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Abstract. Echoes from small reflectors buried in heavy clutter are weak and difficult to distinguish from the medium
backscatter. Detection and imaging with sensor arrays in such media requires filtering out the unwanted backscatter and
enhancing the echoes from the reflectors that we wish to locate. We consider a filtering and detection approach based on the
singular value decomposition of the local cosine transform of the array response matrix. The algorithm is general and can be
used for detection and imaging in heavy clutter, but its analysis depends on the model of the cluttered medium. This paper
is concerned with the analysis of the algorithm in finely layered random media. We obtain a detailed characterization of the
singular values of the transformed array response matrix and justify the systematic approach of the filtering algorithm for
detecting and refining the time windows that contain the echoes that are useful in imaging.
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1. Introduction. We consider an inverse problem for the scalar wave equation, where the goal is to

image small reflectors surrounded by heavy clutter, using an array of sensors that probes the medium with

pulses and records the echoes. The clutter is due to numerous inhomogeneities that are encountered in

applications such as ground penetrating radar and exploration geophysics. Heavy clutter is an issue when

the cumulative scattering effect of the inhomogeneities seriously impedes the imaging process. When the

coherent echoes from the reflectors, which are useful in imaging, are overwhelmed by the incoherent wave

field backscattered then we are in a heavy clutter situation.

Figure 1.1 shows a schematic of the problem setup. The array A has N sensors that play the dual role

of sources and receivers. We denote by ~xs and ~xr the location of the sources and receivers, although s and r

are indexes running from 1 to N . See Appendix A for a detailed explanation of the notation. The sources

probe the medium, one at a time, by sending short pulses f(t) from locations ~xs, and the receivers at ~xr

record the echoes. The array data is the N ×N response matrix

P(t) = {P (t, ~xr, ~xs)}r,s=1,...,N , t ∈ (0, T ], (1.1)

with entries given by the time traces of the scattered acoustic pressure P (t, ~xr, ~xs). We define all traces in

the same time window [0, T ] by reseting the clock every time a source emits a pulse. The inverse problem is

to estimate the compact support S⋆ of the reflectors, given the response matrix P(t).

In weak clutter, the reflectors produce strong coherent echoes and we can image with the Kirchhoff

migration method used routinely in radar [20] and seismic imaging [6, 17, 7]

J (~y) =
∑

~xs,~xr∈A
P (τ(~xs, ~y, ~xr), ~xr, ~xs) , ~y ∈ S ⊃ S⋆. (1.2)

This forms an image at points ~y in a search domain S by summing the entries in the response matrix

backpropagated numerically to ~y. The backpropagation is done approximately, with round-trip travel times

τ(~xs, ~y, ~xr) computed, numerically, in a fictitious smooth medium. Migration methods are not useful for
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Fig. 1.1. General setup for array imaging.

imaging in stronger clutter, where multiple scattering by the inhomogeneities creates long tailed traces, with

incoherent arrivals (coda), observed long before and after the coherent echoes from the reflectors in S⋆. The

images are noisy, difficult to interpret and change unpredictably with the realization of the clutter.

The coherent interferometric (CINT) methods introduced and analyzed in [9, 10, 11, 13] image in clutter

by backpropagating cross correlations of the traces instead of the traces themselves. The cross-correlations

are over time and sensor offset windows whose size is determined by how quickly the waves decorrelate over

distances and frequencies. CINT operates on the basis that the cross-correlations are rather efficient at

suppressing the coda and enhancing the coherent echoes. This is true in moderate backscattering regimes,

where the reflectors in S⋆ are not further than one or two transport mean free paths [29, 30, 33] from

the array. In heavy clutter, the backscattered waves dominate the coherent echoes from S⋆ and cannot be

suppressed by just taking cross-correlations of the traces. Additional filtering of the clutter effects is needed

prior to the image formation with CINT or migration. The question is how to do the filtering, without

a-priori information about the location of the reflectors and with no knowledge of the clutter.

The layer annihilators introduced and analyzed in [8], for imaging in randomly layered media, are

examples of such filters. They distinguish the layer echoes from the coherent ones based on the dependence

of their arrival times on the source-receiver offsets h. Specifically, they use a transformation between the time

variable and the depth variable, called the normal move-out map, that defines the arrival time of a primary

echo from a layer at depth z, where z is in one to one correspondence with the time t. The arrival times of

the echoes from the compact reflectors have a different dependence on the sensor offsets h, and this is why

they can be detected and emphasized by the layer annihilator filters in [8]. The one to one correspondence

between the depth traveled by the waves in the medium and time exists only in one dimensional media. This

is why the filters in [8] cannot be used with general, non-layered clutter.

In this paper we analyze a filtering approach that works in general cluttered media. It is based on

the singular value decomposition (SVD) of the local cosine (LC) transform [25, 19] of the response matrix

P(t). The LC transform is used to decompose the recorded traces in orthonormal bases given by smooth

time windows modulated by cosine functions [25, Chapter 8]. Such orthonormal bases do not exist for

smooth windows modulated by complex exponentials (like in the windowed Fourier transform), as stated

by the Balian-Low theorem [25, Theorem 5.6]. The smooth windows in the LC transform avoid artificial

discontinuities in the signals and large amplitude coefficients at high frequencies. Moreover, the orthonormal
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bases lead to fast and stable reconstructions of the traces from filtered (thresholded) coefficients.

Another detection and data filtering method, based on the SVD of the Fourier transformed response

matrix in a time window, is considered in [3, 2] for imaging through isotropic, strong clutter. It works with

array data that are decorrelated from one receiver to the next, and uses ideas from random matrix theory

to assess the medium backscatter.

Our approach (see also [14]) provides an efficient and systematic way for selecting and refining the

time windows with detectable coherent echoes, independent of the correlations of the data across the array.

Detection is based on the behavior of the singular values of the LC transformed P(t) over the frequency

bandwidth and over time windows that are progressively refined.

The main result of this paper is a detailed theoretical analysis of the behavior of the singular values of

the LC transformed matrix P(t), and a justification of the detection approach in randomly layered media.

The algorithm, however, works in general clutter as shown with extensive numerical simulations in [14]. It

is only the analysis of the algorithm that depends on the model of the medium. The randomly layered

media considered here are of special interest because they, in fact, produce stronger backscattering than

general, mostly isotropic clutter. For example, the concept of transport mean free path that quantifies the

scattering effect of general clutter does not apply to randomly layered media. This is because of the wave

localization phenomenon. Even small wave speed fluctuations in layered media can cause wave localization

[34, 30], which means that all of the incident energy is reflected back and does not reach beyond some depth

[34, 1, 22].

Our analysis does not address additive, instrument noise. We consider additive noise in the numerical

study presented in [14]. In particular, we compare there the effects of strong additive noise and clutter

backscatter. We observe that additive noise is much easier to mitigate than clutter effects. We also show

that the detection and filtering algorithm based on the LC transform deals equally well with instrument

noise and clutter backscatter. Naturally, the distribution of the singular values of the LC transformed

response matrix is affected by the strength of the additive noise. If the noise is weak, the spectrum is a small

perturbation of the noiseless one analyzed in this paper. The analysis does not apply to strong additive

noise regimes, where the distribution of the singular values approaches that of the Wigner quarter circle law

[3, 14], characteristic of random symmetric matrices with uncorrelated entries [26, 32].

The paper is organized as follows: We begin in section 2 with the formulation of the problem and the

discrete LC transform used in the detection algorithm in [14]. In section 3 we present numerical results. The

analysis is in sections 4-6. We end with a summary in section 7.

2. Formulation of the problem. The array imaging setup is in figure 1.1, with a small scatterer

buried in a finely layered medium. We refer to appendix A for a detailed explanation of the notation used in

the paper. We consider the system of coordinates with z axis orthogonal to the layers, and let the layering

be confined to the half space z < 0. The array is on the top surface z = 0, and we assume for simplicity that

it is linear, along the unit vector e ∈ R2,

~xr = xr(e, 0), 0 ≤ xr ≤ a, r = 1, 2, . . .N, (2.1)
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Fig. 2.1. Illustration of the time windowing segmentations of the array data traces at different tree levels indexed by d.
The schematic on the left illustrates the binary tree. On the right we show the segmentation of the data traces in the time
windows indexed by j, with j = 0, 1, . . . , 2d−1, at tree levels denoted by d.

where a is the array aperture. We have a reflector centered at ~y⋆ = (y⋆, z⋆), with z⋆ < 0, and we assume

that its support S is very small, point-like.

The problem is twofold: (1) Detect the small reflector from the N ×N response matrix P(t) dominated

by the layer echoes. (2) Filter out the layer echoes so as to image mainly its support S. We address both

questions using the LC transform of P(t) described next.

2.1. The LC transformed response matrix. The LC transform [19, 25] on a binary tree decomposes

each trace Prs(t) in an orthonormal basis given by smooth windows χ modulated by cosine functions. At

each tree level d ≥ 0 we have the segmentation∗

tj = j∆Td = j
T

2d
(2.2)

of the time interval [0, T ], for j = 0, 1, . . . , 2d, as illustrated in Figure 2.1. The tree node (j, d) is associated

to a space F d
j generated by the local cosine family

Fd
j =

{√
2

∆Td
χ

(
t− tj
∆Td

)
cos [wn(t− tj)]

}

n∈N

, (2.3)

with frequencies

wn =
π(n+ 1/2)

∆Td
, n ∈ N. (2.4)

The union of Fd
j over j = 0, 1, . . . 2d − 1 gives an orthonormal basis of L2[0, T ]. At the next tree level d+ 1,

the spaces F d+1
2j and F d+1

2j+1 are orthogonal, and their sum F d+1
2j ⊕ F d+1

2j+1 is equal to the space F d
j at the

parent node (j, d) [25, Proposition 8.7].

The discrete cosine bases used in the numerical simulations are obtained from (2.3) by discretizing the

time t at time intervals δT that are much smaller than the width of the pulse f(t). The number NT = T/δT

∗In [25], the partition is done on intervals in R delimited by half integer points. Here we scale the intervals by time δT and
absorb the 1/2δT shift of the partition points in the t variable.
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Fig. 3.1. Left: Illustration of the setup for the numerical simulations. Right: The wave speed (in km/s) used in the
simulations vs. depth (−z) scaled by λo.

of time samples is a power of 2, and the frequency index n in (2.4) is restricted by [25, Section 8.5.2]

n = 0, 1, . . . , NT /2
d − 1. Then, the frequencies sample the same bandwidth wn ∈ (0, π/δT ) at all tree levels,

but the sampling rate changes with d,

wn+1 − wn =
π

∆Td
, n = 0, 1, . . .Nt/2

d − 2. (2.5)

The LC transform of the response matrix at a given level d ≥ 0 is given by

P̃rs(tj , wn) =

∫
dtPrs(t)

√
2

∆Td
χ

(
t− tj
∆Td

)
cos [wn(t− tj)] , r, s = 1, . . .N. (2.6)

It is a real and symmetric N ×N matrix for all j = 0, 1, . . . 2d − 1 and n = 0, 1, . . . NT

2d − 1. The detection

algorithm is based on the behavior of the singular values {σq(tj , wn)}q=1,...N of P̃(tj , wn), across frequencies

{wn}n=0,...NT /2d−1, and in time windows indexed by tj [14].

3. Numerical simulations. We present in this section two dimensional numerical results. We begin

with the numerical setup and an illustration of the strong clutter impediment to the imaging process. Then,

we show the behavior of the singular values of the LC transformed response matrix (2.6) and explain briefly

the detection and imaging approach introduced in [14].

3.1. Numerical setup. The schematic of the setup is on the left in figure 3.1. The array has N = 79

sources and receivers. We choose the simulation parameters in a regime that is close to that encountered in

exploration geophysics [34], but modified so as to articulate better the effects of the filtering algorithm. The

sources in the array emit pulses f(t), given by the derivative of a Gaussian, with bandwidth 2.5− 15.5Hz, at

6dB. The reference wavelength is λo = 100m calculated at frequency ωo/(2π) = 10Hz, and the array sensors

are at distance λo/2 apart.

We generate the response matrix P(t) by solving with the finite element method described in [4, 5] the

acoustic wave equation with a point source at ~xs. The wave speed is shown in the right plot of figure 3.1. It

has the mean value c = 1km/s and the fluctuations are generated with random Fourier series, with Gaussian

correlation function and correlation length ℓ = 2m. We have a small reflector buried in the layered medium,

at depth 75λo and cross-range 15λo. We model it as an acoustic soft scatterer, by setting the pressure P to

zero at its boundary ∂S. The support S is a disk of diameter λo.
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Fig. 3.2. Left: The recorded time traces for the central source illumination. The abscissa is time in hundreds of ms and
the ordinate is the receiver location on the array surface, in units of λo. Right: The Kirchhoff migration image. The abscissa
is cross-range in λo and the ordinate is depth in λo. The reflector indicated with the black circle is obscured by the layers.

The cumulative effect of the layers consists of strong backscattered waves that overwhelm the echoes

from the small reflector that we wish to image. This can be seen from the time traces plotted on the left in

figure 3.2, and from the Kirchhoff migration image shown on the right. The image is computed using (1.2)

with round trip travel times τ(~xs, ~y, ~xr) = (|~xs − ~y|+ |~y − ~xr|) /c.
Remark 3.1. The detection approach described below does not require any knowledge of the wave speed.

However, the image formation uses the smooth part c(z) of the speed, which determines the round trip travel

times τ of the coherent echoes. Here we suppose that we know c(z) and we take it constant for simplicity. If

c(z) is not known, it must be estimated with additional data processing. The estimation of c(z) in strongly

backscattering finely layered media is considered in [8, 22, 1].

