an example of incoherent imaging in
random waveguides. These methods are more complex and computationally involved
than the coherent ones. They are designed to work at ranges that exceed the scattering
mean free paths, but they also fail when the source is farther from the array than the
equipartition distance. This is the range scale over which the energy of the wave becomes
distributed uniformly over the modes, independent of the source excitation. The waves
scatter so much while they travel this distance that they lose all information of their
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initial state, thus making imaging impossible.
We show that in waveguides with interior inhomogeneities the equipartition distance

is much longer than the scattering mean free path of the modes, so there is an observ-
able range interval over which coherent imaging fails, but incoherent imaging succeeds.
This is not the case for waveguides with perturbed boundaries where the equipartition
distance is almost the same as the scattering mean free path of the fast modes. When
coherent imaging fails in such waveguides, no imaging method can succeed, so there is
no advantage in using the more complex, incoherent approaches.

The adaptive coherent imaging method proposed in this paper is based on a fig-
ure of merit of the quality of the image, which accounts for the trade-off between its
statistical stability and resolution. There are many such figures of merit. We choose
one that is simple and serves our purpose. In practice, it may be improved for example
by incorporating prior information about the support of the source distribution. The
method searches for weights of the data decomposed over the waveguide modes, in or-
der to optimize the figure of merit. We apply the results of the asymptotic stochastic
analysis in [29, 23, 24, 1] to derive theoretically the weights, and show that they are
in good agreement with those from the numerical simulations in waveguides with ran-
dom boundaries. We also show that coherent imaging fails in random waveguides with
interior inhomogeneities, as predicted by the theory.

The paper is organized as follows. We begin in Section 2 with the formulation of
the problem. Then we describe in Section 3 the model of the array data in ideal and
randomly perturbed waveguides. The comparison of long range cumulative scattering
effects of boundary perturbations and interior inhomogeneities is in Section 4. The re-
sults motivate the adaptive coherent imaging method described and analyzed in Section
5. The numerical simulations are in Section 6. We end with a summary in Section 7.

We dedicate this work to George Papanicolaou on the occasion of his 70th birthday.
Let us emphasize that the asymptotic theory that has been developed for describing and
analyzing wave propagation, time reversal and imaging in several regimes of separation
of scales such as weakly scattering random media in the parabolic approximation [5, 10,
25, 36], in randomly layered media [3, 23], and in random waveguides [1, 23, 24] is based
on the tools introduced by G. Papanicolaou and co-workers since the early seventies
[30, 34].

x

zzA
Figure 1. Schematic of the problem setup. A source emits

Fig. 1.1. Schematic of the problem setup. A source emits a signal in a waveguide and the wave
field is recorded at a remote array. The waves propagate along the range axis z. The waveguide is
bounded in the cross-range direction x. The bottom boundary is rigid and flat. The pressure release
top boundary may fluctuate. The system of coordinates has the origin of range at the source. The
array is shown on the right of the source, at range zA.
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2. Formulation of the source imaging problem
Consider a two dimensional waveguide with range axis denoted by z∈R and trans-

verse coordinate (cross-range) x belonging to a bounded interval, the waveguide cross-
section, as illustrated in Figure 1.1. We assume a pressure release top boundary that
may be perturbed, and a flat and rigid bottom boundary. Waveguides with perturba-
tions of both boundaries are studied in [1].

The pressure field p(t,x,z) satisfies the wave equation[
∂2
z +∂2

x−
1

c2(x,z)
∂2
t

]
p(t,x,z) =F (t,x,z), x∈ (0,D(z)), z∈R, (2.1)

for t>0, with boundary conditions

p(t,D(z),z) =∂xp(t,0,z) = 0, z∈R, t>0. (2.2)

Here t is time, c(x,z) is the wave speed, D(z) is the waveguide cross-section, and F (t,x,z)
models the source excitation. In ideal waveguides the boundaries are straight

D(z) =D, ∀z∈R, (2.3)

and the wave speed is independent of range. We take it equal to the constant co.
This simplification leads to explicit formulas in the analysis of coherent imaging, but
the results extend to speeds that vary smoothly in x. In perturbed waveguides the
boundary and the wave speed have small amplitude fluctuations

|D(z)−D|�D and |c(x,z)−co|� co, (2.4)

modeled by random processes, as explained in sections 3.2 and 3.3.
We study the point spread function of coherent imaging methods, so we let

F (t,x,z) =e−iωotf(Bt)δ(x−xo)δ(z), (2.5)

with the origin of the range axis at the point-like source, with cross-range coordinate
xo. The emitted signal is a pulse, modeled by function f of dimensionless arguments,
with Fourier transform f̂ supported in the interval [−π,π]. The multiplication by the
carrier oscillatory signal e−iωot centers the support of the Fourier transform of the pulse
at ωo, ∫ ∞

−∞
dte−iωotf(Bt)eiωt=

1

B
f̂

(
ω−ωo
B

)
. (2.6)

Therefore, the angular frequency ω, the dual variable to t, belongs to the interval
[ωo−πB,ωo+πB], where ωo/(2π) is the central frequency, and B is the bandwidth.

The array is a collection of sensors that are far away from the source, at range
zA, and record the pressure field p. The recordings are the array data. The goal of
coherent imaging is to superpose the data after proper synchronization and weighting,
in order to form an imaging function. The synchronization is relative to a search point
that sweeps a search domain where we seek the source. It amounts to solving backward
the wave equation in the ideal waveguide, with the source at the array and the emitted
signal given by the time reversed data. The imaging function is defined point-wise by
the resulting solution at the search point. This process is called back-propagation.

A useful imaging function has the following qualities: (1) It peaks near the un-
known source. (2) It is negligible away from the source. The smaller the domain where
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it is large, the better the resolution. (3) It is robust with respect to the unknown
perturbations in the waveguide.

Coherent imaging can succeed in random waveguides up to ranges where the ar-
ray data maintain some coherence. The asymptotic stochastic theory developed in
[29, 23, 24, 1] allows us to quantify the loss of coherence of the amplitudes of the waveg-
uide modes. We use the results to explain the limitations of coherent imaging, and to
motivate and analyze the adaptive imaging approach.

3. Model of the array data
We begin in Section 3.1 with the model of the data in ideal waveguides. Then,

we consider waveguides with a random pressure release boundary in Section 3.2, and
with random wave speed in Section 3.3. The results extend to waveguides with both
types of random perturbations. We separate them in order to compare their cumulative
scattering effects on the imaging process.

