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Abstract. Coherent interferometric imaging is based on the backpropagation of local space-time
cross correlations of array data and was introduced in order to improve images when the medium
between the array and the object to be imaged is inhomogeneous and unknown [Borcea et al., Inverse
Problems, 21 (2005), p. 1419]. Although this method has been shown to be effective and is well
founded theoretically, the coherent interferometric imaging function is computationally expensive
and therefore difficult to use. In this paper we show that this function is equivalent to a windowed
beamformer energy function, that is, a quadratic function that involves only time gating and time
delaying signals in emission and in reception. In this form the coherent interferometric imaging can
be implemented efficiently both in hardware and software, that is, at a computational cost that is
comparable to the usual beamforming and migration imaging methods. We also revisit the trade-off
between enhanced image stability and loss of resolution in coherent interferometry from the point of
view of its equivalence to a windowed beamformer energy imaging function.

1. Introduction. When imaging with waves we probe the unknown medium
with waves and then record at a set of receivers (sensors) the echoes reflected back.
These data are then processed to compute an imaging function. The waves can be
acoustic, elastic, or electromagnetic in the microwave, optical or other regimes. They
are emitted by one or many sources and recorded by sensors which are transducers
such as microphones, seismometers, antennas, etc. We assume that the sensors are
located close together, so that they behave like a collective entity, the array. It is
contained in a compact set A, the aperture.

Usually, in array imaging the data are collected first, in the form of the array
response matrix, and then they are processed to generate an image at search points
(pixels) ~yS in the image domain D of interest. The array response matrix is obtained
column by column by emitting a pulse from each source location ~xs at a time and then
recording the echoes P (t, ·, ~xs) = (P (t, ~xr, ~xs)) at all the receiver locations ~xr ∈ A.
We assume for simplicity that the array has N sensors that are both sources and
receivers, and that each source emits the same broadband pulse f(t) (see Figure 1.1).
The array response matrix is the N ×N matrix

P(t) =
(
P (t, ~xr, ~xs)

)
r,s=1,...,N

, t ∈ (0, tf ], (1.1)

and we call its entries time traces to emphasize that they are functions of time. The
convention in (1.1) is that the origin of the time t is reset for each source emission.
The receivers start recording right after the emission and until the time tf , which is
assumed larger than the arrival time of the echoes from the reflectors to be imaged.

An image can be formed by backpropagating numerically, or migrating, the entries
in P(t) to ~yS ∈ D, and then summing over sources and receivers,

IKM(~yS) =
∑

r,s

P (τ(~xr , ~y
S) + τ(~xs, ~y

S), ~xr, ~xs). (1.2)

∗Computational and Applied Mathematics, MS134, Rice University, 6100 Main Street, Houston,
TX 77005-1892 borcea@caam.rice.edu
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This is the well-known Kirchhoff migration approach [2, 3] that backpropagates each
trace P (t, ~xr, ~xs) by evaluating it at the travel time τ(~xr, ~y

S)+τ(~xs, ~y
S) between the

source, the imaging point and the receiver. It works well in known and smooth media
but not in heterogeneous, scattering ones, where it produces speckled and unreliable
images that are difficult to interpret.

The coherent interferometric (CINT) approach introduced and analyzed in [8,
9, 12] amounts to backpropagating cross correlations of traces, instead of the traces
themselves. It is an effective way to image in scattering media with unknown inhomo-
geneities (i.e., in clutter), but it is computationally demanding compared to the usual
migration methods and therefore of limited use. This is because the computation of
CINT images requires the evaluations of local cross-correlations of the form

C(τ, 〈~xr〉 , 〈~xs〉) =
∑

ρ,ρ′∈Sr

∑

σ,σ′∈Ss

∫

|t|≤T C

dt P (t+ τ/2, ~xρ, ~xσ)P (t− τ/2, ~xρ′ , ~xσ′). (1.3)

They are local in the sense that they are computed around the time τ , in a time
window |t| ≤ TC, with sources in the vicinity of 〈~xs〉, and receivers in the vicinity of
〈~xr〉. The sources are indexed in (1.3) by σ, σ′ ∈ Ss, where

Ss =

{
σ = 1, . . . , N, such that |~xσ − 〈~xs〉 | ≤

XC

2

}
,

and the receivers are indexed by ρ, ρ′ ∈ Sr. The time threshold TC and the sensor
offset threshold XC must be chosen carefully if CINT is to perform well, as we explain
in detail in this paper. See also [8, 9].

The performance of an imaging method is assessed by its resolution and robust-
ness. The resolution quantifies how the method can distinguish between two point
reflectors either in range or in bearing. The range resolution quantifies the minimum
distance in the range direction between two distinguishable reflectors. The cross-
range resolution quantifies the difference in bearings of two distinguishable reflectors.
A robust method gives images with high signal to noise ratio (SNR). Since reflector
locations are estimated by identifying peaks in the image, by a high SNR we mean
that the peaks are insensitive to noise and that they are large, and clearly distinguish-
able. Typically, the noise in the images is assumed to be due to additive, uncorrelated
instrument noise. However, here we discuss a different kind of noise, which consists
of fluctuations in the images induced by multiple scattering of the waves in heteroge-
neous, cluttered media. Clutter noise has a complex structure and it is much harder to
mitigate than additive, uncorrelated instrument noise. See for example the compara-
tive study [6] which shows the advantage of using CINT in clutter over conventional
imaging. The high SNR of images in clutter, that is their insensitivity to different
realizations of the clutter, is called statistical stability. It is an essential quality of any
useful imaging method.