3.2. The SVD of the LC transformed response matrix. We compute the discrete LC transform

of P(t) with the Wavelab 850 Matlab package [21], with windows defined by the option “Sine”. The traces

are discretized on a uniform time mesh with Nt = 210 points, in the time interval t + To ∈ [6, 20]s, with

To = 6s. We take a binary tree with maximum depth 6 (i.e. 0 ≤ d ≤ 6).

There is no time windowing at root level d = 0, and we plot in figure 3.3 the singular values σq(t0, wn),

for q = 1, . . . , 10. If the clutter were weak, the coherent echoes from S would have dominated the data

traces† and we would have seen one or two large singular values separated from those associated with the

clutter. However, in our case the clutter is strong, and the backscattered field obscures the coherent echoes.

We obtain a cluster of singular values that fluctuate rapidly across the bandwidth.

Next, we plot in figure 3.4 the singular values σq(tj , wn) at level d = 3 in the tree. Note that when we

follow the pattern of σq(tj , wn), starting with the first window at j = 0, the singular values remain tightly

clustered, uniformly in the bandwidth, until we reach the index j = 5. This is the window that contains

the coherent echoes from the reflector in S, and it is distinguished from the others by one (arguably two)

anomalous singular values at the lower frequencies. By anomaly we mean that at the lower frequencies

the largest singular value is well separated from the rest, and its variation with the frequency differs from

the others. The anomaly persists in the next window, which contains the reverberations between the small

reflector and the layers, and then it disappears in the last window.

†See section 6 for the analysis of the SVD of the coherent part of P̃.
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Fig. 3.3. Singular values σq(t0, wn), at the root level d = 0 in the tree. We plot the largest 10 of them, for all the frequency
indexes n = 0, 1, . . . , NT − 1. The abscissa is the frequency in Hz.
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Fig. 3.4. The singular values σq(tj , wn) vs. frequency wn, for n = 0, . . . , NT /23 − 1, for q = 1, . . . , 10, at tree level d = 3.
Starting from the top left corner, we take j = 0, 1, . . . 23 − 1 = 7.

Now, let us look at the behavior of the singular values as we progress from one tree level to the next.

The bottom plots in figure 3.5 show that in the windows that contain pure clutter echoes, the singular values

remain clustered uniformly over the bandwidth, and as we progress from one tree level to another. Contrast

this with the top plots in figure 3.5, which show the persistent anomalous behavior of the largest singular

value, at the lower frequencies, in the windows that contain the echoes from S. Our approach uses such

persistent behavior to detect and refine systematically the time windows containing the coherent echoes [14].

3.3. Time window selection. To detect the coherent echoes, we look for anomalies in the clustering

of the largest singular values across the frequency band, as described here briefly. More details are in [14].

The basic idea is to introduce a “metric” that quantifies the clustering of the singular values in any given

time window. With this metric, the window selection is done in a sequence of steps:

Step1. The setup: Let d be any given level in the binary tree and let σq(tj , wn) be the singular values of

the LC transformed response matrix P̃(tj , wn), for all j = 0, 1, . . .2d − 1 and n = 0, 1, . . .Nt/2
d − 1. Choose

the frequency band B ⊆ (0, π/δT ) and the number Q of largest singular values to be used in the detection

of the time windows with coherent echoes. Let NB be the number of frequency samples in B. We always

choose the lower part of the bandwidth in the detection, because the coherent echoes have more energy at

the lower frequencies, as explained in more detail in section 6. Thus, we can index the frequencies wn in B
7
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Fig. 3.5. Largest: The largest 10 singular values in the windows that contain the coherent echoes from S. Left to right:
The 5-th window at level d = 3; its child, the 11-th window at level d = 4; its child, the 23-rd window at level d = 5; its child,
the 47-th window at level d = 6. Bottom: The largest singular values in windows that contain pure clutter echoes. Left to
right: The 2-nd window at level d = 3; its child, the 5-th window at level d = 4; its child, the 11-th window at level d = 5; its
child, the 23-rd window at level d = 6.

by n = 0, 1, . . .NB − 1.

Step 2. The clustering metric: Form the matrix S(tj) ∈ RQ×NB with components

Sq,n(tj) =
σq(tj , wn)

max
0≤n′<NB

σq(tj , w
′
n)

, q = 1, . . .Q, n = 0, 1, . . .NB − 1. (3.1)

The rows of this matrix are the largest singular values normalized by their maximum in the bandwidth B.
Calculate the singular values γq(tj) of S(tj) ∈ RQ×NB , for q = 1, . . . ,min{Q,NB}, and define the clustering

metric

m(tj) = γ2(tj)/γ1(tj). (3.2)

Step 3. The window selection: If d is the starting tree level, select the time window indexed by tj⋆ ,

the maximum of m(tj). Otherwise, select the time window from the two children of the previously selected

window at level d − 1. Choose the window with the largest m(tj). Increase the tree level d → d + 1 and

repeat steps 1-3.

In the time windows with the largest singular values clustered uniformly in the frequency band B, the
rows of matrix S(tj) are almost the same and (3.2) is small. That is to say, S(tj) is almost rank one. However,

when there are detectable anomalies of a few largest singular values, there is a significant second component

in the row space, and (3.2) is large. This is why we use the clustering metric (3.2) to detect the windows

with coherent echoes. The detection starts at some tree level d, and it continues at deeper levels > d by

looking at the children of the previously selected time windows.

We plot in figure 3.6 the clustering metric m(tj) for Q = 10 and B given by the lower fifth of the

frequency band (0, π/δT ). We choose this band because it is at the lower frequencies that we can expect to

detect the coherent echoes. The medium backscatter dominates the data at the higher frequencies. If we
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Fig. 3.6. Plot of m(tj ) as a function of the window index j = 0, . . . , 2d − 1 for tree levels d = 3, 4, 5 and 6.

start the detection at tree level d = 3, our criterion says that we should select the window indexed by t5.

Then, at the next level d = 4, we must choose among the two children of this window, indexed by t10 and t11.

The second plot in figure 3.6 says that we should choose the window indexed by t11. Proceeding this way,

we select the window indexed by t23 at level d = 5 and the window indexed by t47 at level d = 6. These are

precisely the windows considered in the top line of figure 3.5. The detection becomes ambiguous at deeper

levels, and so it should because: (1) the widow support at tree level d = 6 is already small, comparable to

the pulse width and (2) we have too few frequency samples in the bandwidth to carry on the detection.

3.4. Data filtering for imaging. Our approach filters the traces at a given tree level d, by setting

to zero the LC coefficients P̃(tj , wn) in all the windows tj , except those where the largest singular values

exhibit an anomalous behavior over the frequencies [14]. The filtered traces QP(t) are then reconstructed

from these LC coefficients. We show in the top row of figure 3.7 the Kirchhoff migration image formed with

such filtered traces, at levels d = 3, . . . , 6. We also show in the bottom row the images obtained from the

further filtered traces QQ̃P(t). The additional filter Q̃ amounts to projecting P̃(tj , wn) on the space of low

rank matrices with singular vectors given by the leading ones of P̃(tj , wn), at the frequencies wn in the lower

fifth of the bandwidth. At the higher frequencies we set P̃(tj , wn) = 0.

We note that as we refine the time windows, we localize better and better the small reflector that was

obscured by the layers in the image in figure 3.2.

4. Analysis setup. Our goal in the analysis is to explain qualitatively the behavior of the singular

values of the LC transformed response matrix illustrated in section 3.2, which is at the core of our detection

and data filtering approach. Here we give the mathematical model of the response matrix and the asymptotic

regime of separation of scales used in the analysis. The SVD analysis of the LC transformed matrix is in

sections 5 and 6.

4.1. Mathematical model of the LC transformed array data. The model of the array data

Prs(t) = P (t, ~xr, ~xs) is based on the scalar wave equation

1

V 2(~x)

∂2P (t, ~x, ~xs)

∂t2
−∆P (t, ~x, ~xs) = f(t)

∂

∂z
δ(~x − ~xs), t > 0,

P (t, ~x, ~xs) ≡ 0, t < 0, (4.1)

with a point source at ~xs = (xse, 0) emitting downward the pulse f(t). The wave speed V (~x) satisfies

1

V 2(~x)
=

{
1/v2(z) + ν(~x − ~y⋆), z < 0
1/c2, z ≥ 0,

(4.2)
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Fig. 3.7. Top: Images obtained with traces reconstructed from the LC coefficients of P(t) in the selected windows. From
left to right: j3⋆ = 5, j4⋆ = 11, j5⋆ = 23 and j6⋆ = 47. Bottom: The same plots as above, but for the traces reconstructed from
the LC coefficients of P(t) projected on the low rank dominant subspace of matrices at he lower frequencies.

for ~x = (x, z). Here ν(~x − ~y⋆) models the reflectivity of the small reflector at ~y⋆ = (y⋆, z⋆), and v(z) is the

wave speed in the layered medium. It has a smooth part c, which determines the travel times, and a rough

part that scatters. We take c constant for simplicity and model the fluctuations with a random process µ,

1

v2(z)
=

1

c2

[
1 + σµ

(z
ℓ

)]
. (4.3)

Here µ is a dimensionless, zero mean random function with integrable correlation function. The process is

normalized so that
∫ ∞

−∞
dz E

{
µ(0)µ

(z
ℓ

)}
= ℓ, (4.4)

with ℓ the correlation length of the fluctuations, and we control its intensity

E

{[
σµ
(z
ℓ

)]2}
= σ2, (4.5)

by adjusting the parameter σ.

4.1.1. Model of the array data. The pressure Prs(t) recorded at the array consists of the direct

arrival of the waves from ~xs to ~xr, and the scattered field. We assume hereafter that the direct arrival has

been removed by tapering the data for t ≤ |~xr − ~xs|/c. The scattered field observed at times

t < τC = min
r,s=1,...N

τ(~xs, ~y
⋆, ~xr)

consists of the unwanted echoes N (t, ~xr , ~xs) from the layers,

Prs(t) = N (t, ~xr , ~xs), t < τC . (4.6)

Around time τC ,

Prs(t) ≈ N (t, ~xr, ~xs) + C(t, ~xr, ~xs), t ≈ τC , (4.7)
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where C(t, ~xr, ~xs) is the transmitted field from the source at ~xs to the reflector at ~y⋆ and then back to the

array at ~xr. We refer to it as the coherent field, although it is random [22, Chapter 8]. If this field were

strong enough, the Kirchhoff migration imaging method would image the small reflector well, without any

data filtering [12]. Here C is overwhelmed by the medium backscatter N .

At later times than τC , the model of Prs(t) is more complicated than (4.7), because it includes reverber-

ations between the source and the layered medium. However, for the analysis in this paper it is sufficient to

look at the two cases t < τC and t ≈ τC .

4.1.2. Model of the layer echoes. The incoherent backscattered field N (t, ~xr, ~xs) can be written as

a superposition of up going plane waves

N (t, ~xr;~xs) =
1

2(2π)3

∫
dω ω2f̂(ω)

∫

K≤1/c

dKR(ω,K, 0) e−iωt+iωK·(xr−xs). (4.8)

This amounts to Fourier transforming the wave equation in t and x ∈ R2, and letting ω and ωK be the dual

variables to t and x, respectively. We obtain a one dimensional Helmholtz equation for plane waves traveling

at horizontal slowness K and vertical speed c(K) = c/
√
1− (cK)2, where K = |K| ≤ 1/c. The evanescent

waves with K > 1/c are neglected in (4.8).

The reflection coefficient R(ω,K, z) is the ratio of the complex valued, up and down going wave am-

plitudes at z ∈ [−L, 0]. Here −L is a large enough depth that cannot influence the array data up to the

time of observation. The up and down going amplitudes solve a system of first order ordinary differential

equations in z, with down going amplitude at z = 0 determined by the source excitation, and zero upgoing

amplitude at z = −L. Although these amplitudes depend on the whole medium in [−L, 0], the reflection

coefficient R(ω,K, z) depends only on the medium below z, as if the top interval [z, 0] has been stripped

away[22, Chapter 9]. Explicitly, R(ω,K, z) is a complex valued random field satisfying the Riccati equations

∂

∂z
R(ω,K, z) =

−iωσµ (z/ℓ) c(K)

2c2

{
e−2iω(L+z)/c(K) − 2R(ω,K, z) + e2iω(L+z)/c(K)R2(ω,K, z)

}
, z > −L,

R(ω,K,−L) = 0. (4.9)

In model (4.8) of the layer echoes we evaluate the reflection coefficient at the measurement surface z = 0.