3.1. Ideal waveguides. When the boundaries are flat and the wave speed is
constant, the wave equation is separable and we can write the solution as a superpo-
sition of independent waveguide modes. A waveguide mode is a monochromatic wave
P (t,x,z) = P̂ (ω,x,z)e−iωt, where P̂ (ω,x,z) satisfies the Helmholtz equation[

∂2
z +∂2

x+k2
]
P̂ (ω,x,z) = 0, x∈ (0,D), z∈R, (3.1)

with boundary conditions

P̂ (ω,D,z) =∂xP̂ (ω,0,z) = 0, z∈R, (3.2)

and radiation conditions as |z|→∞. Here k=ω/co is the wavenumber.
The linear operator ∂2

x+k2 defined on the vector space of functions in C2(0,D)
that vanish at x=D and have zero derivative at x= 0, is self-adjoint in L2(0,D). Its
spectrum consists of a countable set of real and simple eigenvalues {λj(ω)}j≥1, assumed
sorted in descending order. Because we assumed that co is constant, we can write them
explicitly,

λj(ω) =k2−
[
π(j−1/2)

D

]2

, j= 1,2,. ... (3.3)

The eigenfunctions form a complete orthonormal set in L2(0,D), and are given by

φj(x) =

√
2

D
cos

[
π(j−1/2)x

D

]
, j= 1,2,. ... (3.4)

Note that only the first N(ω) eigenvalues are positive, where

N(ω) = bkD/π+1/2c , (3.5)

and b c denotes the integer part. They define the modal wavenumbers βj(ω) =
√
λj(ω)

of the forward (+) and backward (−) propagating modes

P̂
(±)
j (ω,x,z) =φj(x)e±iβj(ω)z, j= 1,. ..,N(ω). (3.6)

The remaining infinitely many modes are evanescent

P̂j(ω,x,z) =φj(x)e−βj(ω)|z|, j >N(ω), (3.7)

with wavenumber βj(ω) =
√
−λj(ω).
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3.1.1. Plane wave analogy. With the expression (3.4) of the eigenfunctions,
we can write the forward propagating modes as

P̂
(+)
j (ω,x,z) =

1√
2D

[
ei(

π(j−1/2)
D ,βj)·(x,z) +ei(−

π(j−1/2)
D ,βj)·(x,z)

]
. (3.8)

A similar formula holds for the backward propagating modes, with a negative sign in
front of βj . Equation (3.8) shows that the modes are associated with monochromatic
plane waves that travel in the direction of the slowness vectors

Kj =

(
±π(j−1/2)

D
,βj

)
,

and strike the boundaries where they reflect. The slowness vectors of the first modes
are almost parallel to the range axis,

K1 =
(
± π

2D
,β1

)
,

π

2D
≈ k

2N
�β1≈k,

where the approximation is for a large N(ω). These waves travel quickly to the array,
at speed that is approximately equal to co. The slowness vectors of the last modes are
almost parallel to the x axis

KN =

(
±π(N−1/2)

D
,βN

)
,

π(N−1/2)

D
≈k�βN .

These waves strike the boundary many times, at almost normal incidence. They prop-
agate very slowly to the array, on a long trajectory.

3.1.2. Data model. To simplify the analysis, we assume that the bandwidth is
not too large, so that

N(ω) =N(ωo), ∀ω∈ [ωo−πB,ωo+πB]. (3.9)

We denote henceforth the number of propagating modes by N , without any arguments.
We also suppose that there are no standing waves in the waveguide, which means that
none of the wavenumbers βj vanish.

The pressure field for z>0 is modeled by a superposition of forward going and
evanescent waves

p(t,x,z) =

∫
dω

2π
e−iωt

[ N∑
j=1

âj,o(ω)√
βj(ω)

eiβj(ω)zφj(x)+

∞∑
j=N+1

êj,o(ω)√
βj(ω)

e−βj(ω)zφj(x)

]
.

The modes do not interact with each other, so their amplitudes are independent of
range. They are obtained from the source conditions

p̂(ω,x,0+) = p̂(ω,x,0−),

∂z p̂(ω,x,0+)−∂z p̂(ω,x,0−) =
1

B
f̂

(
ω−ωo
B

)
δ(x−xo),

which give

âj,o(ω) =
φj(xo)

2iB
√
βj(ω)

f̂

(
ω−ωo
B

)
, j= 1,. ..,N,

êj,o(ω) =− φj(xo)

2B
√
βj(ω)

f̂

(
ω−ωo
B

)
, j >N. (3.10)
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The model of the array data is given by

p(t,x,zA)≈
N∑
j=1

∫
dω

2πB
f̂

(
ω−ωo
B

)
φj(xo)

2iβj(ω)
φj(x)eiβj(ω)zA−iωt. (3.11)

The approximation is because we neglect the evanescent modes at the large range zA
of the array.

3.2. Waveguides with randomly perturbed boundary. The pressure re-
lease boundary has small fluctuations around the value D

D(z) =D
[
1+ν

(z
`

)]
, (3.12)

where ν is a zero mean random process of dimensionless arguments. We assume that it
is stationary and mixing, which means in particular that its covariance function

Rν(ζ) =E[ν(0)ν(ζ)] (3.13)

is integrable over the real line. The scaling of the argument of ν in (3.12) indicates that
the fluctuations are on the length scale `, the correlation length.

Let ε be the small parameter that scales the amplitude of the fluctuations ν, defined
by

Rν(0) =ε2�1. (3.14)

The asymptotic analysis in [1] is with respect to ε, in the scaling regime

`∼λo, (3.15)

where λo is the reference, order one length scale. In this regime the waves interact
efficiently with the random perturbations, but because their amplitude is small, their
cumulative scattering effect is observable only at long ranges. It is shown in [1] that the
scaling for studying the transition from coherent to incoherent waves should be

ε2zA∼λo. (3.16)

We recall directly from [1] the model of the pressure field

p(t,x,zA)≈
∫
dω

2π

N∑
j=1

âj(ω,zA)√
βj(ω)

φj(x)eiβj(ω)zA−iωt. (3.17)

It is similar to Equation (3.11), except that the mode amplitudes are random functions
of frequency and range zA. They are analyzed in detail in [1]. Here we need only their
first and second moments:

The mean mode amplitudes are

E[âj(ω,zA)]≈ φj(xo)

2iB
√
βj(ω)

f̂

(
ω−ωo
B

)
exp

[
− zA
Sj(ω)

+ i
zA
Lj(ω)

]
, (3.18)

where the approximation indicates that there is a vanishing residual in the limit ε→
0. We recognize the first factor in (3.18) as âj,o, the j−th mode amplitude in ideal
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waveguides. However, E[âj(ω,zA)] decays exponentially with zA, on the length scale
Sj(ω) called the scattering mean free path of the j−th mode. It is given by

1

Sj(ω)
=
π4`(j−1/2)2

D4βj(ω)

N∑
l=1

(l−1/2)2

βl(ω)
R̂ν [(βj(ω)−βl(ω))`], (3.19)

in terms of the power spectral density R̂ν , the Fourier transform of the covariance Rν .
We know that R̂ν ≥0 by Bochner’s theorem, so all the terms in the sum are nonnegative.

