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Abstract
In time reversal, an array of transducers receives the signal emitted by a localized
source, time reverses it and re-emits it into the medium. The emitted waves
back-propagate to the source and tend to focus near it. In a homogeneous
medium, the cross-range resolution of the refocused field at the source location
is λ0 L/a, where λ0 is the carrier wavelength, L is the range and a is the array
aperture. The refocusing spot size in a homogeneous medium is independent of
the bandwidth of the pulse, but broad-band can help in reducing spurious Fresnel
zones. In a noisy (random) medium, the cross-range resolution is improved
beyond the homogeneous diffraction limit because the array can capture
waves that move away from it at the source, but get scattered onto it by the
inhomogeneities. We refer to this phenomenon as super-resolution of the time
reversal process in random media. Super-resolution implies in particular that,
because of multipathing, the array appears to have an effective aperture ae that
is greater than a. Since ae depends on the scattering medium, it is not known. In
this paper we present a brief review of time reversal theory in a remote sensing
regime and a robust procedure for estimating ae from the signals received at
the array. Knowing ae permits assessing quantitatively super-resolution in time
reversal for applications in spatially localized communications with reduced
interference. We also review interferometric imaging and its relation to time
reversal and to matched field imaging. We show that ae quantifies in an explicit
way the loss of resolution in interferometric array imaging.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There have recently been some theoretical and experimental developments in time reversal,
where signals emitted by a source are recorded by an array of transducers, time-reversed and
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sent back into the same medium. Because of the time reversibility of the wave equation we
have (diffraction limited) refocusing of the time-reversed signal at the source when there is no
attenuation. In a homogeneous medium we get a refocusing spot of approximate size λ0 L/a
[14]. However, in random media experimental [21, 25, 42, 35] and theoretical [8, 39, 2, 23]
studies show that in broad-band regimes the refocusing is much tighter and the Fresnel
zones are reduced. This is the phenomenon of super-resolution and it is due to the random
inhomogeneities, which distribute the waves over a larger part of the medium than they would
in the homogeneous case and therefore carry more information about the source location. The
array appears to have an effective aperture ae > a and this leads to super-resolution and the
elimination of Fresnel zones because of random phase cancellations. A quantitative assessment
of super-resolution can be made by looking at the average time-reversed back-propagated field,
calculated explicitly in [23]. However, it is remarkable that in appropriate regimes, such as
broad-band, this phenomenon does not happen just in the mean but for almost all realizations
of the random medium. This is the self-averaging phenomenon which has been explored
numerically and analytically in [8, 39, 2], and for layered random media in [18, 28] and
references therein. Self-averaging is important because it differentiates between an observable
refocusing with super-resolution and random speckle patterns distributed around the original
source.

Since reflection-based array imaging methods involve some form of time reversal or back-
propagation into the real (or a fictitious) medium, it is natural to ask what implications super-
resolution and statistical stability in time reversal have for imaging in clutter. In [10, 6] we
developed an approach to statistically stable imaging of small targets buried in a randomly
inhomogeneous, isotropic, infinite medium. In [12], we reported our first resolution study, for
imaging an active point source with a passive array of transducers, in random media. However,
the details of the calculations are not given in [12] and we present them here. We also introduce
a resolution study of interferometric imaging of extended, quiescent objects, in clutter, from
the scattered echoes received at the array. Using theoretical results of time reversal in random
media [8, 39, 2, 23], we develop a model for interferometric, matched field imaging, which
accounts in a simple and explicit manner for the effect of the clutter on the image. This effect
is quantified by a single parameter, the effective aperture ae, which is unknown. We show here
that the matched field functional can be used not only to locate unknown sources and reflectors
but also to provide an estimate for ae, and we demonstrate the feasibility of our approach with
numerical simulations. In particular, we show that the estimated ae predicts very accurately
the spot size in time reversal in random media. Since the effective aperture ae depends on the
scattering medium its estimation gives a measure of the randomness of the medium and plays
an important role in several applications. To illustrate this, we briefly present in section 6 a
reflectivity imaging method for extended scatterers in random media. We show that in this
case the blurring effect of the random medium on the image can also be quantified with ae.
Another application in which ae appears as a key parameter is communications in cluttered
media as we discuss in section 7.

In section 2 we introduce time reversal and imaging by arrays. In section 3 we discuss
time reversal in both deterministic and random media. In section 4, we discuss imaging
active point sources in random media. In section 5 we use the matched field functional of
section 4 to estimate the effective aperture ae, which depends on the random medium and
on the range. We demonstrate the feasibility and robustness of the estimation process with
numerical simulations in section 5. The important role that ae plays in applications is illustrated
with two examples: imaging of the reflectivity of extended targets, presented in section 6, and
secure communications, discussed in section 7. Finally, in section 8 we give a brief summary
and conclusions.
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Figure 1. The set-up for array time reversal and imaging.