4.1.3. Model of the coherent echoes. The coherent echoes C(t, ~xr, ~xs) can be modeled by

C(t, ~xr, ~xs) ≈ −∂2P i(t, ~y⋆, ~xs)

∂t2
⋆t G(t, ~xr, ~y

⋆), (4.10)

where ⋆t denotes time convolution, P i(t, ~y⋆, ~xs) is the “incident” pressure field impinging on the reflector

at ~y⋆, and G is the causal Green’s function of the wave equation in the layered medium. If there were no

random fluctuations, the incident pressure field would be

P i
o(t, ~y

⋆, ~xs) = − ∂

∂z

f (t− |~y − ~xs|/c)
4π|~y − ~xs|

∣∣∣∣
z=z⋆

≈ f ′(t− |~y⋆ − ~xs|/c)z⋆
4πc|~y⋆ − ~xs|2

, (4.11)

where we let ~y⋆ = (y⋆, z⋆), and assumed a short pulse f(t) to make the approximation. We would observe

the pulse f ′ centered at travel time |~y⋆ − ~xs|/c, and the amplitude change due to geometrical spreading. In

the random medium we have

P i(t, ~y⋆, ~xs) ≈ P i
ODA

(t, ~y⋆, ~xs) + . . . (4.12)
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with wave front P i
ODA

modeled by the O’Doherty Anstey (ODA) theory [27, 16, 1, 18, 31, 22]. The weaker,

incoherent reverberations from the layers are denoted by “. . .”. The ODA theory says that the transmitted

field through the random medium is given by [22, 1, 27, 18, 31]

P i
ODA

(t, ~y⋆, ~xs) ≈
(
f ⋆t KODA

)′
(t− |~y⋆ − ~xs|/c− δτ(~y, ~xs)) z

⋆

4πc|~y⋆ − ~xs|2
. (4.13)

We have pulse spreading due to the convolution of f with the Gaussian kernel

KODA(t, ~y
⋆, ~xs) =

sin θ(~xs)√
2πtps

e
− t2 sin2 θ(~xs)

2t2ps , sin θ(~xs) =
|z⋆|

|~y⋆ − ~xs|
, (4.14)

and a small random arrival time shift δτ(~y⋆, ~xs). Here small means that δτ is comparable to the pulse width.

The spread is proportional to tps, a parameter with units of time that depends on z⋆ and the correlation

length ℓ, and it is more pronounced for waves propagating at shallow angles θ(~xs).

In the frequency domain, (4.13) becomes

P i
ODA

(t, ~y⋆, ~xs) ≈
∫

dω

2π
iωf̂(ω)

K̂ODA(ω, ~y
⋆, ~xs)z

⋆

4πc|~y⋆ − ~xs|2
e−iω[t−|~y⋆−~xs|/c−δτ(~y⋆,~xs)]

=

∫
dω

2π
f̂(ω)ĜODA(ω, ~y

⋆, ~xs)e
−iωt, (4.15)

where ĜODA is like a Green’s function. It gives approximately the transmitted wave field at ~y⋆ when the

source at ~xs emits an impulse δ(t). The second factor in the convolution in (4.10), which models transmission

from ~y⋆ to ~xr is similar to (4.15), by reciprocity. We obtain the following model of the coherent echoes

C(t, ~xr, ~xs) ≈
∫

dω

2π
ω2f̂(ω)ĜODA(ω, ~y

⋆, ~xs)ĜODA(ω, ~xr, ~y
⋆)e−iωt. (4.16)

4.2. Scaling and the asymptotic regime. Our theoretical study of the spectral decomposition of

the LC transformed P(t) is in an asymptotic regime of separation of scales that we now describe. It may be

motivated by applications in exploration geophysics [34], where the waves penetrate to depths L = 5− 10km

that are much larger than the reference wavelength λo ∼ 100m of the probing pulses, and the medium has

strong fluctuations on a much shorter scale ℓ = 2 − 3m. Such a regime has been used in the numerical

simulations in section 3.

Let L be the reference, order one length scale. This implies that the time window [0, T ] over which

the data P(t) is recorded is order one, as well. To model the separation of scales, we introduce the small

parameter ε ≪ 1 given by the ratio of the pulse width and T . Specifically, we let f ε(t) be the scaled pulse

f ε(t) = ε1/2f

(
t

ε

)
, (4.17)

with Fourier transform

f̂ ε
(ω
ε

)
= ε1/2

∫
dtf ε(t)e

iωt
ε = ε3/2

∫
dt

ε
f

(
t

ε

)
e

iωt
ε = ε3/2f̂(ω). (4.18)

Here f(t) is the carrier pulse and the scaling says that f ε(t) is supported at high frequencies of order ε−1.

Equivalently, the reference wavelength λε
o satisfies λε

o ∼ εL. The correlation length is much smaller than λε
o.

We rename it ℓε and we assume that it satisfies

ℓε

λε
o

∼ λε
o

L
∼ ε ≪ 1. (4.19)
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The strength of the fluctuations is σ ∼ 1.

It remains to specify the aperture a and the distribution of the sensors in the linear array. We take

xr = rε∆x, r = 1, . . .N, (4.20)

with spacing ε∆x ∼ λε
o, and let a be order one, so that the number N of sensors is large,

N =
a

ε∆x
∼ ε−1 ≫ 1. (4.21)

The asymptotic regime (4.19) has been used extensively in studies of waves in randomly layered media

[1, 22]. It is interesting because it considers strong fluctuations that arise in important applications. Waves

penetrate to large depths in media with strong fluctuations when they interact weakly with the layers, over

distances comparable to the wavelength (i.e., when ℓε ≪ λε
o). We take ℓε ∼ ελε

o so that over the distance

L ≫ λε
o the cumulative effect of the layers gives significant echoes at the array. In particular, by scaling the

amplitude of the pulse with ε1/2 in (4.18) we obtain an order one intensity of the backscattered waves [22,

Section 14.3].

There are other scaling regimes that give significant backscattering. For example, the theory extends

almost identically to the weakly heterogeneous [22, Section 18.1] regime with λε
o ∼ ℓε ∼ εL and σ ≪ 1.

There is only one essential difference. The waves interact more efficiently with the fluctuations in the weakly

heterogeneous regime, because λε
o ∼ ℓε, and the asymptotic results depend on the specific correlation function

of the random fluctuations [22]. In our case, the waves do not see the small scales in detail because λε
o ≫ ℓε,

and the fluctuations take the canonical form of white noise as ε → 0, independent of the detailed structure

of the random process µ.

4.3. Statistics of the reflection coefficient. Our analysis in section 5 is based on the statistics of

the reflection coefficients

Rε(ω,K, 0) = R
(ω
ε
,K, 0

)
(4.22)

in the asymptotic limit ε → 0, which we now summarize from [22, Section 14.3]. First, let us note from

(4.9), with ω replaced by ω/ε, that Rε(ω,K, 0) satisfies a Riccati equation driven by the random process

µε(z) =
σ

ε
µ
( z

ℓε

)
=

σ

ε
µ

(
z

(ε/σ)2l

)
, (4.23)

with rescaled correlation length l of order one. In the limit ε → 0, we have by the central limit theorem that

∫ z

−L

µε(z′)dz′ →
√
lW (z), (4.24)

where W (z) is standard Brownian motion and the convergence is weak, in distribution. As we already

mentioned in section 4.2, the fluctuations of the wave speed take the canonical form of white noise as ε → 0,

and the statistics of the reflection coefficients are analyzed using the white noise (diffusion) limit Theorem

6.5 in [22]. The relevant results for our purpose are summarized from [22, Section 14.3] in the following

lemma.
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Lemma 4.1. The reflection coefficients Rε(ω,K, 0) are correlated only if the frequencies and slowness

moduli are close to each other, at order ε. Moreover,

E
{
[Rε (ω + εh/2,K + εk/2)]

p
[
Rε (ω − εh/2,K − εk/2)

]q}
→ δpq

∫ ∞

0

ds Vp(ω,K, s)eis[h[1−(Kc)2]−ωKkc2]

(4.25)

as ε → 0, where δpq is the Kronecker delta symbol, the bar denotes complex conjugate, and

Vp(ω,K, s) =
2pc(K) [c(K)s/Lloc(ω)]

p−1

Lloc(ω) [2 + c(K)s/Lloc(ω)]
p+1 , Lloc(ω) =

4c2

ω2l
. (4.26)

Here Lloc(ω) is the localization length [22, Section 9.2]. It coincides in layered media with the scale of

exponential decay of the coherent part of the wave field, modeled with ODA [22, Section 14.2]. Specifically,

the pulse spread parameter tps in (4.14) satisfies

ω2t2
ps
=

|z⋆|
Lloc(ω)

. (4.27)

Remark 4.2. We have the explicit expressions (4.25)-(4.26) of the moments of Rε because we have

assumed a constant background speed c. This is the simplification that we alluded at in section 4.1. The

results extend to variable backgrounds, with the complication that the right hand side in (4.25) is determined

by the solution of an infinite coupled system of transport equations [22, Section 14.3].

4.4. Scaling in the LC transform. In the analysis we consider a depth d in the LC transform binary

tree that gives time intervals

∆Td =
T

2d
= ε1−γ∆T , γ ∈ (0, 1). (4.28)

Here ∆T is order one, and γ = 1 means basically no time segmentation (∆Td ∼ T ). The other extreme is

γ = 0, where the windows are as narrow as the pulse (∆Td = ε∆T ). We take γ ∈ (0, 1) to ensure that the

time windows are wider than the pulse, and still have time segmentation taken into account in the analysis.

Since the emitted pulse has high frequencies of order ε−1, it is not difficult to show that the LC transform

of the response matrix P(t) is supported at order ε−1 frequencies, as well. Therefore, we rewrite the LC

coefficients (2.6) as

P̃ε
rs(tj , w) =

∫
dtPrs(t)

√
2

ε1−γ∆T
χ

(
t− tj

ε1−γ∆T

)
cos
[w
ε
(t− tj)

]
, r, s = 1, . . .N, (4.29)

where tj indicates the location of the window and we drop the index n of the frequencies for simplicity of

notation. The expression

P̃ε
rs(tj , w) = ε

γ−1
2

√
2∆T ℜ

{∫
dh

2π
P̂rs

(
w − εγh

ε

)
χ̂(h∆T )e

− i(w−εγh)tj
ε

}
(4.30)

follows by direct calculation from (4.29), with ℜ denoting the real part.

5. Spectral analysis prior to the coherent arrivals. Prior to the coherent arrival time τC , the

response matrix consists of pure layer echoes, and its LC transform follows from (4.6), (4.8) and (4.30). It

is a real symmetric Toeplitz matrix

P̃ε
rs(tj , w) = D̃ε

r−s(tj , w), (5.1)
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defined by sequence

D̃ε
q(tj , w) ≈

ε
γ
2−1

(2π)3

√
∆T

2
ℜ
{
w2f̂(w)

∫
dh χ̂(h∆T )

∫

K≤1/c

dKRε(w − εγh,K, 0)×

exp

[
− i(w − εγh)tj

ε
+ iq∆x(w − εγh)K · e

]}
, |q| ≤ N − 1. (5.2)

Since in our scaling N ∼ ε−1 ≫ 1, we can use the results in [24, 23, 15] to characterize its spectrum in terms

of its symbol Qε
tj (ξ, w) given by

Qε
tj (ξ, w) =

N−1∑

q=−N+1

eiqξ D̃ε
q(tj , w), ξ ∈ [−π, π). (5.3)

5.1. The distribution of eigenvalues and singular values. Let us denote by λD
p (tj , w) the eigen-

values of the Toeplitz matrix (5.1), for p = 1, . . . , N , and assume that they are in decreasing order. It is

stated in [24, 23] that if Qε
tj (·, w) ∈ L∞[−π, π), we have

lim
N→∞

λD

p (tj , w) = sup
ξ∈[−π,π)

Qε
tj (ξ, w), lim

N→∞
λD

N−p(tj , w) = inf
ξ∈[−π,π)

Qε
tj (ξ, w), (5.4)

for all fixed positive integers p. In our setup N is large, but it depends on the same parameter ε as the

symbol Qε
tj (ξ, w). Therefore, we write that

λD

p (tj , w) ≈ sup
ξ∈[−π,π)

Qε
tj (ξ, w), λD

N−p(tj , w) ≈ inf
ξ∈[−π,π)

Qε
tj (ξ, w), (5.5)

for positive integers p of order one. This gives, obviously, the accumulation of the largest singular values

(see also [15, Theorem 4.13])

σD

p (tj , w) ≈ ‖Qε
tj(·, w)‖L∞[−π,π), p = O(1). (5.6)

We also have from [15, Theorem 4.5] that when Qε
tj (ξ, w) vanishes at least at one point ξ ∈ [−π, π),

which happens in our case, there is an accumulation of the singular values at zero,

σD

N−p(tj , w) ≈ 0, p = O(1). (5.7)

The distribution of the eigenvalues (singular values) is given approximately by Szegö’s first limit theorem

[15, Corollary 5.12],

1

N

N∑

p=1

1[α,β]
(
λD

p (tj , w)
)
≈ 1

2π

∫ π

−π

dξ 1[α,β]

(
Qε

tj (ξ, w)
)
, (5.8)

where 1[α,β] is the indicator function of the arbitrary interval [α, β] on the real line. In fact, we have [15,

Theorem 5.10]

1

N

N∑

p=1

g
(
λD

p (tj , w)
)
≈ 1

2π

∫ π

−π

dξ g
(
Qε

tj(ξ, w)
)
, (5.9)

for any continuous function g. We analyze next the symbol Qε
tj (tj , w), and then use approximations (5.8)

and (5.9) to study the spectrum of the LC transformed matrix.
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5.2. Analysis of the symbol. We derive here a simpler expression of the symbol Qε
tj (ξ, w), which

allows us to relate it to the random reflection coefficients Rε of the waves at specific slowness moduli. We

begin with the following result.

Proposition 5.1. The symbol Qε
tj (tj , w) is given by

Qε
tj (ξ, w) ≈

ε
γ
2 −1

(2π)2

√
2∆T

∆x
ℜ
{
wf̂(w)

∫
dh χ̂(h∆T )e

− i(w−εγh)tj
ε

∫ 1/c

o

dKRε(w − εγh,K, 0)×

∑

q∈Z

1[−1,1]

(
2qπ − ξ

K∆x(w − εγh)

)[
1−

(
2qπ − ξ

K∆x(w − εγh)

)2
]−1/2



 (5.10)

The proof is in appendix B, but the result can be understood as follows. We see from (5.2) and (5.3) that

the symbol is the discrete Fourier transform of D̃ε, which is itself a higher dimensional Fourier transform.