Aside from the exponential decay, the mean amplitudes also display a net phase that
increases with zA on the mode-dependent length scales Lj(ω). We recall1 its expression
from [1]

1

Lj(ω)
=
π4`(j−1/2)2

D4βj(ω)
Rν(0)

N∑
l=1

(l−1/2)2

βl(ω)
γ [βj(ω)−βl(ω)]

+
π2(j−1/2)2

D2βj(ω)
Rν(0)

−3

2
+

N∑
l 6=j,l=1

[βl(ω)+βj(ω)](l−1/2)2

βl(ω)(j+ l−1)(j− l)


+
R′′ν(0)(j−1/2)2

`2βj(ω)

π2

6
+

N∑
l 6=j,l=1

[βj(ω)−βl(ω)](l−1/2)2

βl(ω)(j+ l−1)2(j− l)2

+κ
(e)
j (ω),

where

γ(β) = 2

∫ ∞
0

du sin(β`u)Rν(u),

and κ
(e)
j (ω) is due to the interaction of the evanescent waves with the propagating ones.

It is given by

κ
(e)
j (ω) =

2π4(j−1/2)2

D4βj(ω)

∞∑
l=N+1

{
`(l−1/2)2

βl(ω)

∫ ∞
0

due−`βl(ω)uRν(u)cos[`βj(ω)u]

− (l−1/2)2

β2
j (ω)+β2

l (ω)

}
− 2R′′ν(0)(j−1/2)2

`2βj(ω)

∞∑
l=N+1

(l−1/2)2

(l−j)2(l+j−1)2
,

where we used integration by parts to simplify the formulas derived in [1].

The mean square mode amplitudes are

E
[
|âj(ω,zA)|2

]
≈ 1

4B2

∣∣∣∣f̂(ω−ωoB

)∣∣∣∣2 N∑
l=1

φ2
l (xo)

βl(ω)
Tjl(ω,zA), (3.20)

with N×N matrix

T(ω,zA) =eΓ
(c)(ω)zA ,

1Note that there is a typo in [1, Equation (4.20)]: there is no minus sign in the definition of Γ
(s)
jj (ω).
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and symmetric N×N matrix Γ(c)(ω) defined by

Γ
(c)
jl (ω) =

π4`(j−1/2)2(l−1/2)2

D4βj(ω)βl(ω)
R̂ν [`(βj(ω)−βl(ω))], j 6= l,

Γ
(c)
jj (ω) =−

N∑
l 6=j,l=1

Γ
(c)
jl (ω), j= 1,. ..,N. (3.21)

Let Λj(ω) be the eigenvalues of Γ(c), in descending order, and uj(ω) its orthonormal
eigenvectors. We have from the conservation of energy that

Λj(ω)≤0,

so the limit zA→∞ of the matrix exponential

T(ω,zA) =eΓ
(c)(ω)zA =

N∑
j=1

eΛj(ω)zAuj(ω)uTj (ω),

is determined by the null space of Γ(c)(ω). Under the assumption that the power spectral

density R̂ν does not vanish for any of the arguments in (3.21), Γ(c)(ω) is a Perron-
Frobenius matrix with simple largest eigenvalue Λ1(ω) = 0. The leading eigenvector is
given by

u1 =
1√
N

(1,. ..,1)T ,

and as zA grows,

sup
j,l=1,...,N

∣∣∣∣Tjl(ω,zA)− 1

N

∣∣∣∣≤O(eΛ2(ω)zA
)
. (3.22)

Thus, the right-hand side in (3.20) converges to a constant

N∑
l=1

φ2
l (xo)

βl(ω)
Tjl(ω,zA)

zA→∞−→ 1

N

N∑
l=1

φ2
l (xo)

βl(ω)
, (3.23)

on the length scale

Lequip =−1/Λ2(ω),

called the equipartition distance. It is the range scale over which the energy becomes
uniformly distributed over the modes, independent of the source excitation.

Equations (3.18), (3.20), and (3.23) give that the SNR (signal to noise ratio) of the
amplitude of the j−th mode satisfies

SNR[âj(ω,zA)] =
|E[âj(ω,zA)]|√

E
[∣∣âj(ω,zA)−E[âj(ω,zA)]

∣∣2] ∼ exp

[
− zA
Sj(ω)

]
. (3.24)

Therefore, the j−th mode loses coherence on the range scale Sj(ω), the scattering mean
free path. The scaling (3.14) of the amplitude of the fluctuations ν implies that

Sj∼ε−2λo,

so the loss of coherence can be observed at ranges of the order ε−2λo, as stated in (3.22).
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3.3. Waveguides with random medium. The boundaries in these waveguides
are straight, but the wave speed is perturbed as

1

c2(x,z)
=

1

c2o

[
1+µ

(x
`
,
z

`

)]
. (3.25)

Here µ(x,z) is a mean zero, statistically homogeneous random process of dimensionless
arguments, with integrable autocorrelation

Rµ(ξ,ζ) =E[µ(0,0)µ(ξ,ζ)]. (3.26)

As in the previous section, we model the small amplitude of the fluctuations using the
small dimensionless parameter ε defined by

Rµ(0,0) =ε2�1. (3.27)

The scaling by the correlation length ` of both arguments of µ indicates that the fluc-
tuations are isotropic. We assume like before that `∼λo, and use the same long range
scaling (3.16) to study the loss of coherence of the waves due to cumulative scattering
in the random medium.

The model of the array data, the mean and intensity of the mode amplitudes look
the same as (3.17), (3.18), and (3.20), but the scattering mean free paths Sj(ω), the net

phases Lj(ω), and the matrix Γ(c)(ω) are different. We recall their expression from [23,
Chapter 20].