An alternative approach to array imaging that may be implemented efficiently in
hardware is to form the image by beamforming to each point in the domain D and
forming the image by scanning pixel by pixel. That is, instead of collecting the entire
response matrix and then forming the image, the array uses successive multiple illumi-
nations to beamform to each pixel ~yS ∈ D, records the echoes and then synchronizes
and adds them over the array to form an image at ~yS . The synchronization is done
with time delays computed relative to ~yS and the summation superposes coherently
echos from a possible scatterer at ~yS , which is called beamforming in reception. By
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reciprocity, it is the same as beamforming from the array to ~yS , which is beamforming
in emission or illumination. The imaging function at the illuminated pixel is the total
field computed over a properly chosen time window and the full image is formed by
scanning this way over the image region D.

scatterers

unknown medium

receiver
~xr

source
~xs

ar
ra

y

f(t)

P (t, ~xr, ~xs)

Fig. 1.1. Typical configuration for array imaging.

Beamforming has been used extensively in ultrasonic imaging for non-destructive
testing of materials and medical diagnostics [26, 25]. It has also been combined
with least squares methods that can improve the images [22, 23]. Beamforming can
be readily related to migration methods that allow for some form of optimization
of the image, but it does not deal with significant scattering effects in heterogeneous
media, which CINT mitigates via an adaptive smoothing. Energy-based beamforming
methods, which use quadratic functions of the traces like CINT, have been considered
recently [19]. They are still not designed to mitigate scattering in clutter like CINT.

In this paper we show that the CINT function is in fact equivalent to a windowed
beamformer energy function, that is, a quadratic function that involves only time
gating and time delaying signals in emission and in reception. In this form coherent
interferometric imaging can be implemented efficiently both in hardware and software,
at a computational cost that is comparable to the usual beamforming and migration
imaging methods. We also revisit the trade-off between image stability enhancement
and loss of resolution in CINT from the point of view of its equivalence to a windowed
beamformer energy imaging function.

The paper is organized as follows. We begin in Section 2 with the description of
pixel scanning imaging with sub-aperture (windowed) emission and reception beam-
formers. The equivalence between the mathematical expression of the windowed pixel
scanning energy function and the CINT imaging function is presented in Section 3.
We also discuss there the relation to two other widely used coherent imaging meth-
ods: Kirchhoff migration [2, 3, 16] and matched field imaging [1]. We then explain
in Section 4.1 that both the CINT and the windowed beamformer energy functions
are, in fact, smoothed Wigner transforms of the data traces, evaluated at the travel
times and directions from the sources and receivers to the pixel at ~yS in the image
domain. This formulation allows us to explain in Section 4.2 the role of space-time
windowing for achieving robust, statistically stable images in clutter, at the expense
of some loss of resolution. We relate briefly in Section 5 the beamformers discussed
in this paper to the delay-and-sum ones encountered in the literature. We conclude
with a summary in Section 6.
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2. Pixel scanning image formation with windowed energy beamformer.

We now describe in detail the scanning imaging process with windowed beamformers
in emission and reception. Although the implementation of this process does not
require knowledge of the full array response matrix P(t), we use it here to express
mathematically the form of the windowed energy function, which defines the pixel
scanning imaging method. We need this model in the next sections to relate the
imaging function to those of Kirchhoff migration (KM) and coherent interferometry
(CINT).

P
I(xs)

(~xr, t; ~y
S) ~xr

receiver

unknown medium

scatterers

~yS

sub-aperture
source~xs

Fig. 2.1. Beamforming configuration for array imaging.

Let ~yS be an arbitrary pixel in D, at which we form the image. The array beam-
forms at ~yS by emitting from its sources delayed pulses. The delays are computed so
that all the pulses arrive at ~yS at the same time. The beamforming can involve all
the sources at once, or it can work with sub-apertures (see Figure 2.1). The sources
can also be weighted to control the focusing of the beam at ~yS . After beamforming,
the array receives the echoes from scattering in the vicinity of ~yS .

In order to have a mathematical model for these echoes, let us suppose for simplic-
ity that the array is linear in the two-dimensional case, or square planar in three dimen-
sions. This allows us to introduce a system of coordinates with range axis originating
from the array in the orthogonal direction. The sensor locations are ~xr = (xr, 0), with
xr in the array aperture An ⊂ R

n, for r = 1, . . . , N and n = 1 or 2. The aperture An

is a line segment of length a in two dimensions (n = 1) or a square of side a in three
dimensions (n = 2). We call a the aperture size.

We model the sub-apertures (subsets of An) and the sensor weights used in
beamforming with a function ψ(ξ) of dimensionless arguments in R

n and support
ξ ∈ [−1/2, 1/2] for n = 1 or ξ ∈ [−1/2, 1/2]× [−1/2, 1/2] for n = 2. The size of the
sub-aperture is determined by the length X in the scaled version of ψ,

ψ
X

(x) = ψ
( x

X

)
. (2.1)

We denote by P
I(xs)

(t,xr; ~y
S) the echoes received at xr ∈ An after beamforming

from the sub-aperture centered at xs ∈ An on the pixel ~yS . Its expression is

P
I(xs)

(t,xr; ~y
S) =

N∑

σ=1

ψ
X

(xs − xσ)P (t+ τ(xσ, ~y
S) − τ(xs, ~y

S), ~xr, ~xσ), (2.2)
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where we changed slightly the notation of the travel time τ(xs, ~y
S) from ~xs = (xs, 0)

to ~yS , to emphasize its dependence on the cross-range source coordinate xs. Since we
have assumed for simplicity that the array sensors play the dual role of sources and
receivers, all the indices s, σ, r and ρ take values in the set {1, 2, . . . , N}. Nevertheless,
we use from now on the convention that the sources are indexed by s and σ and the
receivers by r and ρ. The relative delays τ(xs, ~y

S) − τ(xσ, ~y
S) are used in (2.2) to

synchronize the arrivals at ~yS of the signals from all the sources in the support of ψ
X

,
with center at xs. This is the delay-and-sum (DAS) beamforming process [25, 19],
whose performance depends on the choice of the window function ψ

X
, the frequency

band of the probing pulse f(t), and the medium through which the waves propagate.

sub-aperture

~xs

P
R(xr),I(xs)

(t; ~yS)

unknown medium

scatterers

~yS

sub-aperture

receiver

source

~xr

Fig. 2.2. Beamforming configuration for array imaging with sub-apertures.