Proposition 5.1 says that one Fourier transform in (5.2) is undone in the calculation of the symbol. More

explicitly, the expression of Qε
tj involves the Dirichlet kernel

N−1∑

q=−N+1

eiqξ+iq∆x(w−εγh)K·e =
sin
[(
N − 1

2

)
(ξ + (w − εγh)∆xK · e)

]

sin
(

ξ+(w−εγh)∆xK·e
2

)

which in the limit N → ∞ acts as an approximate periodic delta distribution δ [2qπ − ξ − (w − εγh)∆xK · e] ,
for q ∈ Z. Write then the K integral in (5.2) in polar coordinates (K, θ), with slowness modulus K ∈ (0, 1/c)

and θ ∈ [0, 2π), so that K · e = K cos θ. The proposition says that we can collapse the θ integral using the

asymptotic limit of the Dirichlet kernel, to obtain (5.10).

Using Proposition 5.1, we can write a simpler expression of the symbol, as proved in appendix C. The

result is due to the rapid decorrelation of the random reflection coefficients Rε over slowness moduli, as

summarized in section 4.3.

Theorem 5.2. The symbol is given by

Qε
tj (ξ, w) ≈

ε
γ−1
2

(2π)2

√
2∆T

∆x
ℜ



wf̂(w)

∫
dh χ̂(h∆T )e

− i(w−εγh)tj
ε

∑

q∈Z

1[0,1/c](Kq,ξ)×

∫ ∞

0

dk Rε(w − εγh,Kε
q,ξ(h) + εk)

√
Kq,ξ

2k

}
, (5.11)

with

Kε
q,ξ(h) =

|2qπ − ξ|
∆x(w − εγh)

≈ Kε
q,ξ(0) = Kq,ξ, (5.12)

and assuming that Kq,ξ is finite, and not of order ≤ ε. Here the approximation is in mean square sense, and

therefore with high probability.

This result says that the symbol Qε
tj (ξ, w) is determined by the reflection coefficient Rε of waves with

slowness moduli K ≈ Kε
q,ξ(h), the poles of the terms in (5.10). These are plane waves with slowness vectors

along the direction e of the array. In the setup of our numerical simulations, depending on the frequency w,

we have between one and three terms in the sum over q, so we may think of the symbol as being determined
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by the reflection coefficients with slowness moduli given by (5.12) and q = 0,±1. More explicitly, when

evaluating the symbol Qε
tj at an argument ξ ∈ [−π, π), we select backscattered plane waves traveling at

different vertical speeds c(Kε
q,ξ(h)).

Remark 5.3. Since ξ ∈ [−π, π), the assumption of a finite Kq,ξ in Theorem 5.2 is relevant only for

q = 0. We have a very small slowness modulus Kq,ξ when |ξ| ≤ O(ε), and the contribution of the term q = 0

to (5.10) is approximately

ε
γ
2 −1

(2π)2

√
2∆T

∆x
ℜ
{
wf̂(w)

∫
dh χ̂(h∆T )e

− i(w−εγh)tj
ε

∫ 1/c

o

dKRε(w − εγh,K, 0)

}
.

Furthermore, this can be approximated (in mean square sense) by restricting the integral over K to a small

vicinity of zero, as shown in appendix C.

5.3. Decorrelation of the symbol. It follows easily from Theorem 5.2 and Lemma 4.1 that the

symbols Qε
tj(ξ, w) are correlated only if the frequencies are close to each other, at order ε. The frequency

sampling in LCT is given by (2.5), and it becomes in our scaling

∆w

ε
=

π

ε1−γ∆T
 ∆w = εγ

π

∆T
≫ O(ε). (5.13)

Thus, the scaled frequency is sampled at rate ∆w that is much larger than order ε, and the symbols Qε
tj (ξ, w)

are decorrelated for all the frequency samples. This explains the rapid fluctuations of the singular values

over the bandwidth in figures 3.4 and 3.5.

The rapid decorrelation of Rε over the slowness moduli induces decorrelations of the symbol over ξ, as

well. Specifically, we see from Theorem 5.2 that Qε
tj (ξ, w) and Qε

tj (ξ
′, w) are correlated if

|Kq,ξ −Kq′,ξ′ | . O(ε) (5.14)

for at least one pair of indexes q, q′ in the sum in (5.11). Because ξ, ξ′ ∈ [−π, π), equation (5.14) holds if

sign(q)ξ − sign(q′)ξ′ . ε, when |q| = |q′|,

|ξ ∓ sign(q)π| . ε, |ξ′ ± sign(q′)π| . ε, when |q| = |q′| ± 1, (5.15)

where sign(q) = 1 for q ≥ 0 and −1 otherwise. When only the q = 0 term contributes in the sum in (5.11),

we have that Qε
tj (ξ, w) and Qε

tj (ξ
′, w) are correlated if |ξ − ξ′| . ε. If a few more terms appear in the sum,

we also get correlations for ξ and ξ′ in order ε vicinities of the ends ±π of the interval containing them. In

any case, it is because of such rapid decorrelations of the symbol Qε
tj (ξ, w) over ξ that we expect to obtain

statistically stable estimates of the distribution (5.8) of the eigenvalues over properly chosen intervals [α, β],

as we discuss later.

5.4. Gaussian statistics. It is shown in [22, Section 9.3.4] that the backscattered field N , observed

around a fixed time t, converges in distribution to a Gaussian process, as ε → 0. Given our representation

of the symbol Qε
tj (ξ, w) in terms of Rε, it is not surprising that we obtain the following result.

Theorem 5.4. The symbol Qε
tj (ξ, w) converges in distribution to a Gaussian random variable Qtj (ξ, w)

as ε → 0, for any fixed frequency w and ξ ∈ [−π, π). The limit has mean zero and variance

E
{
Q2

tj (ξ, w)
}
=

1

8π

|w| |f̂(w)|2‖χ‖2
c2tj∆2

x

∑

q∈Z

1[0,1/c](Kq,ξ)V1(w,Kq,ξ, tj), (5.16)
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Fig. 5.1. The energy of P̃(tj , w) vs. frequency w, at tree level d = 3 and in time windows tj , for j = 0, 1 and 3. The
abscissa is the frequency in Hz. On the left we show the theory prediction. On the right we show the smoothed energy computed
numerically.

where V1 is given by (4.26) evaluated at p = 1, and

‖χ‖2 =

∫
dt

∆T

[
χ

(
t

∆T

)]2
=

∆T

2π

∫
dh |χ̂(h∆T )|2 .

The proof is in appendix D and it consists of showing that the moments of Qε
tj (ξ, w) converge to those of

the Gaussian variable Qtj (ξ, w), as ε → 0.

5.5. The energy of the LC transformed matrix. Now that we know the limiting statistics of the

symbol Qε
tj (ξ, w), we can estimate the energy of the LC transformed response matrix using Szegö’s limit

result (5.9). Specifically, we can compute the energy of P̃ε(tj , w)

E

{
1

N

N∑

p=1

[
σD

p (tj , w)
]2
}

= E

{
1

N
‖P̃ε(tj , w)‖2F

}
≈ 1

2π

∫ π

−π

dξ E

{[
Qε

tj (ξ, w)
]2}

≈
∫ π

−π

dξ E
{
Q2

tj (ξ, w)
}
,

(5.17)

where ‖ · ‖F is the Frobenius norm.

We show in the left plot of figure 5.1 the theoretical prediction of the energy as a function of w, in time

windows t0, t1 and t3, at tree level d = 3. We compute it using (5.16) in the right hand side of (5.17), with the

parameters defined in our numerical simulations in section 3. We plot with the solid blue line the predicted

energy at t0, normalized by its maximum. The red dash-dot line and the black dash line show the energy

at times t1 and t3, normalized by the maximum energy at t0. Note the shift of energy toward the lower

frequencies and the overall decay as the time progresses. This is a manifestation of the wave localization

phenomenon, which does not allow the waves at the higher frequencies to penetrate to large depths. When

the observation time grows, we receive waves that come from deeper depths, and the energy shifts toward

the lower frequencies.

In the right picture in figure 5.1 we show the numerical estimate of (5.17). We obtain it by smoothing the

computed Frobenius norm as follows. We interpret 1
N ‖P̃ε(tj , w)‖2F as a discrete signal and Fourier transform

it in the w variable. Then, we zero all the Fourier coefficients except at the lowest three “frequencies”. The

numerical estimate shown in figure 5.1 is given by the inverse Fourier transform of the filtered coefficients. We

note that although the numerical and theoretical estimates are not identical, the theory captures correctly
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Fig. 5.2. We plot with blue solid line the Frobenius norm of P̃(tj , w) at tree level d = 3. The black dash-dot line is
the smoothed energy shown in figure 5.1. The red dash line is the Frobenius norm averaged over a sliding window with 20
frequencies. The abscissa is frequency in Hz. From left to right we take t0, t1 and t3, respectively.
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Fig. 5.3. Illustration of the smoothing effect of averaging over a sliding window of frequencies. The blue solid line is the
Frobenius norm of P̃(t1, w) at tree level d = 3. The black and red dashed lines are local averages of the Frobenius norm over
ten and twenty frequencies, respectively.

the behavior of the energy.

Because of the decorrelation properties of the symbol over ξ, we expect that when N is large enough,

1
N ‖P̃ε(tj , w)‖2F approaches its statistical mean. Explicitly, the decorrelation results in section 5.3 imply that

the variance of 1
N ‖P̃ε(tj , w)‖2F is very small, of order ε. In our simulations N is not that large, and it is related

to the asymptotic parameter ε. This is why we do not observe the self-averaging of the energy in figure 5.2.

The computed Frobenius norm 1
N ‖P̃ε(tj , w)‖2F is shown with the solid blue line, and the smooth numerical

estimate used in figure 5.1 is shown with the black dash line. However, we do have the rapid decorrelation of

the symbol over the frequencies, and when we average 1
N ‖P̃ε(tj , w)‖2F over twenty frequencies around w, we

obtain the red dash-dot line that is very similar to the smoothed black dash curve. See also figure 5.3, where

we show the local averages over ten and twenty frequencies of the Frobenius norm of the LC transformed

matrix in the time window indexed by t1, at tree level d = 3. We see there that it is not enough to average

over ten frequencies to kill all the fluctuations (see the spurious peak of the black dashed curve around the

frequency 10Hz). When we average over 20 frequencies around each w, we get the smoother red dashed

curve that is similar to the theoretical prediction in figure 5.1.

5.6. The distribution of singular values. The distribution of singular values is given by

1

N

N∑

p=1

1[α,β]
[
σD

p (tj , w)
]
≈ 1

2π

∫ π

−π

dξ 1[α,β]

[
|Qε

tj (ξ, w)|
]
. (5.18)

19



0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

Magnitude of singular value
P

er
ce

nt
ag

e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

Magnitude of singular value

P
er

ce
nt

ag
e

Fig. 5.4. The theoretical prediction of the distribution of singular values in the first time window t0 at tree level d = 3.
The ordinate is the percent of singular values with magnitude in the interval indicated in the abscissa. From left to right we
show the distribution at frequencies w40 = 7.8Hz, and w60 = 11.7Hz.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Magnitude of singular value

P
er

ce
nt

ag
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Magnitude of singular value

P
er

ce
nt

ag
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Magnitude of singular value

P
er

ce
nt

ag
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

Magnitude of singular value

P
er

ce
nt

ag
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

Magnitude of singular value

P
er

ce
nt

ag
e

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

Magnitude of singular value

P
er

ce
nt

ag
e

Fig. 5.5. The numerical estimate of the distribution of singular values with magnitude in the interval indicated in the
abscissa. The top row is for frequency w40 = 7.8Hz, and the bottom row for w60 = 11.7Hz. We show from left to right the
distribution computed with no frequency averaging, and with ten and twenty frequency averaging, respectively.

We show its numerical estimate in the top row in figure 5.5, for frequencies w40 = 7.8Hz and w60 = 11.7Hz.

The ordinate in the plot is percent of singular values and the abscissa gives the frequency dependent intervals

[α(w), β(w)] that we now describe.

If P̃ε(tj , ω) had constant energy over the frequency band, it would make sense to look at the distribution

of singular values in the same interval [α, β] for all the frequencies. Here the energy varies significantly over

the bandwidth, so we define relative, frequency dependent intervals as follows. First, we let
〈
σD
1 (tj , w)

〉
be

the largest singular value smoothed as a function of frequency. The smoothing is done the same way as in

section 5.5. We take the sequence σD
1 (tj , w), Fourier transform it in w, keep its first three Fourier coefficients

and inverse Fourier transform to get
〈
σD
1 (tj , w)

〉
. Second, we normalize the singular values

σD

p (tj , w) 
σD
p (tj , w)〈

σD
1 (tj , w)

〉 , p = 1, . . . , N.

Then, we look at the distribution of singular values in eight equally sized segments [α, β] of the interval[
0,max

w
σD

1 (tj , w)/
〈
σD

1 (tj , w)
〉]
.

The theoretical prediction of the distribution of singular values is in figure 5.4. We compute it using the

asymptotic limit of the mean of the right hand side in (5.18). The limit is for the Gaussian process Qtj (ξ, w),
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as stated in Theorem 5.4.

Similar to what we said in section 5.5, we expect that the distribution stabilizes for large enough N , i.e.,

it approaches its statistical mean. We show in the left column in figure 5.5 the numerical estimate of the

distribution at the same two frequencies as in figure 5.4. We note that at the lower frequency the distribution

is qualitatively similar to the theoretical one, and smoothing by local frequency averaging is not essential.