The scattering mean free path of the j−th mode is given by

1

Sj(ω)
=

k4`

8βj(ω)

N∑
l=1

1

βl(ω)
R̂µjl [(βj(ω)−βl(ω))`] , (3.28)

where R̂µjl is the power spectral density of the stationary process

µjl(ζ) =

∫ D

0

dxφj(x)φl(x)µ
(x
`
,ζ
)
, (3.29)

with autocorrelation

Rµjl(ζ) =E[µjl(0)µjl(ζ)]. (3.30)

The net phase of the j−th mode is

1

Lj(ω)
=

k4`

8βj(ω)

N∑
l=1

1

βl(ω)
γjl [βj(ω)−βl(ω)]+κ

(e)
j (ω), (3.31)

where

γjl(β) = 2

∫ ∞
0

du sin(β`u)Rµjl(u), (3.32)

and the last term is due to the interaction of the evanescent modes with the propagating
ones

κ
(e)
jl (ω) =

k4`

2βj(ω)

∞∑
l=N+1

1

βl(ω)

∫ ∞
0

due−βl(ω)uRµjl(u)cos[`βj(ω)u]. (3.33)
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The matrix Γ(c)(ω) is symmetric, with entries given by

Γ
(c)
jl (ω) =

k4`

8βj(ω)βl(ω)
R̂µjl [(βj(ω)−βl(ω))`], j 6= l,

Γ
(c)
jj (ω) =−

N∑
l 6=j,l=1

Γ
(c)
jl (ω), j= 1,. ..,N. (3.34)

As before, we denote its eigenvalues by Λj(ω)≤0, and its orthonormal eigenvectors by

uj , for j= 1,. ..,N . Moreover, assuming that the power spectral density R̂µjl does not
vanish at any of the arguments (βj−βl)`, we obtain from the Perron-Frobenius theorem

that the null space of Γ(c)(ω) is one-dimensional and spanned by

u1 =
1√
N

(1,1,. ..,1)T .

The long range limit of the matrix exponential is as in (3.22), and the equipartition

distance is given by −1/Λ2(ω), in terms of the largest non-zero eigenvalue of Γ(c)(ω).

4. Comparison of cumulative scattering effects
It is not difficult to see by inspection of formulas (3.19) and (3.28) that the scattering

mean free paths Sj and the net phase range scales Lj decrease monotonically with
the mode index. To obtain a quantitative comparison of the net scattering effects of
boundary and medium perturbations, we consider here and in the numerical simulations
two examples of autocorrelations of the fluctuations ν(ζ) and µ(ξ,ζ). The conclusions
drawn below extend qualitatively to all fluctuations, but obviously, the scales depend
on the expressions of Rν and Rµ, the depth of the waveguide and the correlation length
relative to λo.

We take henceforth D= 20λo, so that N = 40. The autocorrelation of the boundary
fluctuations is of the so-called Matérn−7/2 form

Rν(ζ) =ε2

(
1+ |ζ|+ 6ζ2

15
+
|ζ|3

15

)
e−|ζ|, (4.1)

with power spectral density

R̂ν(β`) =
32ε2

5[1+(β`)2]
4 . (4.2)

The correlation length is `=λo/
√

5, and the amplitude of the fluctuations is scaled by
ε= 0.013. The characteristic scales Sj , Lj and the equipartition distance Lequip are
plotted in Figure 4.1.

The medium fluctuations have the Gaussian autocorrelation

Rµ(ξ,ζ) =ε2e−
ξ2+ζ2

2 , (4.3)

with correlation length `=λo and amplitude scaled by ε= 0.04. The characteristic scales
Sj , Lj and the equipartition distance Lequip are plotted in Figure 4.2.

We see in Figure 4.1 that the fast modes (with small index) have much larger scat-
tering mean free paths than the slow ones in the waveguides with perturbed boundaries.
When the array is at range zA∼100λo, roughly half of the mode amplitudes remain
coherent, and we can expect imaging to succeed if we filter out the slower modes, with
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Fig. 4.1. The characteristic scales for a waveguide with random boundary. Here D= 20λo,
`=λo/

√
5 and ε= 0.013. The abscissa is mode index and the ordinate is in units of λo.
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Fig. 4.2. The characteristic scales for a waveguide with random medium. Here D= 20λo, `=λo,
and ε= 0.04. The abscissa is mode index and the ordinate is in units of λo.

index j >20. As zA increases, fewer and fewer modes remain coherent, and imaging
should become more difficult. Once zA exceeds the equipartition distance, which is sim-
ilar to S1 in Figure 4.1, imaging becomes impossible, because the wave field forgets all
the information about its initial state. Thus, when the wave field loses all its coherence,
no imaging method can succeed in these waveguides.

Figure 4.2 shows that in media with random perturbations the scattering mean
free paths of the fast modes are shorter, and that they decrease at a much slower
rate with the mode index. No mode filtering can make coherent imaging succeed for
zA&50λo∼S1, because all the mode amplitudes are incoherent. Since the equipartition
distance is much larger than S1, incoherent imaging is useful in these waveguides, in
the range interval

50λo∼S1 .zA≤Lequip∼200λo.

5. Adaptive coherent imaging
We begin in Section 5.1 with the formulation of the adaptive coherent imaging
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function. It models the backpropagation of the weighted time reversed data to search
points in a fictitious ideal waveguide. The weights are chosen by optimizing a figure of
merit of the image. We calculate them explicitly in ideal and random waveguides, in
sections 5.2 and 5.3, respectively.

5.1. Coherent imaging. The data are collected at the array, with sensors lo-
cated in the set {xr = (xr,zA), r= 1,. ..,NR}. The standard coherent imaging function
is given by

I(x) =

∫ ∞
−∞

dω

2π

1

NR

NR∑
r=1

p̂(ω,xr)Ĝo(ω,xr,x), (5.1)

where x= (x,z) are points in a search domain containing the unknown location xo=

(xo,0) of the source, and Ĝo is the outgoing Green’s function in the ideal waveguide.
It models the propagation from xr to x, of the time reversed array data with Fourier
transform p̂(ω,xr), where the bar denotes complex conjugation.

We see from (3.11) that

Ĝo(ω,xr,x) =

N∑
j=1

φj(xr)

2iβj(ω)
φj(x)eiβj(ω)(zA−z), (5.2)

so we can rewrite (5.1) as

I(x) =

∫ ∞
−∞

dω

2π

N∑
j=1

1

2iβj(ω)
p̂j(ω,zA)φj(x)eiβj(ω)(zA−z) (5.3)

with

p̂j(ω,zA) =
1

NR

NR∑
r=1

p̂(ω,xr)φj(xr). (5.4)

The adaptive coherent imaging function is a modification of (5.3)

I(x;w) =

∫ ∞
−∞

dω

2π

N∑
j=1

wj
2iβj(ω)

p̂j(ω,zA)φj(x)eiβj(ω)(zA−z), (5.5)

with data components p̂j(ω,zA) weighted by the entries in the complex vector

w= (w1,. ..,wN )T ∈CN ,

with Euclidian norm

‖w‖=

√√√√ N∑
j=1

|wj |2 = 1. (5.6)

5.1.1. Weight optimization. We wish to optimize the weights so as to maxi-
mize the ratio of the peak amplitude of the image normalized by its L2-norm,

w?= argmaxw∈WM(w), M(w) =
|I(x?;w)|2

‖I(·;w)‖2
, (5.7)
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where

W=
{
w= (w1,. ..,wN )T ∈CN ,

N∑
j=1

|wj |2 = 1
}
,

and

‖I(·;w)‖2 =

∫ D

0

dx

∫ ∞
−∞

dz |I(x;w)|2 .