We assume henceforth that

f(t) = cos(ωot)fB(t), (2.3)

with carrier frequency ωo and baseband pulse fB(t) with Fourier transform f̂B(ω)
supported at frequencies |ω| ≤ B/2. Then, the frequency band of f(t) is the support
ω ∈ [ωo −B/2, ωo +B/2] ∪ [−ωo −B/2,−ωo +B/2] of

f̂(ω) =

∫
dtf(t)eiωt =

1

2

[
f̂B(ω − ωo) + f̂B(ω + ωo)

]
. (2.4)

In smooth and known media, where the arrival of the pulses from the sources can be
well synchronized with travel time delays, the range resolution is determined by the
precision with which the system can estimate travel times, that is by the pulse width.
The larger the bandwidth, the shorter the time width of the pulse and the better
the range resolution of the beamformer. The cross-range resolution is determined by
the carrier wavelength λo, the range L of the pixel ~yS and the window function ψ

X
.

When ψ
X

= 1
X

, the indicator function of the sub-aperture with linear size X ≤ a, the
sources are uniformly weighted and the cross-range resolution of the beamformer is
of order λoL/X . This is the Rayleigh resolution formula that is valid when the range
is larger than the sub-aperture size L ≫ X [14]. Thus, delay and sum beamformers
with uniform source weights achieve their best resolution λoL/a by using all the
sources in the aperture at once (i.e., for X = a.) The resolution can be improved
further by weighting the sources. For example, the results in [12] show that edge
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illumination, i.e., apodization with a Ψa peaked near the boundary of the aperture,
gives much better cross-range focus at ~yS than uniform source weighting. Other
optimal weight designs for improved focusing and robustness to additive noise are
described for example in [26, 22, 23]. However, the use of sub-arrays in beamforming
in order to improve robustness (enhance statistical stability) has not been studied
before. One of the main points of this paper is to show that the aperture thresholding
by X < a brings a statistical smoothing that is essential for robust imaging in clutter.

The local beamforming in reception consists of synchronizing by travel time de-
lays the received echoes P

I(xs)
(t,xr; ~y

S) and adding them over the receivers in sub-
apertures centered at xr, with uniform or variable weights (see Figure 2.2). We denote
the result by P

R(xr),I(xs)
(t; ~yS) and write its mathematical model as follows

P
R(xr),I(xs)

(t; ~yS) =
N∑

ρ=1

ψ
X

(xρ − xr)PI(xs)
(t+ τ(xρ, ~y

S) − τ(xr, ~y
S),xρ; ~y

S). (2.5)

Note that in general, the weights and sub-aperture may be different in reception than
in emission. Here we use the same function ψ

X
because the sources and receivers

coincide in our setup and thus beamforming in reception and emission are mathemat-
ically equivalent, by reciprocity. In the case of very large arrays, the windows and
weights modeled by ψ

X
may vary with the center of the sub-apertures. We assume

here that the aperture a is small enough so as to use the same window function ψ
X

for all the emission and reception beamformers.

Naturally, the role of the weights in beamforming in reception is similar to that in
emission. For example, the inverse filter developed in [5] achieves the best focusing of
the beamformer by emphasizing the edges of the array, just as the edge apodization
for emission obtained in [12]. The important point to note is that as in emission,
thresholding in reception using the window function ψ

X
in (2.5) and a properly chosen

X < a introduces a statistical smoothing that is essential for achieving a robust image
in clutter. The smaller X is, the more smoothing at the expense of resolution, as
discussed in Section 4. Actually, it follows from the analysis of Section 4.1 that the
maximum threshold that gives proper smoothing varies with the frequency. Such
frequency variation is not considered in the delay-and-sum beamformers because it
cannot be implemented in the time domain. Although this frequency dependence
may be negligible when the bandwidth B is small compared to the carrier frequency
ω0, it may become important when B ∼ ω0. Unless we take X as the minimum
over the frequency band, which may be too small to achieve an acceptable resolution,
robust pixel scanning imaging in clutter may need to be implemented in the frequency
domain for broadband pulses, with X variable over the bandwidth.

The last step in the pixel scanning imaging process is to compute the energy of
PR(xr),I(xs)(t; ~y

S) over a properly chosen time window function φ
T

and sum over the
sub-apertures to form the windowed beamforming energy (WBE) imaging function:

IWBE(~yS ;T,X) =
∑

s,r

∫
dt

2π

∣∣φ
T
(t− τ(xr, ~y

S) − τ(xs, ~y
S))P

R(xr),I(xs)
(t; ~yS)

∣∣2 .

(2.6)
The time window function is of the form

φ
T
(t) = T−1/2φ

(
t

T

)
. (2.7)
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It is the scaled version of a function φ(u) of dimensionless argument that is supported
in the interval |u| ≤ 1/2, with normalization so that

∫ ∞

−∞

dt

2π
φ2

T
(t) =

∫ ∞

−∞

du

2π
φ2(u). (2.8)

For example, we may take φ(u) = 1[−1/2,1/2](u) (which is equal to one when |u| ≤ 1/2
and 0 otherwise). The time window function φ

T
is used in (2.6) to evaluate the

energy received at xr over the time interval of length T , centered at the travel time
τ(xr, ~y

S)+τ(xs, ~y
S), when the illumination is from the source at xs. The time T may

be chosen small, comparable to the pulse width in homogeneous media. In cluttered
media, T may be larger so as to account for the pulse delay spread, that is the arrival
of the multiply scattered waves from the clutter. In fact, we show in Section 4 that
when T is chosen as the time delay spread Td, the window function φ

T
introduces a

statistical smoothing that is essential for robust imaging in clutter. The delay spread
Td can be described as the time duration of arrival of echoes of significant energy that
are caused by multiple scattering in clutter of a short pulse emitted by a source.

3. Connections to coherent interferometric imaging. In this section we
show how the mathematical expression (2.6) of the windowed beamformer energy
function IWBE is related to the CINT function ICINT introduced in [8] and defined
below in Section 3.2. The main result which relates IWBE to ICINT is in Subsection
3.4.