At the higher frequencies, the numerically estimated distribution is not similar to the theoretical prediction,

but the results improve when averaging locally over twenty frequencies (the bottom right plot in figure 5.5).

6. Detection of the coherent echoes. The LC transform of the response matrix in time windows

with tj ≈ τC follows from (4.7) and (4.30),

P̃ε
r,s(tj , w) ≈ D̃ε

r−s(tj , w) + C̃ε
r,s(tj , w), (6.1)

where C̃ε is the LC transform of the coherent matrix (4.16). Because our time windows are much broader

than the pulse, we can write

C̃ε
r,s(tj , w) =

∫
dt Crs(t, ~xr , ~xs)

√
2

ε1−γ∆T
χ

(
t− tj

ε1−γ∆T

)
cos
[w
ε
(t− tj)

]

≈
√

2

ε1−γ∆T
χ(0)

∫
dt Crs(t, ~xr, ~xs) cos

[w
ε
(t− tj)

]
.

Here we assume that the coherent arrivals are well contained in the window χ, to extend the integral to the

entire real line. This is consistent with our assumption in (5.13) that the time window is much larger than

the pulse width. Thus, we have approximately

C̃ε
r,s(tj , w) ≈

√
2

ε1−γ∆T
χ(0)ℜ

{
e−iw

ε
tj Ĉ
(w
ε
, ~xs, ~xr

)}

≈ ε
γ
2 −1

√
2

∆T
χ(0)ℜ

{
w2f̂(w)e−iw

ε
tj Ĝε

ODA
(w, ~y⋆, ~xs)Ĝε

ODA
(w,~xr , ~y

⋆)
}
, (6.2)

from model (4.16) with Ĝε
ODA(w, ~y

⋆, ~xs) = ĜODA(w/ε, ~y
⋆, ~xs).

To state the result that justifies the detection of the coherent echoes, we denote by λp(tj , w) and λC
p (tj , w)

the eigenvalues of P̃ε(tj , w) and C̃ε(tj , w), and suppose that they are in decreasing order. Recall from section

5.1 that λD
p (tj , w) are the eigenvalues of the Toeplitz matrix D̃ε

r−s(tj , w) containing the layer echoes. Since

tj and w are fixed here, we drop them from the arguments of the eigenvalues for simplicity of notation. We

have the following result proved in appendix E.

Theorem 6.1. The rank of the coherent matrix C̃ε(tj , w) is at most two. Depending on the sign of its

nonzero eigenvalues, we have the following interlacing relations:

Case 1: When λC
N ≤ 0 < λC

1 ,

λD

1 . λ1 ≤ λD

1 + λC
1 and λD

N + λC
N ≤ λN . λD

N . (6.3)

Case 2: When λC
1 ≥ λC

2 ≥ 0,

λD

1 ≤ λ1 ≤ λD

1 + λC
1 and λD

1 . λ2 ≤ λD

1 + λC
2 . (6.4)
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Case 3: When λC
N ≤ λC

N−1 ≤ 0,

λD

N + λC
N ≤ λN ≤ λD

N and λD

N + λC
N−1 ≤ λN−1 . λD

N . (6.5)

In all three cases, the largest in magnitude of the remaining eigenvalues cannot be distinguished from those

of the matrix Dε(tj , w) of pure layer echoes.

The interlacing relations in this theorem say that we can hope to detect the coherent echoes when the

spectral norm of C̃ε(tj , w) is large enough

‖C̃ε(tj , w)‖ = max
{
|λC

1 |, |λC
N |
}
. (6.6)

By (6.2), the amplitudes of the entries in C̃ε(tj , w) are related to the amplitudes of Ĝε
ODA, which decay

exponentially with w2, as explained in section 4.1.3. The decay means that the coherent waves lose energy

to the incoherent ones, backscattered by the layers. The spectral norm (6.6) is very small at the high

frequencies, and relations (6.3)-(6.5) say that the eigenvalues of P̃ε(tj , w) cannot be distinguished from those

of the Toeplitz matrix D̃ε(tj , w) of pure layer echoes. It is only at the low frequencies, where (6.6) is large

enough, that we get a significant perturbation of the eigenvalues, as seen in the top row plots in figure 3.5.

7. Summary. Sensor array imaging of remote reflectors embedded in heterogeneous (cluttered), strongly

scattering media is difficult because the useful coherent echoes are overwhelmed by the medium backscatter.

Coherent imaging in such environments can work only if we pre-process the data with filters that tend to

suppress the clutter backscatter and enhance the coherent arrivals. The question is how to design such filters

when we have no prior information about the location of the reflectors and the scattering medium. The only

implicit assumption is that the reflectors that we wish to find have different scattering properties than the

clutter, so that the question of imaging them makes sense.

In this paper we analyze in detail a new detection and filtering approach. It requires the array response

matrix P(t) obtained by emitting pulses from the array, one source at a time, and recording the echoes

at the receivers over a time window t ∈ (0, T ]. The entries (traces) in this matrix are dominated by the

“noise-like” medium backscatter and the detection of the weak but coherent echoes embedded in them is

based on a spectral analysis of the local cosine (LC) transform P̃(tj , wn) of P(t). We use the LC transform

to decompose the traces in orthonormal bases given by smooth time windows indexed by tj and modulated

by cosine functions that oscillate at frequency samples wn in the bandwidth. The wider the time windows,

the finer the frequency sampling.

Our approach is a systematic method for selecting the time windows that contain detectable coherent

echoes, based on the behavior of the singular values of P̃(tj , wn) over the frequencies wn and in progressively

refined time windows. We use the LC transform on binary trees, so that the time refinement consists of

splitting each window in two equal parts. The key observation is that in the time windows that contain pure

backscatter from clutter, the largest singular values are clustered together and have a similar behavior across

the frequency band. It is only in the time windows that contain detectable coherent echoes that the largest

singular values exhibit an anomalous behavior, especially at the lower frequencies. Our method identifies the

time windows of interest by detecting anomalies in the behavior of the largest singular values of P̃(tj , wn).
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Once such windows are identified at a given time segmentation (level in the binary tree), we refine them

by studying the spectrum of the LC transformed matrix of responses in the two sub-windows corresponding

to the children nodes at the next level in the tree. Proceeding this way we have a systematic selection of

smaller and smaller time windows that contain the coherent echoes that are useful in imaging.

The filtering of the data involves three steps: (1) Setting to zero the LC coefficients in all the windows

except the selected ones, at the deepest level in the tree (i.e., the finest time segmentation). (2) Projecting

the LC transformed response matrix to the subspace of low rank matrices with singular vectors corresponding

to the largest anomalous singular values. This projection is done in the lower frequency sub-band where

such anomalies can be detected. The LC coefficients are set to zero in the remainder of the bandwidth. (3)

The inverse LC transform of the filtered LC coefficients gives the filtered data.

The detection and filtering algorithm considered in this paper is general in the sense that it applies to

many different types of cluttered media. We refer to [14], where the algorithm is presented in more detail

and results are presented for various types of clutter. The focus of this paper is on the analysis of the

algorithm, which depends on the model of the clutter. We consider finely layered media for two reasons:

(1) The layered media are among the most strongly backscattering ones. For example, phenomena such as

wave localization occur even when the wave fluctuations due to layering are weak [34, 1, 22]. (2) The LC

transformed response matrix of layer backscatter is Toeplitz and symmetric, and we can relate the singular

values to its symbol. We show here how the symbol is related to the reflection coefficient of the layered

medium (the kernel of P(t)) and then use the theory of waves in randomly layered media [1, 22] to obtain

a detailed analysis of the spectrum of P̃(tj , wn) in the time windows that contain only layer echoes. In the

windows that contain coherent echoes, P̃(tj , wn) is a low rank perturbation of the Toeplitz one, and we can

bound the largest singular values away from those due to clutter, providing therefore justification for our

detection and filtering approach. The detection is successful when the time window is narrow enough so

the coherent wave energy is not completely overwhelmed by the backscatter (i.e., the coherent echoes are

detectable at the lower frequencies), and yet wider than the pulse width.

The analysis of detection and filtering in general (not layered) clutter is left for another publication.
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Appendix A. Explanation of notation. We denote vectors in R3 by bold letters topped with an

arrow, and vectors in R2 by bold letters. We use hats to denote Fourier transforms with respect to time.

The real part is denoted by ℜ, the imaginary part by ℑ and the complex conjugate by an overbar.

• Sensor locations: The locations of the sources in the array are ~xs, with index s indicating a source.

The receiver locations are denoted by ~xr. Because all N sensors in the array A play the dual role of sources
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and receivers, indices s and r take values 1, 2, . . . , N .

• The system of coordinates: The range axis z originates at the array and it is orthogonal to the

layers. The array is linear, along the unit vector e at the surface z = 0. Thus, the receiver locations are

~xr = xr(e, 0), with arclength xr ∈ [0, a] and a the array aperture. Similarly, the sources are at ~xs = xs(e, 0),

where xs ∈ [0, a].

• The reflector and the image: The reflector is at location ~y⋆ = (y⋆, z⋆), with range z⋆ < 0 and

cross-range y⋆ ∈ R2. When we image, we search for it in a domain S that contains ~y⋆. The search points are

denoted by ~y = (y, z), where we distinguish again between the range z and cross-range y coordinates. The

imaging function is J (~y). We form it by migrating the array data using travel times τ(~xs, ~y, ~xr) between

the source at ~xs, the search point ~y and then the receiver at ~xr.

• The array data: The entries of the array response matrix P(t) ∈ RN×N are denoted by P (t, ~xr, ~xs).

The letters P and P stand for pressure.

• The model of the time traces: In section 4.1 we denote the mathematical model of the time traces

P (t, ~xr, ~xs) by N or N + C, depending on the time of observation. Letter C stands for the coherent part of

the array data, observed around travel time τ(~xs, ~y
⋆, ~xr). Letter N stands for the “noise”, the incoherent

backscattered waves by the random layers. The coherent part is modeled by the O’Doherty Anstey theory via

the kernel (Green’s function) denoted by Ĝε
ODA

. The incoherent part is modeled as a superposition of upgoing

plane waves, with amplitude modeled by the random reflection coefficient R. We denote the frequency by ω

and let K be the two dimensional horizontal slowness vector of the plane waves. The vertical wave speed of

the plane waves is denoted by c(K), where K = |K|.
• The random layering and asymptotic regime: We model the layering with the mean zero random

process σµ(z/ℓ), with correlation length ℓ and standard deviation σ. The analysis is in a regime of separation

of scales modeled by the small parameter ε, as explained in section 4.2. We use superscripts ε to indicate

the dependence on ε ≪ 1, and in the analysis we take the limit ε → 0.

• The LC transform: We denote by d = 0, 1, . . . the depth in the binary tree, and by ∆Td the width of

the time windows. In the analysis we relate ∆Td to the asymptotic parameter ε ≪ 1 as ∆Td = εγ∆T , with

γ ∈ (0, 1) and ∆T a reference, order one time interval. For a fixed tree level d, the array response matrix

P(t) is decomposed in a cosine basis, in the time window χ
(

t−tj
∆Td

)
with location indexed by tj = j∆Td, with

j = 0, 1, . . . 2d − 1. The discrete frequencies are denoted by wn. The LC transformed matrix is denoted by

P̃(tj , wn) ∈ RN×N . We use tilde to denote the LC coefficients. Recall that hats stand for Fourier transforms.

• The spectral decomposition of the LC transformed matrix: We denote the eigenvalues and

singular values of P̃(tj , wn) by λq(tj , wn) and σq(tj , wn), for q = 1, . . .N .

Prior to the arrival of the coherent echoes, P̃(tj , wn) is a symmetric and real Toeplitz matrix, defined by

the sequence D̃q(tj , wn), as explained in section 5. Its eigenvalues are denoted by λD
q (tj , wn) and the singular

values by σD
q (tj , wn). We use the Szegö theory to relate them to the symbol Qε

tj (ξ, w) of the Toeplitz matrix.

This symbol is defined as the discrete Fourier transform of D̃q(tj , wn), in the index q. The symbol is indexed

by tj , which determines the time window, the frequency wn, and ξ, the dual of q in the Fourier transform.

The eigenvalues and singular values of the coherent part of the LC transformed response matrix are denoted
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by λC
q (tj , wn) and σC

q (tj , wn), respectively.

• The time window selection: Our criterium for selecting automatically the time windows indexed

by tj , at a fixed tree level d, is based on a metric m(tj). To calculate this metric, we form the matrix S(tj)

with rows defined by the values of the largest Q singular values σq(tj , wn) of the LC transformed matrix

P̃(tj , wn). The rows are indexed by q = 1, . . . , Q and the columns by the index n of the frequencies. The

metric m(tj) is defined as the ratio γ2(tj)/γ1(tj) of the second and first largest singular values of S(tj).

Appendix B. Proof of Proposition 5.1. Let us write the symbol (5.3) in the form

Qǫ
tj (ξ, w) =

ǫγ/2−1

(2π)3

√
∆T

2
ℜ
{
w2f̂(w)

∫

R

dh χ̂(h∆T ) e
−i

(w−ǫγh)tj
ǫ Iǫ(ξ, w)

}
, (B.1)

where

Iǫ(ξ, w) =

N−1∑

q=−N+1

eiqξ
∫

K≤1/c

dK Rǫ (w − ǫγh,K, 0) eiq∆x(w−ǫγh)K·e. (B.2)

Proposition 5.1 follows from the following lemma and the integrability of |χ̂|.
Lemma B.1. We have

Iǫ(ξ, w) = J ε(ξ, w) + Eε(ξ, w), (B.3)

where

J ε(ξ, w) =
4π

∆x(w − ǫγh)

∫ 1/c

0

dKRǫ(w − ǫγh,K, 0)
∑

q∈Z

1[−1,1]

(
2qπ−ξ

K∆x(w−ǫγh)

)

[
1−

(
2qπ−ξ

K∆x(w−ǫγh)

)2]1/2 (B.4)

and the residual Eε(ξ, w) converges uniformly to zero as ε → 0.