The peak location x? is expected to be at xo, where the source lies, and the optimization
intends to focus the image around it. This is certainly true in ideal waveguides. In
random waveguides we need to ensure that the image is robust with respect to the
unknown perturbations. If this is not so, the image will have spurious peaks.

There are two requirements for obtaining robust images: The first is that only the
modes that are coherent contribute to the image. Thus, the weights should null the
modes with scattering mean free paths that are shorter than the range of the array.
The second is that the bandwidth be much larger than the decoherence frequency of the
data. This ensures that the incoherent part of the data averages out when we integrate
over the frequencies, like in the law of large numbers.

It is shown in [1] and [23, Chapter 20] that in our regime the decoherence frequency
is very small, of the order ε2ωo. Therefore, it is possible to have a bandwidth that is
small with respect to the central frequency, as assumed in Section 3.1.2, and large with
respect to the decoherence frequency.

As long as the two requirements above hold, we can analyze the optimal weights
using the theoretical figure of merit

Mth(w) =
|E[I(xo;w)]|2

E[‖I(·;w)‖2]
. (5.8)

It turns out that this is the Rayleigh quotient of a Perron-Frobenius type matrix, and
thus the weights are given by the leading eigenvector of this matrix. They are guaranteed
to be positive and are defined up to a normalization constant which is fixed by the
constraint (5.6). We refer to sections 5.2 and 5.3 for details.

5.1.2. Simplifying assumptions. In the analysis we suppose that the record-
ings of the acoustic pressure are over an infinitely long time window, and approximate
the array by a continuum aperture, so that in the imaging function we can replace sums
over the sensors by integrals over the aperture. In particular, we have

p̂j(ω,zA) =
1

NR

NR∑
r=1

p̂(ω,xr)φj(xr)≈
∫ D

0

dx1A(x)p̂(ω,x,zA)φj(x), (5.9)

where 1A is the indicator function of the array. It is equal to one in the cross-range
support of the array and zero otherwise. The continuum approximation is valid when
the sensors are close together, at less than half a central wavelength λo= 2πco/ωo apart.

We consider a full aperture array, spanning the entire cross-section of the waveguide,
so the indicator function 1A in (5.9) is identically one. The results extend to partial
apertures, but the formulas are more complicated and the optimal weights are not easy
to interpret.

All these assumptions allow us to simplify the expression of the imaging function,
so that we can focus attention on the cumulative scattering effects due to the random
perturbations of the waveguide.



764 A QUANTITATIVE STUDY OF SOURCE IMAGING IN RANDOM WAVEGUIDES

5.2. Coherent imaging in ideal waveguides. In this section we address the
case in which the waveguide is ideal, i.e. without any random perturbation.

5.2.1. Determination of the optimal weights. We obtain from the model
(3.11) of the array data and the orthogonality of the eigenfunctions that

p̂j(ω) =
1

B
f̂

(
ω−ωo
B

)
φj(xo)

2iβj(ω)
eiβj(ω)zA , (5.10)

and therefore

I(x;w) =
1

4

∫ ∞
−∞

dω

2πB
f̂

(
ω−ωo
B

) N∑
j=1

wj
β2
j (ω)

φj(x)φj(xo)e
−iβj(ω)z

≈ 1

4

N∑
j=1

wj
β2
j (ωo)

φj(x)φj(xo)Fj(z). (5.11)

Here we used that B�ωo and introduced the mode pulses

Fj(z) =

∫ ∞
−∞

dω

2πB
f̂

(
ω−ωo
B

)
e−iβj(ω)z

=

∫ ∞
−∞

dh

2π
f̂(h)e−iβj(ωo+Bh)z

≈e−iβj(ωo)zf
[
−β′j(ωo)Bz

]
(5.12)

that peak at the range z= 0 of the source, with mode- and bandwidth-dependent reso-
lution. The modes propagate at speed

1

β′j(ωo)
= co

βj(ωo)

ko
, (5.13)

where ko= 2π/λo, and the range resolution of Fj(z) is determined by the distance trav-
eled at this speed over the duration ∼1/B of the pulse.

The focusing in cross-range is due to the summation over the modes. Explicitly,
when we evaluate (5.11) at the range of the source, we obtain

I((x,0);w)≈ f(0)

4

N∑
j=1

wj
β2
j (ωo)

φj(x)φj(xo). (5.14)

This is a sum of oscillatory terms unless x=xo, so the image peaks at x=xo, with
resolution depending on the weights.

The figure of merit (5.7) is the ratio of the peak intensity

|I(xo;w)|2≈ |f(0)|2

16

∣∣∣ N∑
j=1

wj
β2
j (ωo)

φ2
j (xo)

∣∣∣2 (5.15)
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and the L2 norm

‖I(·;w)‖2 =

∫ D

0

dx

∫ ∞
−∞

dz |I(x;w)|2

≈
N∑
j=1

|wj |2φ2
j (xo)

16β4
j (ωo)

∫ ∞
−∞

dh

2π
f̂(h)

∫ ∞
−∞

dh′

2π
f̂(h′)

∫ ∞
−∞
dzei[βj(ωo+hB)−βj(ωo+Bh′)]z

=
‖f‖2c2o
16Bωo

N∑
j=1

|wj |2

β3
j (ωo)

φ2
j (xo). (5.16)

Here we used the orthonormality of the eigenfunctions, and relation (5.13). We also
introduced the notation

‖f‖2 =

∫ ∞
−∞

dω

2π

∣∣f̂(ω)
∣∣2 =

∫ ∞
−∞

dt|f(t)|2.

The figure of merit becomes

M(w) =C

∣∣∣ N∑
j=1

wj
β2
j (ωo)

φ2
j (xo)

∣∣∣2
N∑
j=1

|wj |2

β3
j (ωo)

φ2
j (xo)

, (5.17)

with constant

C=
Bωo|f(0)|2

c2o‖f‖2

that plays no role in the optimization. BecauseM is homogeneous of degree zero in w,
we can maximize M(w) to obtain the optimal w? up to a multiplicative constant that
we can then determine from the normalization condition ‖w?‖= 1. The result is

w?j =
βj(ωo)

‖β‖xo
, j∈Jxo ={j= 1,. ..,N, s.t. φj(xo) 6= 0}, (5.18)

w?j = 0, j∈Jcxo ={1,. ..,N}\Jxo ,

where we introduced the notation

‖β‖xo :=

√∑
j∈Jxo

β2
j (ωo).