3.1. Transformation of IWBE into backpropagated local cross-correlations.

We begin by changing variables in the time integral in (2.6)

t t+ τ(xr , ~y
S) + τ(xs, ~y

S),

and using Parseval’s identity obtain

IWBE(~yS ;T,X) =
∑

s,r

∫
dt

2π

∣∣P
T,X

(t,xr,xs; ~y
S)
∣∣2

=
∑

s,r

∫
dω
∣∣∣P̂T,X

(ω,xr,xs; ~y
S)
∣∣∣
2

. (3.1)

Here we have defined

P
T,X

(t,xr,xs; ~y
S) = φ

T
(t)PR(xr),I(xs)(t+ τ(xr , ~y

S) + τ(xs, ~y
S); ~yS) (3.2)

and we recall from equations (2.2) and (2.5) that

PR(xr),I(xs)(t+ τ(xr, ~y
S) + τ(xs, ~y

S); ~yS) =
∑

ρ,σ

ψ
X

(xσ − xs)ψX
(xρ − xr)

×P
(
t+ τ(xρ, ~y

S) + τ(xσ, ~y
S), ~xρ, ~xσ

)
. (3.3)

In the frequency domain we have the convolution

P̂
T,X

(ω, ~xr, ~xs; ~y
S) =

∫
dω′

2π
φ̂

T
(ω − ω′)

∑

ρ,σ

ψ
X

(xσ − xs)ψX
(xρ − xr)

× P̂ (ω′, ~xρ, ~xσ)exp{−iω′
[
τ(xρ, ~y

S) + τ(xσ, ~y
S)
]
}, (3.4)



8 Borcea, Garnier, Papanicolaou, Tsogka

and the imaging function becomes

IWBE(~yS ;T,X) =
∑

s,r

∑

ρ,ρ′

ψ
X

(xρ − xr)ψX
(xρ′ − xr)

∑

σ,σ′

ψ
X

(xσ − xs)ψX
(xσ′ − xs)

×
∫
dω

∫
dω′

2π

∫
dω′′

2π
φ̂

T
(ω − ω′)φ̂

T
(ω − ω′′)P̂ (ω′, ~xρ, ~xσ)P̂ (ω′′, ~xρ′ , ~xσ′)

× exp{−iω′
[
τ(xρ, ~y

S) + τ(xσ , ~y
S)
]
+ iω′′

[
τ(xρ′ , ~yS) + τ(xσ′ , ~yS)

]
}, (3.5)

with the bar denoting complex conjugate.

Now let us use the convolution identity

∫
dω

2π
φ̂

T
(ω − ω′)φ̂

T
(ω − ω′′) =

∫
dt |φ

T
(t)|2 ei(ω′′−ω′)t =

∫
dt |φ (t)|2 eiTωt.

If we define the new frequency window function Φ by

Φ(t) = |φ (t)|2 , Φ̂(ω) =

∫
dt |φ (t)|2 eiωt, (3.6)

then we have
∫
dω

2π
φ̂

T
(ω − ω′)φ̂

T
(ω − ω′′) = Φ̂ [T (ω′′ − ω′)] . (3.7)

We also introduce the spatial window function Ψ defined by

Ψ

(
x′

ρ − xρ

X

)
=
∑

r

ψ
X

(xρ − xr)ψX
(xρ′ − xr)

=
∑

r

ψ

(
xρ − xr

X

)
ψ

(
xρ′ − xρ

X
+

xρ − xr

X

)
. (3.8)

With these notations we obtain the following expression of the windowed beamformer
energy function

IWBE(~yS ;T,X) =
1

2π

∫
dω

∫
dω′ Φ̂ [T (ω′ − ω)]

∑

ρ,ρ′

Ψ

(
xρ′ − xρ

X

)

×
∑

σ,σ′

Ψ

(
xσ′ − xσ

X

)
P̂ (ω, ~xρ, ~xσ)P̂ (ω′, ~xρ′ , ~xσ′)

× exp{−iω
[
τ(xρ, ~y

S) + τ(xσ , ~y
S)
]
+ iω′

[
τ(xρ′ , ~yS) + τ(xσ′ , ~yS)

]
}.(3.9)

It follows from this expression that IWBE(~yS ;T,X) is mathematically equivalent to
the backpropagation to the search point ~yS of the local cross-correlations of the data
traces. The backpropagation is done with travel times and the cross-correlations are
local because they are computed over receiver and source offsets in the support of the
window function Ψ scaled by X , and over nearby frequencies satisfying |ω′ − ω| ≤
1/(2T ).

3.2. Coherent interferometric imaging. The CINT imaging function ICINT

is similar to IWBE. Instead of working with the traces themselves, as in the Kirchhoff
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migration function (1.2), it forms an image by summing over the sources and receivers
the local cross-correlations of the traces backpropagated to ~yS using travel times [8, 9]

ICINT(~yS ;TC, XC) =
1

2π

∫
dω

∫
dω′ Φ̂C

[
TC(ω′ − ω)

]∑

ρ,ρ′

ΨC

(
xρ′ − xρ

XC
(

ω+ω′

2

)
)

×
∑

σ,σ′

ΨC

(
xσ′ − xσ

XC
(

ω+ω′

2

)
)
P̂ (ω, ~xρ, ~xσ)P̂ (ω′, ~xρ′ , ~xσ′)

× exp{−iω
[
τ(xρ, ~y

S) + τ(xσ , ~y
S)
]
+ iω′

[
τ(xρ′ , ~yS) + τ(xσ′ , ~yS)

]
}. (3.10)

Here Φ̂C and ΨC are the frequency and spatial window functions of dimensionless
arguments and finite support. These window functions do not need to be the same
as in (3.6) and (3.8), although we show later that it is desirable that they are. The
threshold parameters TC and XC scale the support of the window functions, and we
may let XC vary with frequency in the way shown in formula (3.10). This can be
useful to improve the resolution when the bandwidth is large [9].