Proof: To simplify the notation, let

φ(u) =
1√

1− u2
, and ∆ǫ(w) := ∆x(w − ǫγh),

and introduce the Dirichlet kernel

DN (u) :=

N−1∑

q=−N+1

e−iqu =
sin [(N − 1/2)u]

sin(u/2)
.

In polar coordinates (K, θ), defined so that K · e = K cos(θ), we have

Iǫ(ξ, w) =

∫ 1/c

0

dK K Rǫ(w − ǫγh,K, 0)

∫ 2π

0

dθ DN (ξ +∆ǫ(w)K cos θ) . (B.5)

For the inner integral we write

∫ 2π

0

dθ DN (ξ +∆ǫ(w)K cos θ) = 2

∫ 1

−1

du DN (ξ +∆ǫ(w)K u)φ(u)

= 2

∫ 1

−1

du DN (ξ +∆ǫ(w)K u) (φs(u) + φr(u))

=
2

∆ǫ(w)K

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ DN (ξ + ζ)

[
φs

(
ζ

∆ǫ(w)K

)
+ φr

(
ζ

∆ǫ(w)K

)]
,
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where φs is a nonnegative smooth function bounded above by φ and satisfying

0 ≤ φs(u) ≤ φ(−1 + δ) = φ(1 − δ) ∼ δ−1/2, u ∈ [−1, 1],

for a fixed δ > 0. The function φr = φ − φs ≥ 0 is the non smooth remainder. Thus, the integral splits

naturally in smooth and remainder parts,

Iǫ(ξ, w) = Iǫ
φs
(ξ, w) + Iǫ

φr
(ξ, w).

To minimize the computations, we design φs to have the following properties:

(1) φs = φ in the interval [−1 + δ, 1− δ] with φs(−1) = φs(1) = 0.

(2) φ′
s is continuously differentiable with φ′

s(−1) = φ′
s(1) = 0.

To obtain such φs just pick g ∈ C1[−1, 1] such that

∫ 1

−1

du g(u) = 0, and g = φ′ in [−1 + δ, 1− δ] with g(−1) = g(1) = 0.

Then, define φs(u) :=
∫ u

−1 du
′ g(u′) for u ∈ [−1, 1]. Clearly g can be chosen such that φs is nonnegative.

Step 1. Convergence of the smooth part. It is well known that the Dirichlet kernel converges in distri-

bution to the 2π-periodic Dirac measure. Therefore

1

2π

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ DN (ξ + ζ)φs

(
ζ

∆ǫ(w)K

)
=
∑

q∈Z

1[−1,1]

(
2πq − ξ

∆ǫ(w)K

)
φs

(
2πq − ξ

∆ǫ(w)K

)
+ Eε

s (ξ, w),

with remainder Eε
s (ξ, w) converging uniformly to 0 as N → ∞. In our case N ∼ ε−1 so the limit is as ε → 0.

The proof of this fact is similar to the proofs of uniform convergence of Fourier series. Let

aq =
1

2π

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ e−iqζφs

(
ζ

∆ǫ(w)K

)

be the Fourier coefficients, and use the properties of φs and integration by parts to obtain

|aq| =
∣∣∣∣∣
1

2π

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ e−iqζφs

(
ζ

∆ǫ(w)K

)∣∣∣∣∣ ≤
1

2πq2∆ǫ(w)K

∫ 1

−1

du |φ′′
s (u)| ≤

C

q2δ5/2∆ǫ(w)K
.

Here C is an order one constant and we used the estimate
∫ 1

−1

du |φ′′
s (u)| = var{φ′

s} ≤ O(δ−5/2),

that follows from the construction of φs. Explicitly, the construction ensures that φs(u) ≤ O(δ−1/2) and

that the first and second derivatives of φs do not exceed O(δ−3/2) and O(δ−5/2), respectively. Therefore,
∣∣∣∣∣∣
1

2π

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ DN (ξ + ζ)φs

(
ζ

∆ǫ(w)K

)
−
∑

q∈Z

1[−1,1]

(
2πq − ξ

∆ǫ(w)K

)
φs

(
2πq − ξ

∆ǫ(w)K

)∣∣∣∣∣∣

=

∣∣∣∣∣∣

N−1∑

q=−N+1

aq e−iqξ −
∞∑

q=−∞
aq e−iqξ

∣∣∣∣∣∣
≤

∑

|q|≥N−1

|aq| ≤
C′

Nδ5/2∆ε(w)K
, (B.6)

for C′ another order one constant.
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Step 2. Estimate of the non smooth remainder. Using that |Rǫ| ≤ 1, we have

∣∣Iǫ
φr
(ξ, w)

∣∣ = 2

∆ǫ(w)

∣∣∣∣∣

∫ 1/c

0

dK Rǫ(w − ǫγh,K, 0)

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ DN (ξ + ζ)φr

(
ζ

∆ǫ(w)K

)∣∣∣∣∣

≤ 2

∆ǫ(w)

∫ 1/c

0

dK

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ |DN (ξ + ζ)|φr

(
ζ

∆ǫ(w)K

)

=
2

∆ǫ(w)

∫ ∆ǫ(w)/c

−∆ǫ(w)/c

dζ |DN (ξ + ζ)|
∫ 1/c

|ζ|/∆ǫ(w)

dK φr

(
ζ

∆ǫ(w)K

)
.

Now 0 ≤ φr(u) ≤ 1√
1−u2

[
1[1−δ,1](u) + 1[−1,−1+δ](u)

]
, and therefore

∫ 1/c

|ζ|/∆ǫ(w)

dK φr

(
ζ

∆ǫ(w)K

)
= 2

∫ 1/c

|u|/∆ǫ(w)

dK φr

( |ζ|
∆ǫ(w)K

)
=

2|ζ|
∆ε(w)

∫ 1

1−δ

du

u2
φr(u)

≤ 2|ζ|
∆ε(w)

∫ 1

1−δ

du

u2
√
1− u2

=
C|ζ|

√
δ

∆ε(w)
,

with C an order one constant. The estimate of the remainder becomes

∣∣Iǫ
φr
(ξ, w)

∣∣ ≤ 2

∆ǫ(w)

∫ ∆ǫ(w)/c

−∆ǫ(w)/c

dζ |DN (ξ + ζ)|
∫ 1/c

|ζ|/∆ǫ(w)

dK φr

(
ζ

∆ǫ(w)K

)

≤ C′√δ

∆ε(w)

∫ ∆ǫ(w)/c

−∆ǫ(w)/c

dζ |DN (ξ + ζ)| ≤ C′′√δ ln(N)

∆ε(w)
, (B.7)

with C′ and C′′ order one constants. Here we used that the L1 norm of the Dirichlet kernel diverges as

ln(N) in the limit N → ∞, i.e., as ε → 0.

Step 3. The final estimate. The triangle inequality gives

|Iǫ(ξ, w) − J ε(ξ, w)| ≤
∣∣Iǫ

φs
(ξ, w) − J ε(ξ, w)

∣∣+
∣∣Iǫ

φr
(ξ, w)

∣∣

≤
∣∣∣Ĩǫ

φs,δ(ξ, w) − J̃ ε
δ (ξ, w)

∣∣∣ +
∣∣Iǫ

φs,δ(ξ, w)
∣∣ + |J ǫ

δ (ξ, w)| +
∣∣Iǫ

φr
(ξ, w)

∣∣ ,

where Iǫ
φs
(ξ, w) = Iǫ

φs,δ
(ξ, w) + Ĩǫ

φs,δ
(ξ, w), and

Iǫ
φs,δ(ξ, w) =

2

∆ǫ(w)

∫ δ

0

dK Rǫ(w − ǫγh,K, 0)

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ DN (ξ + ζ)φs

(
ζ

∆ǫ(w)K

)
.

Similarly, J ǫ = J ǫ
δ + J̃ ǫ

δ , where

J ǫ
δ (ξ, w) =

4π

∆ε(w)

∫ δ

0

dK Rǫ(w − ǫγh,K, 0)
∑

q∈Z

1[−1,1]

(
2πq − ξ

∆ǫ(w)K

)
φs

(
2πq − ξ

∆ǫ(w)K

)
.

We have

∣∣Iǫ
φs,δ(ξ, w)

∣∣ ≤ C√
δ∆ε(w)

∫ δ

0

dK

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ |DN (ξ + ζ)| ≤ C′′′√δ ln(N)

∆ε(w)
(B.8)

because |φs| ≤ O(δ−1/2) and |Rε| ≤ 1. Moreover, when estimating J ε
δ (ξ, w), we note that only the term

q = 0 may contribute in the sum, and even then only if |ξ|/∆ε(w) ≤ O(δ). Otherwise, no slowness magnitude

K ∈ (0, δ) is in the support of the indicator function 1[−1,1]

(
2πq−ξ
∆ǫ(w)K

)
, for ξ ∈ [−π, π). Thus, we have

|J ε
δ (ξ, w)| ≤

4π

∆ε(w)

∫ δ

|ξ|/∆ε(w)

dK

[
1− ξ2

(K∆ε(w))
2

]−1/2

=
4π

∆ε(w)

[
δ2 − ξ2

(∆ε(w))
2

]1/2
≤ Civδ

∆ε(w)
. (B.9)
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The constants C′′′ and Civ in the estimates (B.8) and (B.9) are order one. Finally, (B.6) gives

∣∣∣Ĩǫ
φs,δ(ξ, w)− J̃ ε(ξ, w)

∣∣∣ ≤ 4π

∆ǫ(w)

∫ 1/c

δ

dK

∣∣∣∣∣
1

2π

∫ ∆ǫ(w)K

−∆ǫ(w)K

dζ DN (ξ + ζ)φs

(
ζ

∆ǫ(w)K

)
−

∑

q∈Z

1[−1,1]

(
2πq − ξ

∆ǫ(w)K

)
φs

(
2πq − ξ

∆ǫ(w)K

)∣∣∣∣∣∣
≤ C′

Nδ5/2 (∆ε(w))
2 ln

(
1

cδ

)
. (B.10)

Putting (B.7)-(B.10) together,

|Iǫ(ξ, w) − J ε(ξ, w)| ≤ C′

Nδ5/2 (∆ε(w))
2 ln

(
1

cδ

)
+ (C′′ + C′′′)

√
δ ln(N)

∆ε(w)
,

and letting δ = N−1/3 ∼ ε1/3, we get

|Iǫ(ξ, w)− J ε(ξ, w)| = |Eǫ(ξ, w)| ≤ C̃
ln(N)

N1/6 (∆ε(w))
2 , (B.11)

for C̃ yet another order one constant. Finally note that since ∆ε(w) ≈ w∆x, and there is a w2 factor in

(B.1), the bound on the residual becomes

w2 |Iǫ(ξ, w)− J ε(ξ, w)| ≤ C̃ ln(N)

N1/6∆2
x

and tends uniformly to zero as N ∼ ε−1 → ∞. �

Appendix C. Proof of Theorem 5.2. We assume for simplicity that χ̂ is smooth and of compact

support. The proof is divided in four steps.

Step 1. The set up. Suppose for the moment that {Kq,ξ} ∩ [0, 1/c] ⊆ (0, 1/c), and note that this implies

that ξ 6= 0. The case Kq,ξ = 0 is considered at the end. Fix ǫ > 0 and δ > 0 such that ǫ ≪ δ ≪ Kq,ξ and

recall that

Qǫ
tj (ξ, w) =

ǫγ/2−1

(2π)2

√
2∆T

∆x
ℜ



wf̂(w) e−

iwtj
ǫ

∫
dh χ̂(∆Th) e

ihtj/ǫ
1−γ
∑

q∈Z

∫ 1/c

0

dK

Rǫ (w − ǫγh,K, 0)φ

(
Kǫ

q,ξ(h)

K

)}
,

where we have introduced φ(u) :=
1[0,1](u)√

1−u2
to simplify notation. To deal with the singularity at K = Kǫ

q,ξ(h),

we decompose the inner integral in two parts. The first one is for K that lie δ-close to Kǫ
q,ξ(h), namely in

the interval Iǫq,ξ(h) = [Kǫ
q,ξ(h),K

ǫ
q,ξ(h) + δ) ∩ (0, 1/c). The second part is for the complement of Iǫq,ξ(h) in

(0, 1/c), denoted Ĩǫq,ξ(h). We have

∫ 1/c

0

dK Rǫ (w − ǫγh,K, 0)φ

(
Kǫ

q,ξ(h)

K

)
= Tq,ξ(h) + T̃q,ξ(h), (C.1)

where

Tq,ξ(h) =
∫

Iǫ
q,ξ

(h)

dK Rǫ (w − ǫγh,K, 0)φ

(
Kǫ

q,ξ(h)

K

)
, (C.2)

T̃q,ξ(h) =
∫

Ĩǫ
q,ξ

(h)

dK Rǫ (w − ǫγh,K, 0)φ

(
Kǫ

q,ξ(h)

K

)
. (C.3)
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To evaluate (C.2), we magnify the interval Iǫq,ξ(h) by performing the change of variables

K = Kǫ
q,ξ(h) + ǫk, 0 ≤ k ≤ δ/ǫ

and using the approximation

φ

(
Kǫ

q,ξ(h)

Kǫ
q,ξ(h) + ǫk

)
≈
√

Kq,ξ

2ǫk
. (C.4)

Therefore,

Tq,ξ(h) ≈ ε

∫ δ/ǫ

0

dk Rǫ
(
w − ǫγh,Kǫ

q,ξ(h) + ǫk, 0
)
√

Kq,ξ

2εk

≈
√

ǫ

2

∫ ∞

0

dk Rǫ
(
w − ǫγh,Kǫ

q,ξ(h) + ǫk, 0
)
√

Kq,ξ

k
. (C.5)

We made the second asymptotic equivalence because δ ≫ ε. Then, the total contribution of these terms is

∑

q∈Z

Tq,ξ(h) ≈
√

ǫ

2

∑

q∈Z

1[0,1/c] (Kq,ξ)

∫ ∞

0

dk Rǫ
(
w − ǫγh,Kǫ

q,ξ(h) + ǫk, 0
)
√

Kq,ξ

k
.