When the set Jcxo is empty, there is a unique maximizer w? with positive entries, as ex-
plained below. Otherwise, there are infinitely many maximizers, with arbitrary weights
for mode indexes j∈Jcxo . Equation (5.18) defines just one solution. Note however that
all maxima of M(w) are global maxima, because the weights indexed by j∈Jcxo multi-
ply φj(xo) = 0 in the figure of merit, and they play no role in the behavior of the imaging
function, given by

I(x;w?)≈ 1

4‖β‖xo

∑
j∈Jxo

φj(x)φj(xo)

βj(ωo)
e−iβj(ωo)zf

[
−β′j(ωo)Bz

]
. (5.19)
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Fig. 5.1. The image I(x;w) for weights wj = 1/
√
N (left), w=wcr (middle), and w=w? (right).

The abscissa is the range z in λo and the ordinate the cross-range in λo. Here D= 20λo, and the pulse
is defined in (5.23).

To see that w? is unique and has positive entries when the set Jcxo is empty, it
suffices to write (5.17) as the Rayleigh quotient of the Perron-Frobenius matrix M with
entries

Mjl=C
|φj(xo)φl(xo)|√
βj(ωo)βl(ωo)

. (5.20)

For this purpose let u= (u1,. ..,uN )T , with

uj =
wj |φj(xo)|
β

3/2
j (ωo)

, j= 1,. ..,N, (5.21)

so that (5.17) becomes

M(w) =
uTMu

uTu
. (5.22)

The maximizer of (5.22) is the leading eigenvector u? of the Perron-Frobenius matrix
M. It is unique with positive entries, and w? follows from (5.21).

5.2.2. Discussion. To motivate the figure of merit (5.17) and illustrate the
effect of the optimization on the image, let us set xo=D/2 and consider a Gaussian
pulse

f(u) =e−u
2/2 (5.23)

with bandwidth πB= 0.025ωo.
We display the absolute value of the image I(x;w?) in the right plot of Figure

5.1. For comparison, we show in the left plot of Figure 5.1 the image with the uniform
weights wj = 1/

√
N . It has prominent fringes in the cross-range, which are mitigated by

the optimization over the weights. We do not get the best cross-range resolution with
the weights (5.18). The optimal wcr∈W for focusing in cross-range has components

wcr
j =

β2
j (ωo)

‖β2‖xo
, j∈Jxo , ‖β2‖xo =

√∑
j∈Jxo

β4
j (ωo).
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It maximizes the ratio of the peak of the image and its mean square along the cross-range
line at z= 0,

Mcr(w) =
|I(xo;w)|2

‖I((·,0);w)‖2
, ‖I((·,0);w)‖2 =

∫ D

0

dx |I((x,0);w)|2 , (5.24)

and gives the image

I(x;wcr)≈ 1

4‖β2‖xo

∑
j∈Jxo

φj(x)φj(xo)e
−iβj(ωo)zf

[
−β′j(ωo)Bz

]
.

We show it in the middle plot of Figure 5.1, and indeed, it has smaller fringes along
the axis z= 0. However, the range resolution is worse than that given by the optimal
weights.

It is easy to see that the optimal wr∈W for focusing in range, the maximizer of

Mr(w) =
|I(xo;w)|2

‖I((xo, ·);w)‖2
, ‖I((xo, ·);w)‖2 =

∫ ∞
−∞

dz |I((xo,z);w)|2 , (5.25)

has the components

wr
j =Cr βj(ωo)

φ2
j (xo)

, j∈Jxo ,

with constant

Cr = 1/

√∑
l∈Jxo

β2
l (ωo)/φ

4
l (xo).

When xo=D/2 we have φ2
j (xo) = 1/D for all j, and therefore wr =w?. For all other xo

we have wr 6=w?, and the image is given by

I(x;wr) =
Cr

4

∑
j∈Jxo

e−iβj(ωo)z

βj(ωo)
f
[
−β′j(ωo)Bz

]
.

Our optimization finds a compromise between cross-range and range focusing, which
is achieved at the maximum of the figure of merit M(w). We can determine explicitly
the cross-range and range resolution of I(x;w?) under the assumption that N�1 (that
is, D�λo). Then, we can replace the sum over the modes by an integral over the
variable u= j/N ∈ (0,1], and obtain from the expressions of φj and βj that

I((x,0);w?)∼
∫ 1

0

du
cos[uko(x−xo)]√

1−u2
+

∫ 1

0

du
cos[uko(x+xo)]√

1−u2

=
π

2
J0 [ko(x−xo)]+

π

2
J0 [ko(x+xo)]

≈ π
2
J0 [ko(x−xo)], (5.26)

where J0 is the Bessel function of the first kind of order zero, and∼ denotes approximate,
up to a multiplicative constant. The cross-range resolution is estimated as the distance
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Fig. 5.2. The absolute value of the right-hand side in (5.28), which describes the range resolution,
as a function of koz.

between the peak of J0, which occurs at zero, and its first zero, which occurs at ko|x−
xo|≈2.4. We obtain that

|x−xo|.
2.4λo

2π
∼ λo

2
, (5.27)

which is basically the diffraction limit of half a wavelength. For the focusing in range
we have

I((xo,z);w
?)∼

∫ 1

0

du
e−ikoz

√
1−u2

√
1−u2

exp

[
− (Bz)2

2c2o(1−u2)

]
≈
∫ 1

0

du
e−ikoz

√
1−u2

√
1−u2

=
π

2
Jo(koz)−

iπ

2
H0(koz), (5.28)

where we used that xo=D/2 and neglected the effect of the pulse because B�ωo. The
result is in terms of the Bessel function Jo and the Struve function H0, and it is plotted
in Figure 5.2. The range resolution is of the order λo.

5.3. Random waveguides. We use the figure of merit (5.8) to analyze the
optimal weights for imaging in random waveguides. This is justified as long as the
imaging process remains statistically stable, as explained in Section 5.1.1. When the
data become incoherent, that is when the array is farther than the scattering mean
free path of all the modes, the weights predicted by the analysis are not useful. The
images have spurious peaks that change unpredictably with the realization of the random
waveguides (the random fluctuations of I dominate the mean E[I]). We cannot use
coherent imaging for such data no matter how we weight its components.