By working with local cross-correlations of the data with thresholding XC and
ΩC = 1/TC, the sensor separation and frequency offsets, respectively, CINT intro-
duces a statistical smoothing that is designed to stabilize the images with respect
to the realizations of the clutter [10, 9]. The analysis in [10] shows that for ICINT

to be statistically stable (self-averaging), the thresholding parameters XC and ΩC

should not exceed the decoherence length Xd and frequency Ωd of the array data.
These parameters characterize how the array data traces decorrelate because of the
multiple scattering in clutter. Explicitly, the decoherence frequency Ωd is defined as
the frequency offset |ω′ − ω| over which P̂ (ω, ~xr, ~xs) and P̂ (ω′, ~xr, ~xs) become sta-
tistically uncorrelated. The decoherence length Xd is defined as the receiver offset
|xr′ − xr| over which P̂ (ω, ~xr, ~xs) and P̂ (ω, ~xr′ , ~xs) decorrelate. By reciprocity, the
same applies to the source offsets.

In smooth media, the waves do not scatter as they travel from the array to the
reflectors that we wish to image and back. There is no loss of coherence of the waves
and so there is no need to threshold the sensor and frequency offsets. That is to say,
we can take XC = a, ΩC = B and window functions that are equal to one over their
support (indicator functions) to obtain from (3.10) and (1.2)

ICINT(~yS) = 2π
∣∣IKM(~yS)

∣∣2 .

The CINT imaging function becomes the square of the Kirchhoff migration one, and
there is no gain in working with the cross-correlations of the traces.

Typically, multiple scattering in clutter causes the waves to decorrelate over sensor
offsets Xd ≪ a and small frequency intervals Ωd ≪ B. The decoherence frequency
Ωd is inversely proportional to the the time delay spread Td, as is well known for
example in the field of wireless communications [20, Section 2.2]. The decoherence
length may be as small as the wavelength, which is why we let XC be a function of
the frequency in (3.10). We discuss this in more detail in Section 4.1, and we describe
in Section 4 the trade-off between the resolution of the images and their statistical
stability. This trade-off indicates that the smaller the thresholding parameters XC

and ΩC are, the more smoothing there is in the images at the expense of loss of
resolution. Therefore, it is important to have good estimates of the decoherence
length and frequency to obtain relatively sharp and stable images in clutter with
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ICINT. The trade-off also motivates an adaptive CINT algorithm, introduced in [9],
for estimating the decoherence parameters during the image formation process with
CINT. Adaptive CINT iteratively seeks an image with the optimal parameters XC

and ΩC = 1/TC, which are also estimates of Xd and Ωd, that give the best quality
image in terms of resolution and speckle suppression.

3.3. Matched field imaging. Another imaging function that is quadratic in
the array data is matched field [1]. The Bartlett matched field imaging function IMF

can be related to (3.10) in the limit TC → ∞ by setting XC = a, with ΨC = 1a the
indicator function of the array,

IMF(~yS) =

∫
dω

2π

∣∣∣∣∣
∑

ρ,σ

P̂ (ω, ~xρ, ~xσ)e−iω[τ(xρ,~yS)+τ(xσ,~yS)]

∣∣∣∣∣

2

. (3.11)

Matched field is designed to mitigate the effect of additive, uncorrelated noise, so it
neglects frequency correlations in the data traces. At the same time, it assumes that at
any frequency ω in the bandwidth, P̂ (ω, ~xρ, ~xσ) and P̂ (ω, ~xρ′ , ~xσ′) remain statistically
correlated for all the receivers and sources in the array. In other words, the difference
between CINT and matched field is that CINT works with local cross-correlations in
time and sensor offsets, whereas matched field takes global cross-correlations, over an
infinite time window and the entire array.

Because IMF does not exploit the frequency coherence of the array data, it has
very poor range resolution in open environments [13, 8], unless the array is very large.
Range resolution can be recovered only by geometric triangulation using multiple
arrays or a single large one, that sees the reflectors to be imaged from very different
angles. The imaging function may also lack statistical stability when the decoherence
length is much smaller than the array aperture. There are however situations where
matched field works well, as in waveguides. The range resolution is recovered in
waveguides because of the boundary bouncing modes that give a wide angle view of
the scatterer, as if we had a very large array. Matched field, with possible additional
data filters [1], works in cluttered waveguides at ranges that are not too long for the
wave field to lose its coherence by scattering [7]. This is why it is a popular method
in shallow water acoustic [1] imaging.

3.4. Connection between the IWBE and ICINT imaging functions. We
can now state the main result of the paper which relates the pixel scanning windowed
beamformer energy function IWBE to ICINT.

Theorem 3.1. We have

ICINT(~yS ;TC, XC) = IWBE(~yS ;T,X), (3.12)

if TC = T , XC(ω) = X for all ω in the bandwidth of the pulse, and if the window

functions ΦC and ΨC in CINT satisfy

Φ̂C(ω̌) =

∫
du |φ(u)|2 eiω̌u =

∫
dω̌′

2π
φ̂(ω̌ + ω̌′)φ̂(ω̌′), (3.13)

and

ΨC

(
x′

ρ − xρ

X

)
=
∑

r

ψ

(
xρ − xr

X

)
ψ

(
xρ′ − xρ

X
+

xρ − xr

X

)
. (3.14)
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We note that the window functions Φ̂C and ΨC are auto-correlation functions,
that is they are given by correlation of a function with itself. This implies that
they have non-negative Fourier transform ΦC and Ψ̂C, by Bochner’s theorem [4, 21].
Although we can take, in principle, any window functions in CINT imaging, it is
only for auto-correlation functions that the CINT imaging function is non-negative
and equal to the energy IWBE. This observation is important for the adaptive CINT
algorithm and for designing optimal filters of the array data for improved focusing
of IWBE and ICINT, as pointed out in [12, 11]. For example, it is shown in [12, 11]
how to compute optimal subspace projections of the array response matrix in order
to minimize the spatial support of the CINT imaging function, and therefore improve
the focusing of the image. The small spatial support is obtained by minimizing the
L1 norm of ICINT normalized by its maximum. By Theorem 3.1 we see that when
we restrict the window functions to auto-correlation functions, ICINT is non-negative
and the L1 optimization is in fact one in L2.