This is the leading term of Qǫ
tj (ξ, w), consisting of the total contribution of the vicinities about the singu-

larities ±1 of the φ–kernel. The remainder is determined by the sum of the terms T̃q,ξ(h).
Step 2. Estimate of the intensity for the leading term. Let us denote by Lǫ

q(ξ, w) the leading term

containing Tq,ξ(h). It has mean zero and intensity

E
{
|Lǫ

q(ξ, w)|2
}
≈ ǫγ−1

2(2π)4
∆T

∆2
x

Kq,ξ w
2|f̂(w)|2

∫ ∫
dh dh′ χ̂(∆T h)χ̂(∆T h′) ei(h−h′)tj/ǫ

1−γ

∫ ∫
dk dk′√
k k′

E
{
Rǫ(w − ǫγh,Kǫ

q,ξ(h) + ǫk, 0)Rǫ(w − ǫγh′,Kǫ
q,ξ(h

′) + ǫk′, 0)
}
,

because

E
{
Rǫ(w − ǫγh,Kǫ

q,ξ(h) + ǫk, 0)Rǫ(w − ǫγh′,Kǫ
q,ξ(h

′) + ǫk′, 0)
}
=

E
{
Rǫ(w − ǫγh,Kǫ

q,ξ(h) + ǫk, 0)Rǫ(−w + ǫγh′,Kǫ
q,ξ(h

′) + ǫk′, 0)
}
≈ 0

by the decorrelation of the reflection coefficients over frequency intervals that are larger than O(ε). Now

change variables

h → h− ǫ1−γ h̃

2
, h′ → h+ ǫ1−γ h̃

2
,

k → k − k̃

2
, k′ → k +

k̃

2
,

and use the compact support of χ̂ to obtain |ǫh̃| = |ǫγ(h− h′)| ≪ 1, and therefore

Kǫ
q,ξ

(
h+ ǫ1−γ h̃

2

)
=

∣∣∣∣∣
2πq − ξ

∆x(w − ǫγh− ǫ h̃2 )

∣∣∣∣∣ ≈ Kǫ
q,ξ(h) + ǫ

Kq,ξ

2w
h̃.
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We obtain

E
{
|Lǫ

q(ξ, w)|2
}
≈ Kq,ξ

2(2π)4
∆T

∆2
x

w2|f̂(w)|2
∫

dh |χ̂(∆T h)|2
∫

dh̃ e−ih̃tj

∫ ∞

0

dk

∫ 2k

−2k

dk̃
Sǫ(ξ, w, h, h̃, k, k̃)

k

√
1− (k̃/2k)2

with

Sǫ(ξ, w, h, h̃, k, k̃) = E
{
Rǫ
(
w − ǫγh+ ǫh̃/2,Kǫ

q,ξ(h) + ǫk +
ǫ

2

(
k̃ −Kq,ξh̃/w

)
, 0
)

Rǫ
(
w − ǫγh− ǫh̃/2,Kǫ

q,ξ(h) + ǫk − ǫ

2

(
k̃ −Kq,ξh̃/w

)
, 0
)}

.

The moment formula (4.25) gives

lim
ǫ→0

Sǫ(ξ, w, h, h̃, k, k̃) =

∫ ∞

0

du V1(w,Kq,ξ, u) e
ih̃u(1−(Kq,ξc)

2)e−iwuKq,ξ(k̃−Kq,ξ h̃/w)c2

=

∫ ∞

0

du V1(w,Kq,ξ, u) e
ih̃ue−iwuKq,ξ k̃c

2

,

so that

lim
ǫ→0

E
{
|Lǫ

q(ξ, w)|2
}
=

Kq,ξ

2(2π)4
∆T

∆2
x

w2|f̂(w)|2
∫

dh |χ̂(∆T h)|2
∫ ∞

0

du V1(w,Kq,ξ, u)

∫ ∞

−∞
dh̃ eih̃(u−tj)

∫ ∞

0

dk

∫ 2k

−2k

dk̃
e−iwuKq,ξ k̃c

2

k

√
1− (k̃/2k)2

.

The inner integral is given by

∫ 2k

−2k

dk̃
e−iwuKq,ξ k̃c

2

k

√
1− (k̃/2k)2

= 2

∫ 1

−1

dζ
e−i2wuKq,ξζkc

2

√
1− ζ2

= 2πJ0
(
2wuKq,ξkc

2
)
,

where J0 is the 0–Bessel function of the first kind, satisfying
∫ ∞

0

dk J0(2wuKq,ξkc
2) =

1

2wuKq,ξc2
.

The integral in h̃ is
∫ ∞

−∞
dh̃ eih̃(s−tj) = 2πδ(s− tj),

and the intensity becomes

lim
ǫ→0

E
{
|Lǫ

q(ξ, w)|2
}
=

1

4(2π)2
∆T

c2tj∆2
x

w |f̂(w)|2V1(w,Kq,ξ, tj)

∫
dh |χ̂(∆th)|2 . (C.6)

Finally, let us note that the terms Lǫ
q(ξ, w) are uncorrelated. Indeed, the expression E{Lǫ

q(ξ, w)L
ǫ
q′ (ξ, w)}

involves terms

E

{
Rǫ
(
w,Kǫ

q,ξ(h), 0
)
Rǫ
(
w,Kǫ

q′,ξ(h), 0
)}

≈ 0,

by the decorrelation properties of the reflection coefficients and by
∣∣∣Kǫ

q,ξ(h)−Kǫ
q′,ξ(h)

∣∣∣ = O(1) for q 6= q′.

Thus, we can write

E

{
|
∑

q

Lε
q(ξ, w)|2

}
≈
∑

q

E
{
|Lε

q(ξ, w)|2
}
. (C.7)
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Step 3. Estimate on the error term. It follows from Step 1 that the error term consists of the sum of the

integrals over Ĩǫq,ξ(h), i.e., containing terms T̃q,ξ(h). Now we prove that the intensity of these terms vanishes

in the asymptotic limit ǫ → 0. First compute,

Eǫ(ξ, w) =
ǫγ/2−1

(2π)2

√
2∆T

∆x
ℜ



w f̂(w) e−iw

ǫ
tj

∫
dh χ̂(∆Th) e

i h

ǫ1−γ tj
∑

q∈Z

T̃q,ξ(h)





Note that φ (Kq,ξ/K) is smooth in Ĩǫq,ξ(h), because we are far away from the singularity at K = Kǫ
q,ξ(h).

Therefore,

∣∣∣∣φ
(
Kǫ

q,ξ(h)

K

)
− φ

(
Kq,ξ

K

)∣∣∣∣ ≤
∥∥∥∥Dφ

(
Kq,ξ

K

)∥∥∥∥
∞

|ǫγh| = max
{|y−w|≤|ǫγh|}

{
K Kq,ξ(y)

2

y (K2 −Kq,ξ(y)2)
3/2

}
|ǫγh|

≤ K
√
Kq,ξ

wδ3/2
|ǫγh| = O

(
ǫγ

δ3/2

)
,

where Kq,ξ(y) =
∣∣∣ 2πr−ξ

∆x y

∣∣∣. For the last inequality, we have chosen |ǫγh| ≪ δ, so that K ≥ Kǫ
q,ξ(y) + 2−3/2δ

for all y ∈ {|y − w| ≤ |ǫγh|}. This is possible as long as K ∈ Ĩǫq,ξ(h), because the support of φ
(
Kε

q,ξ(h)/K
)

does not intersect the interval [0,Kǫ
q,ξ(h)). We have now obtained that

Eǫ(ξ, w) =
ǫγ/2−1

(2π)2

√
2∆T

∆x
ℜ
{
w f̂(w) e−iw

ǫ
tj

∫
dh χ̂(∆Th) e

i h
ǫγ

tj

∑

q∈Z

∫

Ĩǫ
q,ξ

(h)

dK Rǫ (w − ǫγh,K, 0)φ

(
Kq,ξ

K

)
+O

(
ǫγ

δ3/2

)
,

and consequently,

E
{
Eǫ(ξ, w)2

}
=

ǫγ−2

2(2π)4
∆T

∆2
x

w2|f̂(w)|2
∫

dh χ̂(∆Th)

∫
dh′ χ̂(∆Th′) ei

(h−h′)

ǫ1−γ tj

∑

q,q′∈Z

∫

Ĩǫ
q,ξ

(h)

dK

∫

Ĩǫ
q′ ,ξ

(h′)

dK ′E
{
Rǫ (w − ǫγh,K, 0)Rǫ (w − ǫγh′,K ′, 0)

}

φ

(
Kq,ξ

K

)
φ

(
Kq′,ξ

K ′

)
+O

(
ǫγ

δ3/2

)
.

Here we have neglected as before two terms, using the rapid decorrelation in the frequency variable of the

reflexion coefficients. With the change of variables

h → h− ǫ1−γ h̃

2
, h′ → h+ ǫ1−γ h̃

2

K → K + ǫ
k̃

2
, K ′ → K − ǫ

k̃

2
,

we get

E
{
Eǫ(ξ, w)2

}
=

1

2(2π)4
∆T

∆2
x

w2|f̂(w)|2
∫

dh |χ̂(∆Th)|2
∑

q,q′∈Z

∫

Ĩǫ
q,ξ

(h)

dK φ

(
Kq,ξ

K

)
φ

(
Kq′,ξ

K

)

∫
dh̃ e−ih̃tj

∫
dk̃ Sǫ(w, h, h̃,K, k̃) + O

(
ǫγ

δ3/2

)
,
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where

Sǫ(w, h, h̃,K, k̃) = E



Rǫ

(
w − ǫγh+ ǫ

h̃

2
,K + ǫ

k̃

2
, 0

)
Rǫ

(
w − ǫγh− ǫ

h̃

2
,K − ǫ

k̃

2
, 0

)
 .

→
∫ ∞

0

ds V1(w,K, s)eih̃s(1−(Kc)2)e−iwsKk̃c2 , as ε → 0.

Here the convergence is in L∞ weak–⋆ sense and pointwise. Thus, as ǫ → 0, we have the distributional limit

(pointwise for tj 6= 0),
∫

dh̃

2π

∫
dk̃

2π
Sǫ(w, h, h̃,K, k̃) e−ih̃tj →

∫ ∞

0

ds V1(w,K, s)δ
[
s
(
1− (Kc)2

)
− tj

]
δ
(
wsKc2

)

=
V1(w,K, 0)

wKc2
δ(tj).

We can now write

lim
ǫ→0

E{Eǫ(ξ, w)2} =
1

2(2π)4
∆T

(c∆x)2
w|f̂(w)|2

∫
dh |χ̂(∆Th)|2

∑

q,q′∈Z

∫

K>max{Kq,ξ+δ,Kq′,ξ}

dK

K
φ

(
Kq,ξ

K

)
φ

(
Kq′,ξ

K

)
V1(w,K, 0) δ(tj).

For the region of integration we have used that the integrand vanishes in [0,max{Kq,ξ,Kq′,ξ}]. Note also

that the integrand in K is bounded for all q and q′, by our choice of parameter δ > 0. Thus, for tj 6= 0,

E{Eǫ(ξ, w)2} → 0 pointwise as ε → 0.

Remark C.1. The proof above assumes that Kq,ξ ≫ O(ε) (recall approximation (C.4)). The case

Kq,ξ ≤ O(ε) that arises when q = 0 and |ξ| ≤ O(ε), can be analyzed separately, using similar arguments.

Alternatively, to determine the intensity of the contribution from such small slowness moduli, we can take

ε ≪ |ξ| ≪ 1 and evaluate the intensity of the leading term as in Step 2 (equation (C.6) with q = 0). Then,

using the continuity of this intensity in ξ, we can take the limit |ξ| → 0. �

Appendix D. Proof of Theorem 5.4. In this section we prove that the symbol Qǫ
tj (ξ, w) converges

in the asymptotic limit ǫ → 0 to Gaussian distributed process in the variable ξ. To this end, we show that

the moments of the process agree, in the limit, with those of a Gaussian variable. Recall that the symbol is

given by

Qǫ
tj (ξ, w) =

N−1∑

q=−N+1

eiqξD̃ǫ
q(tj , w), ξ ∈ [−π, π).