5.3.1. The first two moments of the imaging function. The imaging
function follows from equations (3.17), (5.3), and (5.9), for the full aperture array

I(x;w)≈
N∑
j=1

∫ ∞
−∞

dω

2π

N∑
j=1

wj âj(ω,zA)

2iβ
3/2
j (ω)

φj(x)e−iβj(ω)z. (5.29)

We compute its mean and intensity using the moment formulas (3.18) and (3.20). We
have

E[I(x;w)]≈ 1

4

N∑
j=1

wj
β2
j (ωo)

φj(x)φj(xo)Fj(z)exp

[
− zA
Sj(ωo)

− i zA
Lj(ωo)

]
, (5.30)
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with mode pulses Fj(z) defined in (5.12). This expression is similar to that of the
imaging function in ideal waveguides given by (5.11), except that the contribution of
the j−th mode is damped on the range scale Sj and is modulated by oscillation on the
range scale Lj . This oscillation must be removed in order to focus the image, which is
why we should allow the weights wj to be complex.

The intensity of the image is

E
[
|I(x;w)|2

]
≈1

4

N∑
j,j′=1

wjwj′

β
3/2
j (ωo)β

3/2
j′ (ωo)

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
E
[
âj(ω,zA)âj′(ω

′,zA)
]

× φj(x)φj′(x)ei[βj′ (ω
′)−βj(ω)]z, (5.31)

and its square L2 norm is given by

E
[
‖I(·;w)‖2

]
=

∫ D

0

dx

∫ ∞
−∞

dzE
[
|I(x;w)|2

]
=

1

4

N∑
j=1

|wj |2

β3
j (ωo)

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
E
[
âj(ω,zA)âj(ω

′,zA)
]∫ ∞
−∞
dzei[βj(ω

′)−βj(ω)]z

≈ 1

4

N∑
j=1

|wj |2

β3
j (ωo)β′j(ωo)

∫ ∞
−∞

dω

2π
E
[
|âj(ω,zA)|2

]
,

because of the orthonormality of the eigenfunctions φj(x). Recalling the moment for-
mula (3.20) and using Equation (5.13), we obtain

E
[
‖I(·;w)‖2

]
≈ co‖f‖

2

16koB

N∑
j=1

|wj |2

β2
j (ωo)

N∑
l=1

φ2
l (xo)Tjl(ωo,zA)

βl(ωo)
. (5.32)

5.3.2. Optimal weights. The weights must compensate for the oscillations in
(5.30) in order for E[I(x;w)] to peak at the source location xo. Thus, we let

wj =w+
j exp

[
i

zA
Lj(ωo)

]
, w+

j = |wj |, (5.33)

and maximize

Mth(w+) =
|E[I(xo;w)]|2

E[‖I(·;w)‖2]
∼

 N∑
j=1

w+
j φ

2
j (xo)

β2
j (ωo)

exp

(
− zA
Sj(ωo)

)2

N∑
j=1

(w+
j )2

β2
j (ωo)

N∑
l=1

φ2
l (xo)Tjl(ωo,zA)

βl(ωo)

, (5.34)

over the vectors w+ = (w+
1 ,. ..,w

+
N )T with non-negative entries, and Euclidian norm

‖w+‖= 1. The symbol ∼ denotes approximate, up to a multiplicative constant, as
before.

The optimal weights are given by

w+
j =

Cφ2
j (xo)exp

(
− zA
Sj(ωo)

)
N∑
l=1

φ2
l (xo)Tjl(ωo,zA)

βl(ωo)

, j∈Jxo , (5.35)
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with positive constant C determined by the normalization ‖w+‖= 1. They are damped
exponentially with range on the scale given by the mode dependent scattering mean
free paths Sj . The optimization detects the modes that are incoherent, i.e. the indexes
j for which zA>Sj(ωo), and suppresses them in the data.

That the optimal weights are unique follows as in Section 5.2, by rewriting (5.34) as
the Rayleigh quotient of a Perron-Frobenius matrix. The calculation is straightforward
and very similar to that in Section 5.2, so we do not repeat it here.

6. Numerical simulations

In this section we present numerical simulations and compare the results with those
predicted by the theory. The setup is as described in Section 4, with autocorrelation
functions (4.1) and (4.3) of the perturbations of the boundary and of the wave speed,
in a waveguide of depth D= 20λo. All lengths are scaled by the central wavelength
λo, and the bandwidth satisfies πB= 0.0625ωo. For example, we could have the central
frequency 1kHz and the unperturbed wave speed co= 1km/s, so that λo= 1m and B=
0.125kHz. To illustrate the cumulative scattering effect on the imaging process, we
consider several ranges zA of the array, from 25λo to 150λo. The details on the numerical
simulations of the array data are in Appendix A.

We begin in Figure 6.1 with the results in an ideal waveguide, with array at range
zA= 100λo. We plot on the left the image with the optimal weights and on the right the
theoretical weights (5.18) (in red) and the numerically computed weights (in blue). The
weights are computed by minimizing 1/M(w), withM defined in (5.7). The optimiza-
tion is done with the MATLAB function fmincon, over weights w= (w1,. ..,wN )T ∈RN ,
with constraints wj≥0 for j= 1,. ..,N , and normalization ‖w‖2 = 1. The image is very
similar to that predicted by the theory (the right plot in Figure 5.1), and the optimal
weights are in agreement, as well.

Fig. 6.1. Homogeneous medium and array range zA= 100λo. Left: Image with the numerically
computed weights. The abscissa is zA−z in λo and the ordinate is the cross-range x in λo. Right:
Theoretical weights (in red) and numerical ones (in blue) vs. mode index.

The analysis for random waveguides in Section 5.3 is based on the theoretical figure
of merit (5.8), which is close to M(w) only when the image is statistically stable.
The theory in [1, 29, 23] predicts that stability holds for the given bandwidth, in the
asymptotic limit ε→0. We have a finite ε, and to stabilize the optimization so that we
can compare it with the theory, we need to work with a slight modification of the figure
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Fig. 6.2. Image I(x;w) in waveguide with perturbed boundary and array at range zA= 100λo
(left) and in waveguide with perturbed medium and array at range zA= 50λo (right). The weights are
uniform wj = 1/

√
N , for j= 1, .. .,N . The abscissa is zA−z in λo and the ordinate is the cross-range

x in λo.
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Fig. 6.3. Waveguide with perturbed boundary and array range zA= 50λo. Left: Image with the
numerically computed weights. The abscissa is zA−z in λo and the ordinate is the cross-range x in
λo. Right: Theoretical weights (in red) and numerical ones (in blue) vs. mode index.