By relating the pixel scanning beamformer energy function to that of CINT, we
can use the statistical stability analysis of ICINT [10] to infer the statistical stability of
IWBE. Theorem 3.1 says that ICINT and IWBE are mathematically equivalent only if
the sensor offset threshold does not vary over the bandwidth (XC(ω) = X). Then, the
results in [10, 9], summarized in Section 4.1, indicate that ICINT and therefore IWBE

is stable with respect to the realizations of the clutter if the thresholding parameters
satisfy the bounds

1/T ≤ Ωd, X ≤ Xd(ω), (3.15)

for all ω in the pulse bandwidth. Having a statistically stable function IWBE means
taking a threshold X that is as small as minω Xd(ω), at the expense of blurring the
image in cross-range, as explained in Section 4. Therefore, in broadband cases where
Xd(ω) varies significantly, a robust function IWBE gives more blurred images in cross-
range than adaptive ICINT, which has built in its design the frequency dependence of
the sensor offset threshold.

4. Stability and resolution analysis.

4.1. The coherent interferometric imaging function as a smoothed Wigner

transform of the array data. In this section we show how the thresholding by X
and T introduces a statistical smoothing in the imaging process that is essential for
obtaining robust images, relatively insensitive to the realizations of the clutter. Specif-
ically, we show how ICINT can be written in terms of the Wigner transform of the
array data traces, convolved with the window functions Ψ and Φ̂. It is because of
these convolutions that the smoothing takes place. The analysis is based on the as-
sumption that the sensor separation h in the array is small enough for a continuum
aperture approximation to hold, so that we can replace the sums over the array with
integrals over the set An,

∑

σ

 

1

hn

∫

An

dx.

Let us begin by defining the Wigner transform of the wavefield P (t, ~x, ~x′),

W
(
ω̄, t; x̄ρ, x̄σ; κρ,κσ

)
=

∫∫

Rn

dx̃ρdx̃σ

∫ ∞

−∞

dω̃ P̂
(
ω̄ +

ω̃

2
, x̄ρ +

x̃ρ

2
, x̄σ +

x̃σ

2

)

×P̂
(
ω̄ − ω̃

2
, x̄ρ − x̃ρ

2
, x̄σ − x̃σ

2

)
e−iω̃t+iω̄κρ·x̃ρ+iωκσ·x̃σ , (4.1)
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where κρ and κσ are slowness vectors in R
n, perpendicular to the plane waves wave-

fronts. They are given by the wavevectors divided by the frequency, and are called
slowness vectors because their units are of the inverse of a velocity. The inverse Fourier
transform of this formula, evaluated at mid-points x̄ρ, x̄σ ∈ An and offsets x̃ρ, x̃σ,
reads

P̂
(
ω̄ +

ω̃

2
, x̄ρ +

x̃ρ

2
, x̄σ +

x̃σ

2

)
P̂
(
ω̄ − ω̃

2
, x̄ρ − x̃ρ

2
, x̄σ − x̃σ

2

)
=

ω2n

(2π)1+2n

×
∫∫

Rn

dκρdκσ

∫ ∞

−∞

dtW
(
ω, t; x̄ρ, x̄σ; κρ,κσ

)
eĩ̄ωt−iω̄κρ·x̃ρ−iω̄κσ ·x̃σ . (4.2)

We now use this equation in (3.10) after changing variables

xρ + xρ′

2
= x̄ρ, xρ − xρ′ = x̃ρ;

xσ + xσ′

2
= x̄σ, xσ − xσ′ = x̃σ,

and introducing the central and difference frequencies

ω + ω′

2
= ω̄, ω − ω′ = ω̃.

We then obtain the expression

ICINT(~yS ;XC, TC) ≈ h−4n

(2π)2+2n

∫∫∫
dω̄dx̄ρdx̄σ ω̄

2n

×
∫∫∫

dκρdκσdtW
(
ω̄, t; x̄ρ, x̄σ; κρ,κσ

)

×
∫
dω̃ Φ̂C(−TCω̃)

∫
dx̃ρΨ

C

(
x̃ρ

XC(ω̄)

)∫
dx̃σΨC

(
x̃σ

XC(ω̄)

)

× e
iω̄

h

τ
“

x̄ρ−
x̃ρ
2 ,~yS

”

−τ
“

x̄ρ+
x̃ρ
2 ,~yS

”

−κρ·x̃ρ+τ(x̄σ− x̃σ
2 ,~yS)−τ(x̄σ−

x̃σ
2 ,~yS)−κσ·x̃σ

i

× e
iω̃

2

4t−
τ

„

x̄ρ+
x̃ρ
2

,~yS
«

+τ

„

x̄ρ−

x̃ρ
2

,~yS
«

2 −
τ(x̄σ+

x̃σ
2

,~yS)+τ(x̄σ−
x̃σ
2

,~yS)
2

3

5

, (4.3)

which we can simplify under the assumption of small Fresnel numbers

ω

c

XC(ω)2

|~xρ − ~yS | ∼
ω

c

XC(ω)2

|~xσ − ~yS | ≪ 1, (4.4)

for all ω in the pulse bandwidth, where c is the constant reference wave speed. This
assumption means that the propagation distance is large and the wave fronts are
essentially plane waves. It places the calculations in the Fraunhofer (or far-field)
diffraction regime [14], where we can linearize the phases in (4.3) and obtain a simpler
expression that can be interpreted as a decomposition into plane waves. Indeed, the
assumption (4.4) indicates that the sensor separationXC should by small with respect
to

√
λoL, when L is the range from the array to a typical search point where we image.