The coefficients of this trigonometric series are given by equation (5.2). It was proved in Theorem 5.2 that

the symbol can be written as

Qǫ
tj (ξ, w) ≈ Q̃ǫ

tj(ξ, w) + Q̃ǫ
tj (ξ, w).

where Q̃ is uniformly equivalent as ǫ → 0 to

Q̃ǫ
tj (ξ, w) ≈

ǫ
γ−1
2

2(2π)2

√
2∆T

∆x
wf̂(w)

∫
dh χ̂(h∆T ) e

−i
tj
ǫ
(w−ǫγh)

∑

q∈Z

1[0,1/c](Kq,ξ)

∫ ∞

0

dk Rǫ(w − ǫγh,Kǫ
q,ξ(h) + ǫk, 0)

√
Kq,ξ

2k
.
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With this expression in mind, we compute

E
{
Qǫ

tj (ξ, w)
n
}
≈ E

{(
Q̃ǫ

tj (ξ, w) + Q̃ǫ
tj (ξ, w)

)n}

=

n∑

p=0

(
n
p

)
E
{
Q̃ǫ

tj (ξ, w)
p Q̃ǫ

tj (ξ, w)
n−p

}
=

n∑

p=0

(
n
p

)
Mǫ

p,n−p,

where the coefficients Mp,q have the asymptotic expression

Mǫ
p,q =

(
ǫ

γ−1
2

2(2π)2

√
2∆T

∆x
wf̂(w)

)p+q ∫
dh

∫
dh′

p∏

l=1

χ̂(∆Thl)

q∏

m=1

χ̂(∆Th′
m)e−i

tj
ǫ (

∑
l(w−ǫγhl)−

∑
m(w−ǫγh′

m))

∫
dk

∫
dk′

p∏

l=1

∑

ql

1[0,1/c](Kql,ξ)

√
Kql,ξ

2kl

q∏

m=1

∑

q′m

1[0,1/c](Kq′m,ξ)

√
Kq′m,ξ

2k′m

E

{
p∏

l=1

Rǫ(w − ǫγhl,K
ǫ
ql,ξ

(hl) + ǫkl, 0)

q∏

m=1

Rǫ(w − ǫγh′
m,Kǫ

q′m,ξ(h
′
m) + ǫk′m, 0)

}
.

The integration is performed in the product measure

dh dk dh′ dk′ =
p∏

l=1

dkl dhl

q∏

m=1

dk′m dh′
m.

It is well known that when p 6= q the expected value inside Mǫ
p,q vanishes uniformly in ǫ, therefore these

terms do not contribute to the asymptotic limit. Note this is the case for M ε
p,n−p, whenever n is odd. When

p = q it is possible to use the symmetry in the integration {h′
m} to write

Mǫ
p,p = p!

(
ǫ

γ−1
2

2(2π)2

√
2∆T

∆x
wf̂ (w)

)2p ∫
dh

∫

{h′ր}

p∏

l=1

χ̂(hl∆T )χ̂(h′
l∆T ) e

−itj
∑

l ǫ
1−γ(h′

l−hl)

∫
dk

∫
dk′

p∏

l=1

∑

ql

1[0,1/c](Kql,ξ)

√
Kql,ξ

2kl

∑

q′
l

1[0,1/c](Kq′
l
,ξ)

√
Kq′

l
,ξ

2k′l

E

[
p∏

l=1

Rǫ(w − ǫγhl,K
ǫ
ql,ξ(hl) + ǫkl)Rǫ(w − ǫγh′

l,K
ǫ
q′
l
,ξ(h

′
l) + ǫk′l)

]
,

The notation {h′ ր} means that the integration is done in the set {h′
1 ≤ h′

2 ≤ · · · ≤ h′
p}.

Next, let us change variables

hl → hl −
ǫ1−γ

2
h̃l and h′

l → hl +
ǫ1−γ

2
h̃l

kl → kl −
k̃l
2

and k′l → kl +
k̃l
2

and use the approximations

Kǫ
ql,ξ

(
hl − ǫ1−γ h̃l

2

)
≈ Kǫ

ql,ξ(hl) + ǫ
Kql,ξ

2w
h̃l

Kǫ
q′
l
,ξ

(
hl + ǫ1−γ h̃l

2

)
≈ Kǫ

q′
l
,ξ(hl)− ǫ

Kq′
l
,ξ

2w
h̃l.
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We have

Mǫ
p,p ≈ p!

(
1

2(2π)2

√
∆T

∆x
wf̂(w)

)2p ∫
dh

p∏

l=1

|χ̂(hl∆T )|2
∫

dh̃e−i
tj
2

∑
l h̃l

p∏

l=1

∫ ∞

0

dkl

∫ 2kl

−2kl

dk̃l
∑

ql

1[0,1/c](Kql,ξ)
Kql,ξ

kl

√
1− (k̃l/2kl)2

Sǫ
p(ξ, w, hl, h̃l, kl, k̃l),

where we used that for fixed (h1, h2, · · · , hp) the integration set becomes

{h′
l : hl +

ǫ1−γ

2
h̃l ր} → Rp as ǫ → 0,

and we let

Sǫ
p(ξ, w, hl, h̃l, kl, k̃l) = E

{
p∏

l=1

Rǫ
(
w − ǫγhl + ǫh̃l/2,K

ǫ
ql,ξ(hl) + ǫkl +

ǫ

2

(
k̃l −Kql,ξh̃l/w

)
, 0
)

Rǫ
(
w − ǫγhl − ǫh̃l/2,Kǫ

ql,ξ
(hl) + ǫkl −

ǫ

2

(
k̃l −Kql,ξh̃l/w

)
, 0
)}

.

The multi frequency moments are [22, Sections 9.2.4, 14.3]

lim
ǫ→0

Sǫ
p(ξ, w, hl, h̃l, kl, k̃l) =

p∏

l=1

∫ ∞

0

ds V1(w,Kql,ξ, s) e
ih̃lse−iwsKql,ξ

k̃lc
2

,

and we obtain after computations similar to those in Step 2 in Appendix C that

lim
ǫ→0

M ǫ
p,p = p!

p∏

l=1

(
1

2(2π)2

√
∆T

∆x
wf̂(w)

)2 ∫ ∞

−∞
dhl |χ̂(∆T hl)|2

∫ ∞

0

dsl V1(w,Kql,ξ, sl)

∫ ∞

−∞
dh̃l e

ih̃l(sl−tj)
∑

ql

1[0,1/c](Kql,ξ)

∫ ∞

0

dkl

∫ 2kl

−2kl

dk̃l
e−iwslKql,ξ

k̃lc
2

kl

√
1− (k̃l/2kl)2

=
p!

2p

p∏

l=1

1

4(2π)2
∆T

c2tj∆2
x

w|f̂(w)|2
∫

dhl |χ̂(∆T hl)|2
∑

ql

1[0,1/c](Kql,ξ)V1(w,Kql,ξ, sl)

=
p!

2p

(
lim
ǫ→0

E[Qǫ
tj (ξ, w)

2]
)p

.

We have now proved that

lim
ǫ→0

E
[
Qǫ

tj (ξ, w)
2p+1

]
→ 0

lim
ǫ→0

E
[
Qǫ

tj (ξ, w)
2p
]
→
(

2p
p

)
p!

2p

(
lim
ǫ→0

E[Qǫ
tj (ξ, w)

2]
)p

,

which is in agreement with the moment relations of a Gaussian process. �

Appendix E. Proof of Theorem 6.1. Let us begin by writing the coherent part in (6.2) as

C̃ε(tj , w) = ℜ
{
(α+ iβ) (C+ iS) (C+ iS)

T
}
, (E.1)

where C and S are vectors in RN with components given by the real and imaginary parts of Ĝε
ODA

,

Cr = ℜ{Ĝε
ODA

(w, ~y⋆, ~xr)}, Sr = ℑ{Ĝε
ODA

(w, ~y⋆, ~xr)}, r = 1, . . .N, (E.2)
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and

α+ iβ = ε
γ
2−1

√
2

∆T
χ(0)w2f̂(w)e−iwtj . (E.3)

Hereafter we suppose that tj and w are fixed, and we drop them from the arguments. We have

C̃ε = α
(
CCT − SST

)
− β

(
CCT + SST

)
. (E.4)

The proof of Theorem 6.1 follows immediately from the eigenvalue bounds [28, Theorem 10.3.1]

λi+j−1 ≤ λD

i + λC
j , (E.5)

λN+1−(i+j−1) ≥ λD

N+1−i + λC
N+1−j , (E.6)

for all integers i, j satisfying 1 ≤ i+ j − 1 ≤ N , and the following lemma.

Lemma E.1. The rank of the LC transformed coherent matrix C̃ε
r,s is at most two. In the most likely

case that α 6= 0, only one eigenvalue is positive,

λC
N ≤ λC

N−1 = . . . = λC
2 = 0 < λC

1 . (E.7)

When α = 0, the nonzero eigenvalues have the same sign.

Indeed, say that α 6= 0, so that (E.7) holds. Then take i = j = 1 in (E.5) and i = N − 1, j = 2 in (E.6)

to obtain

λD

2 = λD

2 + λC
N−1 ≤ λ1 ≤ λD

1 + λC
1 .

Relation (6.3) follows from (5.5), which says that λD
p ≈ λD

1 for p ≪ N . The other relations are obtained in a

similar way. For example, taking i = 1, j = 2 in (E.5) and i = N − 2, j = 2 in (E.6), and using (E.7) we get

λD

2 ≈ λD

3 = λD

3 + λC
N−1 ≤ λ2 ≤ λD

1 + λC
2 = λD

1 ≈ λD

2

and so on. This proves Case 1 in Theorem 6.1.

When α = 0 and

λC
N = λC

N−1 = . . . = λC
3 = 0 ≤ λC

2 < λC
1 , (E.8)

we take i = j = 1 in (E.5) and i = N , j = 1 in (E.6) to obtain

λD

1 = λD

1 + λC
N ≤ λ1 ≤ λD

1 + λC
1 .

Similarly, choices i = 1, j = 2 in (E.5) and i = N − 1, j = 1 in (E.6) give

λD

1 ≈ λD

2 = λD

2 + λC
N ≤ λ2 ≤ λD

1 + λC
2 .

Furthermore, i = N − 2, j = 3 in (E.5) and i = j = 1 in (E.6) give

λD

N = λD

N + λC
N ≤ λN ≤ λD

N−2 + λC
3 = λD

N−2 ≈ λD

N ,

and so on. This proves Case 2 of Theorem 6.1. Case 3 follows similarly.
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Proof of Lemma E.1. Assuming that α 6= 0, rewrite (E.4) as

C̃ε = αM, M =

(
1 +

β2

α2

)
CCT −VVT , where V = S+

β

α
C. (E.9)

This identity can be checked with a straightforward calculation. Now, there are two cases to consider for

characterizing the spectrum of the real, symmetric matrix M.

Case (i): Vectors C and V are orthogonal. Then, M has rank two, with C and V the eigenvectors

corresponding to the nonzero eigenvalues

MC = λ1C, λ1 = 1 +
β2

α2
‖C‖2, MV = λNV, λN = −‖V‖2. (E.10)

Case (ii): Vectors C and V are not orthogonal. Here we construct an orthonormal basis {q1, . . . ,qN}
of RN , so that span{q1,q2} = span{C,V}, by taking

q1 =
C

‖C‖ , q2 =
V−

(
qT
1 V
)
q1

‖V−
(
qT
1 V
)
q1‖

, (E.11)

Let Q be the orthogonal matrix in RN×N with columns qj , for j = 1, . . . , N . Since

CCT = ‖C‖2q1q
T
1 = Q diag

(
‖C‖2, 0, . . . , 0

)
QT , (E.12)

we obtain from definition (E.9) of M that

M = Q

[
diag

(
(1 + β2/α2)‖C‖2, 0, . . . , 0

)
−
(
QTV

) (
QTV

)T ]
QT . (E.13)

That is to say, M is related via a similarity transformation to matrix

U = diag
(
(1 + β2/α2)‖C‖2, 0, . . . , 0

)
−
(
QTV

) (
QTV

)T
. (E.14)

But by our choice of the basis, U has the following block structure

U =

(
Ũ 0
0 0

)
, Ũ =

(
(1 + β2/α2)‖C‖2 0

0 0

)
− ṼṼ

T
, Ṽ = (q1,q2)

T V, (E.15)

so the nonzero eigenvalues of M are the eigenvalues of Ũ ∈ R2×2.

Let λ̃1 and λ̃2 be the eigenvalues of M. We obtain by direct calculation that

λ̃1,2 =
1

2

{
(1 + β2/α2)‖C‖2 − ‖Ṽ‖2 ±

√[
(1 + β2/α2)‖C‖2 − ‖Ṽ‖2

]2
+ 4Ṽ 2

2 (1 + β2/α2)‖C‖2
}
, (E.16)

and therefore λ̃2 ≤ 0 < λ̃1. This proves the case α 6= 0.

When α = 0, we obtain from (E.4) that

C̃ε = −β
(
CCT + SST

)
. (E.17)

When C and S are orthogonal, then C̃ε has two nonzero eigenvalues, given by −β‖C‖2 and −β‖S‖2. If C

and S are not orthogonal, we proceed as above and construct an orthonormal basis {q1, . . . ,qN} of RN , so

that C = ‖C‖q1 and S ∈ span{q1,q2}. Then, we obtain the similarity transformation

C̃ε = −βQUQT , (E.18)
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where Q is the orthogonal matrix in RN×N with columns qj and

U =

(
Ũ 0
0 0

)
, Ũ =

(
‖C‖2 0

0 0

)
+ S̃S̃

T
, S̃ = (q1,q2)

T S. (E.19)

Now we can compute the eigenvalues of the 2× 2 matrix Ũ

λ̃1,2 =
1

2

[
‖C‖2 + ‖S‖2 ±

√
(‖C‖2 + |S‖2)2 − 4‖C‖2S̃2

2

]
(E.20)

and conclude easily that they are nonnegative. The nonzero eigenvalues of C̃ε are equal to −βλ̃1,2, and they

have the same sign. �
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