2. Imaging and time reversal

For simplicity we assume that there is a single scatterer to be imaged in the noisy medium.
We distinguish between two types of scatterers or targets:

(1) active ones, which emit a signal f (t) that propagates through the medium and is received
at the array, and

(2) passive ones, which are quiet and can be detected and imaged from scattered signals
received at the array, that are excited by primary signals emitted by the array.

The scatterers can be small, point-like, or extended but of finite support. Let us begin with the
case of a small, active source, located at

y = (0, 0, L),

with respect to the centre of the array, where L is the range and the cross-range is zero. The
array has point transducers located at xp = (ph/2, 0, 0), for p = −N, . . . , N . The separation
h/2 between the array elements is chosen so that in a remote sensing regime the transducers
behave like an array of aperture a = Nh � L and not like separate entities, while interference
is kept to a minimum. Often, h = λ0, the wavelength of the carrier frequency of the pulse.

Suppose that we have an active source which emits a pulse

f (t) = − d

dt

(
1√

2πσ 2
t

e−iω0 t exp

(
− t2

2σ 2
t

))
= iω0 + t/σ 2

t√
2πσ 2

t

e−iω0 t exp

(
− t2

2σ 2
t

)
, (2.1)

where ν0 = ω0/2π is the carrier frequency and B = 1/(σtν0) is the (relative) bandwidth of

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt = iω exp

(
−σ

2
t (ω − ω0)

2

2

)
. (2.2)

Clearly, there are many other choices for f (t). For example, chirps such as f (t) =
exp(iω0t + iαt2) are commonly used in synthetic aperture radar imaging [30, 13, 37, 19, 16].
We use the pulse (2.1) here for simplicity in the calculations. The signal received at xp (see
figure 1) is

sp(t) = f (t) �t G(xp, y, t) = 1

2π

∫ ∞

−∞
f̂ (ω)Ĝ(xp, y, ω)e−iωt dω, (2.3)

where Ĝ is the two point Green function at radian frequency ω, and where �t denotes
convolution in time. Throughout the paper, we use the reciprocity of the Green function
which allows us to interchange its spatial arguments.

We choose the scalar wave equation as our mathematical model for wave propagation in
the medium and we let c(x) be the propagation speed at a point x ∈ R

3. This scalar model is
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appropriate for sonar and ultrasound regimes but not for electromagnetic waves or for seismic
imaging, although it is often used there too. At frequency ν = ω/2π , the two point, outgoing
Green function satisfies the reduced wave equation

�Ĝ(x, y, ω) + k2n2(x)Ĝ(x, y, ω) = −δ(x − y), (2.4)

where k = ω/c0 is the wavenumber, c0 is the reference speed of propagation and

n(x) = c0

c(x)
, (2.5)

is the index of refraction of the medium.
We neglect the presence of boundaries and interfaces in the medium and focus attention

just on the scattering by the random inhomogeneities. For simplicity we also neglect large scale
background variations, although they can be accounted for easily in numerical calculations,
and we let the fluctuations of the index of refraction be

n2(x)− 1 = σµ

(
x
l

)
, (2.6)

where l is the correlation length (the scale at which the medium fluctuates), the standard
deviation σ � 1 (weak fluctuations) and µ is a stationary, isotropic random field with mean
zero and normalized covariance

R(x) = R(|x|) = E{µ(x′ + x)µ(x′)}. (2.7)

We also assume that the covariance (2.7) decays sufficiently fast at infinity. We review some
of the basic theory of waves in random media with such fluctuations in the appendix. Note
that the scattering medium that we consider here is different from the one in the experiments
in [21, 25], where the fluctuations are very strong. We take weak fluctuations but because the
waves travel a long distance in the scattering medium, the multipathing effect is observable, as
illustrated by the super-resolution that we get in the numerical simulations of time reversal. We
show in this paper that, in such random media, the effective aperture ae is the only parameter
needed to quantify super-resolution.

In imaging, we seek the unknown location y of the source that is buried in the unknown
random medium by reversing in time the signals sp(t), p = −N, . . . , N , and back-
propagating them numerically into a fictitious medium, which is here homogeneous with
constant sound speed c0. This process, which is also referred to as migration [17, 7], or
back-projection [37] in geophysics and in x-ray crystallography, respectively, is a form of time
reversal [8, 26, 27, 25, 42, 35, 18]. In time reversal, the signals sp(t), p = −N, . . . , N , received
at the array are time-reversed and re-emitted into the actual medium. They back-propagate to
the source and focus near it.