We can then write

ω̄

[
τ

(
x̄ρ − x̃ρ

2
, ~yS

)
− τ

(
x̄ρ +

x̃ρ

2
, ~yS

)]
≈ −ω̄x̃ρ · ∇x̄ρ

τ(x̄ρ, ~y
S),

ω̃

[
τ

(
x̄ρ +

x̃ρ

2
, ~yS

)
+ τ

(
x̄ρ −

x̃ρ

2
, ~yS

)]
≈ 2ω̃τ(x̄ρ, ~y

S),
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and use the identities
∫
dω̃ Φ̂C(−TCω̃)eiω̃[t−τ(x̄ρ,~yS)−τ(x̄σ,~yS)] =

2π

TC
ΦC

(
t− τ(x̄ρ, ~y

S) − τ(x̄σ , ~y
S)

TC

)
,

and
∫
dx̃ρΨ

C

(
x̃ρ

X(ω̄)

)
e−iω̄x̃ρ·[κρ+∇x̄ρ τ(x̄ρ,~yS)]

= XC(ω̄)nΨ̂C
[
ω̄XC(ω̄)

(
κρ + ∇x̄ρ

τ(x̄ρ, ~y
S)
)]

to obtain

ICINT(~yS ;XC, TC)≈ C

∫∫∫
dω̄dx̄ρdx̄σ [ω̄X(ω̄)]

2n
∫∫∫

dκρdκσdt

×W
(
ω̄, t; x̄ρ, x̄σ; κρ,κσ

)
ΦC

(
t− τ(x̄ρ, ~y

S) − τ(x̄σ , ~y
S)

TC

)

× Ψ̂C
[
ω̄XC(ω̄)

(
κρ + ∇x̄ρ

τ(x̄ρ, ~y
S)
)]

× Ψ̂C
[
ω̄XC(ω̄)

(
κσ + ∇x̄σ

τ(x̄σ, ~y
S)
)]
, (4.5)

with constant C = h−4n/[(2π)1+2nTC]. Here Ψ̂C is defined by

Ψ̂C(k) =

∫
dξe−ik·ξΨC(ξ).

Equation (4.5) shows that the ICINT imaging function is a smoothed version of
the Wigner transform of the echoes recorded at the array. It has been used in [10]
to prove the statistical stability of CINT imaging in random media. By statistical
stability we mean that the relative standard deviation of the imaging function is small,
or simply stated, that the images are insensitive to the realization of the random
medium. The main point of the statistical stability argument is that although the
Wigner transform W is a randomly fluctuating function, it is weakly self-averaging.
That is to say, smooth linear functions of W are deterministic.

We discuss next the trade-off between the smoothing in (4.5) that makes ICINT

self-averaging function at the expense of loss of resolution in the image.

4.2. Trade-off between stability enhancement and resolution loss. The
amount of smoothing in (4.5) depends on the truncation parameters TC and XC(ω).
The smaller ΩC = 1/TC and XC are, the wider the support of the scaled functions

ΦC and Ψ̂C in (4.5). These window functions are now assumed non-negative to relate
ICINT to the pixel scanning windowed beamformer energy function IWBE, as stated
in Theorem 3.1.

It is clear from (4.5) that XC(ω̄) should scale as 1/ω̄ to obtain a frequency inde-
pendent smoothing over the slowness vectors κρ and κσ. This was noted in [9, 10],
where the decoherence length was defined by

Xd(ω̄) =
c

ω̄κd
,

with dimensionless κd quantifying the uncertainty of the direction of arrival of the
waves, due to scattering in random media. We therefore let

XC(ω̄) =
c

ω̄κC
,
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for some κ
C, and rewrite (4.5) as

ICINT(~yS ;XC, TC)≈ C′

∫∫∫
dω̄dx̄ρdx̄σ

∫∫∫
dκρdκσdtW

(
ω̄, t; x̄ρ, x̄σ; κρ,κσ

)

×ΦC

(
t− τ(x̄ρ, ~y

S) − τ(x̄σ, ~y
S)

TC

)
Ψ̂C

[
c
(
κρ + ∇x̄ρ

τ(x̄ρ, ~y
S)
)

κC

]

× Ψ̂C

[
c
(
κσ + ∇x̄σ

τ(x̄σ , ~y
S)
)

κC

]
, (4.6)

with constant C′ = C(c/κC)2n. Note that this is no longer the same as IWBE, because
of the frequency dependence of XC. The pixel scanning windowed beamformer is
normally implemented in the time domain and cannot handle frequency-dependent
sensor offset thresholds.

It follows from (4.6) that the smoothing of the Wigner transform is controlled by
the window functions ΦC and ΨC normalized by TC and κ

C. Qualitatively, the longer
TC and the larger κ

C (i.e., the shorter XC) are, the more smoothing there is of the
Wigner transform in the imaging function. Smoothing is beneficial for the robustness
of the imaging process (statistical stability), but it decreases the resolution of the
images. To have good range resolution, we would like to use short time windows (small
TC). Similarly, to focus better in beam forming and get good cross range resolution,
we would like to use large sub-array apertures XC, and thus small κ

C. This trade-off
between smoothing for robustness and resolution shows that it is essential that the
truncation parameters TC and κ

C be chosen appropriately. The optimal choices are
given by TC = Td, the power time delay spread, and κ

C = κd, the uncertainty in
the direction of arrival [9, 10]. In practice, these parameters are difficult to estimate
directly from the data, so it is better to determine them adaptively, by optimizing
over TC and κC the quality of the resulting image. This is what is done in adaptive
CINT [9].

Finally the smoothing of the Wigner transform not only depends on the cut-off
parameters TC and κ

C, but also on the forms of the dimensionless window functions
ΦC and ΨC. These forms play a role in that they can control the side-lobes of the
imaging function. We can observe that, if we take ΦC and ΨC of the form (3.13-

3.14), then ΦC and Ψ̂C are non-negative valued and therefore no side-lobe should
be generated. This observation clearly shows another advantage of choosing auto-
correlation functions for ΦC and ΨC in CINT.

5. Connections to delay and sum beamforming methods. In this section
we discuss connections and stress differences between CINT and well-known beam-
forming methods used in ultrasound echographic imaging. Our presentation here is,
however, placed in a general, interdisciplinary context.