of merit (5.7),

Mnum(w) =
|〈I(xo;w)〉|2

‖I(·;w)‖2
, (6.1)

where 〈I(xo;w)〉 is a local spatial average of the image around xo.
In our regime the theory predicts that Lj>zA for all the modes that remain co-

herent, as shown in figures 4.1 and 4.2. Therefore, we can neglect the phase factors in
(5.33), and optimize directly over positive weights. The optimization is done with the
MATLAB function fmincon, as before, but we regularize it by asking that the weights be
monotone decreasing with the mode index. That is to say, we work with the constraints

wj≥wj+1≥0, j= 1,. ..,N−1,

N∑
j=1

w2
j = 1.
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Fig. 6.4. Waveguide with perturbed boundary and array range zA= 100λo. Left: Image with the
numerically computed weights. The abscissa is zA−z in λo and the ordinate is the cross-range x in
λo. Right: Theoretical weights (in red) and numerical ones (in blue) vs. mode index.
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Fig. 6.5. Waveguide with perturbed boundary and array range zA= 150λo. Left: Image with the
numerically computed weights. The abscissa is zA−z in λo and the ordinate is the cross-range x in
λo. Right: Theoretical weights (in red) and numerical ones (in blue) vs. mode index.

Without weight optimization the images are noisy, with spurious peaks. We illus-
trate this in Figure 6.2, where we plot I(x;w) with uniform weights wj = 1/

√
N , for

j= 1,. ..,N . The image in the left plot is in a waveguide with perturbed boundary and
array at range zA= 100λo. The image in the right plot is in a waveguide with perturbed
medium and array at range zA= 50λo. Both images are noisy. The results in Figure
4.1 predict that half of the modes remain coherent at zA= 100λo in the waveguide with
perturbed boundaries (Sj>100λo for j= 1,. ..,N/2). Therefore the image is not bad,
and can be improved further by the optimization, as shown below. The results in Fig-
ure 4.2 show that all the modes are almost incoherent at zA= 50λo in the waveguide
with perturbed medium (Sj<70λo for j= 1,. ..,N). The image is noisy, with prominent
spurious peaks, and cannot be improved by optimization, as shown below.

We show in figures 6.3-6.5 the results of the optimization in a waveguide with
perturbed boundary and array at ranges zA= 50λo, 100λo, and 150λo. The local average
of the image in (6.1) is over an interval of length λo in range and of length λo, 1.5λo, and
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Fig. 6.6. Waveguide with perturbed medium and array range zA= 25λo. Left: Image with the
numerically computed weights. The abscissa is zA−z in λo and the ordinate is the cross-range x in
λo. Right: Theoretical weights (in red) and numerical ones (in blue) vs. mode index.
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Fig. 6.7. Waveguide with perturbed medium and array range zA= 50λo. Left: Image with the
numerically computed weights. The abscissa is zA−z in λo and the ordinate is the cross-range x in
λo. Right: Theoretical weights (in red) and numerical ones (in blue) vs. mode index.

2λo in cross-range, respectively. The weights obtained with the numerical optimization
are in reasonable agreement with those predicted by the theory. The resolution of the
images deteriorates as we increase zA because more of the higher indexed modes become
incoherent.

Figures 6.6-6.7 show the results in a waveguide with perturbed medium and array at
ranges zA= 25λo and 50λo. Here there is no trade-off between resolution and robustness
of the image, because most modes lose coherence on roughly the same range scale.
Coherent imaging can be done at range zA= 25λo, and the numerical weights agree
with those predicted by the theory. However, at range zA= 50λo the optimization fails
to improve the image.

7. Summary

We have carried out a comparative theoretical and numerical study of wave scat-
tering in two types of random waveguides with bounded cross-section: waveguides with
random inhomogeneities in the bulk medium and waveguides with random perturbations
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of the boundary. The wave field is a superposition of waveguide modes with random
amplitudes. Coherent imaging relies on the coherent part of the amplitudes, their ex-
pectation. However, this decays with the distance of propagation due to cumulative
scattering at the random inhomogeneities and boundary perturbations. The incoherent
part of the amplitudes, the random fluctuations gain strength and become dominant at
long ranges.

The characteristic range scales of decay of the coherent part of the mode ampli-
tudes are called scattering mean free paths. They are frequency- and mode-dependent,
and they decrease monotonically with the mode index. In waveguides with random
boundaries the mode dependence is very strong. Thus, we can image with an adap-
tive approach that detects and suppresses the incoherent modes in the data in order
to improve the image. The high indexed modes are needed for resolution but they are
the first to become incoherent. Thus, there is a trade-off between the resolution and
robustness of the image, which leads naturally to an optimization problem solved by
the adaptive approach. It maximizes a measure of the quality of the image by weighting
optimally the mode amplitudes.

Such mode filtering does not work in waveguides with random media because there
the modes have similar scattering mean free paths. All the modes become incoher-
ent at essentially the same propagation distances and incoherent imaging should be
used instead. There is a large range interval between the scattering mean free paths
of the modes and the equipartition distance, where incoherent imaging can succeed.
The equipartition distance is the characteristic range scale beyond which the energy is
uniformly distributed between the modes, independent of the initial state. The waves
lose all information about the source at this distance and imaging becomes impossible.

Incoherent imaging is not useful in waveguides with random boundaries because the
equipartition distance is almost the same as the scattering mean free paths of the low
indexed modes. Once the waves become incoherent all imaging methods fail.
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Appendix A. Numerical simulations of the array data. In the numerical
simulations the source is supported in a disk of radius λo/10, and it emits a pulse

f(Bt) = sinc(Bt) (A.1)

modulated by the carrier signal cos(ωot). The array has NR= 39 receivers located at
xr = (xr,zA), with xr = rλo/2, r= 1,. ..,39.

The wave propagation in waveguides with perturbed media is simulated by solv-
ing the wave equation as a first order velocity-pressure system with the finite element
method described in [9]. It is a second order discretization scheme in space and time,
and in the simulations we used spatial mesh size h=λo/50 in cross-range and range,
and time discretization step determined by the CFL condition ∆t=h/(

√
2cmax), with

cmax the maximal value of the speed of propagation in the medium.
The wave propagation in waveguides with perturbed pressure release boundary is

simulated by solving the wave equation as a first order velocity-pressure system with
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the code Montjoie (http://montjoie.gforge.inria.fr/). In the simulations we used 8−th
order finite elements in space and 4−th order finite differences in time, with spatial
mesh size h=λo/4 and time discretization step ∆t= 5 ·10−6s.

In both cases we use two perfectly matched layers (PML) to the left and right of
the computational domain to model the unbounded waveguide in z.
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