Beamforming may be viewed as a way to spatially filter the array data in order
to select signals coming from a particular point ~yS of the image region. The key step
in beamforming is the use of delays in the recorded signals and the selection of the
contributions that correspond to the sums of travel times from the source ~xs to the
search point ~yS and from the search point ~yS to the receiver ~xr:

Ps,r(~y
S) = P

(
τ(xr, ~y

S) + τ(xs, ~y
S), ~xr, ~xs

)
.

Here it is assumed that the emitted probing signal is a very short pulse, so that for each
search point only one time sample, at the instant τ(xr, ~y

S) + τ(xs, ~y
S) is taken from
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each data sequence. This is a hypothesis that is often made in classical ultrasound
beamforming, and although it is often mentioned that it is possible to generalize the
model to take more samples into account when the transmitted pulse is more general
[28], there is no systematic way to perform this task. It is one of the advantages
of CINT that it uses more time samples in an efficient way. Explicitly, it accounts
for the time delay spread due to scattering in the medium by evaluating the energy
resolved locally over time and directions, i.e., the Wigner transform, in a window of
appropriately chosen width TC , around the travel time τ(xr , ~y

S) + τ(xs, ~y
S).

In the delay-and-sum (DAS) beamforming method the delayed samples are simply
summed to give the DAS pixel value

IDAS(~yS) =
∑

r,s

Ps,r(~y
S).

The DAS method is widely used in ultrasound imaging applications [25] and we note
from (1.2) that it is equivalent to Kirchhoff or travel-time migration used in seismol-
ogy for instance [2, 3, 16]. However it is also noted in the literature that this method
has poor resolution and signal-to-noise or signal-to-interference ratio [27]. To compen-
sate for these drawbacks robust beamforming methods have been proposed in which
the samples are weighted with pixel-dependent weights wr,s(~y

S) prior to summation,
which gives the general function

IRB(~yS) =
∑

r,s

ws,r(~y
S)Ps,r(~y

S).

Two classes of beamformers can be distinguished depending on how the weights are
chosen: the data-independent beamformers and the statistically optimum ones.

The weights in a data-independent beamformer are independent of the array data
or data statistics and they are chosen in such a way that the beamforming function
presents a specified response for a set of predefined situations. The DAS beamformer
is an example of data independent beamforming. Another example is the (frequency-
dependent) universal inverse filter proposed in [5] which is successful in increasing the
resolution when the noise level is low and the array is small and oversampled.

The weights in a statistically optimum beamformer depend on the statistics of
the data recorded at the array. These statistics are usually not known so adaptive
algorithms must be used to estimate the weights. The goal is to optimize the beam-
former response so that the filtered signal contains minimal contributions of waves
arriving from points different than the pixel ~yS at which we form the image, while
keeping a unit gain for the signal coming from ~yS . The Capon beamformer [15] is the
prototype of statistically optimum beamformers and its generalizations have become
increasingly popular [22, 17, 23, 28, 24, 27]. The key steps in the Capon beamformer
are the estimation of the covariance matrix of the recorded signals and the regular-
ization of a constrained least squares algorithm for the determination of the optimal
weights.

When we compare the classical beamforming methods with the CINT methods,
we can make the following observations:

- CINT uses a quadratic function while classical beamforming methods use a
linear function of the array data. This function is linear up to the adaptive part
which consists in estimating the covariance matrix of the signal. This is an important
difference because backpropagation of signal correlations has been shown to be more
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stable with respect to clutter noise than backpropagation of the signals themselves
[8, 18].

- The spatial correlation component of CINT roughly corresponds to robust
beamforming with certain specific weights that correspond to selecting optimal sub-
apertures near the receivers and sources.

- The time (or frequency) correlation component of CINT is absent in classical
beamforming. Indeed this correlation component can only be implemented in the
form of a quadratic function. However it plays an important role in selecting the
coherent contributions, especially with broadband pulses. It provides a systematic
way for selecting the duration of the optimal time window around the expected sum
of travel times.

- The adaptive procedure in CINT is reduced to the estimation of the two cut-off
parameters XC and ΩC that are common for all pairs of source/receiver. This is in
contrast with robust beamforming in which the weights have to be estimated for each
pixel. As a result it is possible to implement an adaptive CINT procedure based on
the quality of the image itself as shown in [9].

6. Summary. In this paper we have established an equivalence between the co-
herent interferometric imaging function ICINT defined by (3.10) and the pixel scanning
beamformer energy function IWBE defined by (2.6). The most important consequence
of this equivalence is that it allows for an efficient hardware and software implemen-
tation of coherent interferometry, using time delays and time gatings, that is, at a
computational cost that is comparable to the usual beamforming and migration imag-
ing methods.

Other important consequences of this relationship are that the statistical stability
of coherent interferometry proved in [10] is maintained in this new version and that the
optimal cut-off parameters used in the implementation can be related to the physical
parameters of the medium (coherence length and frequency) and can be adaptively
estimated as in [9].

The connection between ICINT and IWBE described in Theorem 3.1 is possible
provided that:

- The cut-off functions used in ICINT are covariance functions or, equivalently,
that their Fourier transforms are nonnegative. Using this type of cut-off functions
also ensures that the function ICINT is positive valued.

- The cut-off parameter XC used in ICINT is frequency-independent. We know
from theoretical considerations that the optimal cut-off parameter XC depends on
the reciprocal of the frequency [9, 10]. If the cut-off parameter is chosen among
the class of frequency-independent parameters, then CINT cannot reach its optimal
performance. This shows that coherent interferometry can be optimally implemented
with the straightforward time windowing and time gating method presented in this
paper, provided that the bandwidth is smaller than the carrier frequency. In the case
in which the bandwidth is of the same order as the carrier frequency, the optimal
CINT method cannot be implemented as a straightforward time windowing and time
gating method and a more flexible, but still practically easy, implementation method
is to be found that would allow to achieve the optimal performance of CINT while
keeping a low degree of complexity.
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