Thus, in both imaging and time reversal,we consider the back-propagated field at a ‘search’
point ys as shown in figure 1. We take ys in the plane determined by y and the array, at range
L + η and cross-range ξ ,

ys = (ξ, 0, L + η).

The space–time point-spread function for time reversal is defined by

�TR(ys, t) = 1

2π

∫ ∞

−∞
e−iωt �̂TR(ys, ω) dω, (2.8)

where

�̂TR(ys, ω) =
N∑

p=−N

ŝp(ω)Ĝ(xp, ys, ω) = f̂ (ω)
N∑

p=−N

Ĝ(xp, y, ω)Ĝ(xp, ys, ω), (2.9)
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and where the bar in (2.9) stands for complex conjugation. This function peaks near t ≈ 0 and
ys ≈ y. The point-spread function for imaging is given by

�IM(ys, t = 0) = 1

2π

∫ ∞

−∞
�̂IM(ys, ω) dω, (2.10)

where

�̂IM(ys, ω) =
N∑

p=−N

ŝp(ω)Ĝ0(xp, ys, ω) = f̂ (ω)
N∑

p=−N

Ĝ(xp, y, ω)Ĝ0(xp, ys, ω), (2.11)

and where Ĝ0(xp, ys, ω) is the Green function in a homogeneous medium

Ĝ0(x, y, ω) = eik|x−y|

4π |x − y| = eiωt (x,y)

4π |x − y| . (2.12)

Note that, since y is constant, we suppress it from the list of arguments in �TR and �IM.
In a homogeneous medium the travel time from x to y is t (x, y) = |x − y|/c0. We note

that �IM differs from �TR only insofar as the back-propagation is done in a homogeneous
or reference medium in imaging. Up to a scaling factor that depends on range, the imaging
functional (2.10) is equivalent to the Kirchhoff migration functional

�KM(ys) =
N∑

p=−N

sp(tp(ys)), (2.13)

where tp(ys) = |xp − y|/c0 is the travel time from xp to ys.
In this paper, we analyse the point-spread functions for time reversal and imaging, both

in the frequency and in the time domain, for randomly inhomogeneous media in a weakly
fluctuating, remote sensing regime. This functional, like (2.10), peaks when the search point
ys is near the unknown source location y.

3. Time reversal

When dissipative effects of the medium can be neglected, the time reversal point-spread
function focuses spatially and temporally near the source position y. Because the array
aperture a is limited, the refocusing is diffraction limited. In homogeneous media, the focal
spot size is of order λ0 L/a [14] and Fresnel zones may be observed, especially in a narrow-
band regime. It is surprising at first, that in richly scattering media we observe much better
focusing [21, 26, 27, 25, 35, 42]. But there is a simple physical explanation for this. Multiple
scattering (multipathing) in the medium causes rays that are directed initially away from the
array, to be scattered back onto it, and thus to be captured, time-reversed and re-emitted in
the medium. The scattering medium makes the array appear to be larger, that is, to have an
effective aperture ae > a, and the result is super-resolution with a focal spot size of order
λ0 L/ae. The Fresnel zones also disappear, because of random phase cancellations. Of course,
scattering reduces signal power at the array, because rays are scattered off it, so amplification
is often needed. The other surprising effect in time reversal is that under certain conditions, for
example in broad-band regimes (see [8]), the refocused field is self-averaging or statistically
stable. This property is what makes super-resolution in time reversal observable when the
environment is richly scattering.

In what follows, we analyse the time reversal point-spread function �TR in homogeneous
and random media. The effect of the clutter on �TR is quantified explicitly by the effective
aperture. In the frequency domain, �̂TR(ys, ω) depends on the narrow-band effective aperture
ae introduced in [8]. However, in broad-band regimes, the focusing of�TR(ys, t) is determined
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by the broad-band effective aperture Ae, which depends both on ae and on the bandwidth of
the probing pulse f (t).

3.1. Time reversal in homogeneous media

The time reversal point-spread function in homogeneous media is

�TR
0 (ys, t) = 1

2π

∫ ∞

−∞
�̂TR

0 (ys, ω)e−iωt dω, (3.1)

where

�̂TR
0 (ys, ω) = f̂ (ω)

N∑
p=−N

Ĝ0(xp, y, ω)Ĝ0(xp, ys, ω)

= f̂ (ω)
N∑

p=−N

exp(ik(|xp − ys| − |xp − y|))
(4π)2|xp − y||xp − ys| . (3.2)

In a remote sensing regime (a � L), we can use the parabolic approximation of the phase

|xp − y| = (L2 + x2
p)

1/2 ≈ L +
x2

p

2L
. (3.3)

Similarly, for ys close to the target,

|xp − ys| = [(L + η)2 + (ξ − xp)
2]1/2 ≈ L + η +

(ξ − xp)
2

2(L + η)
. (3.4)

Then using (3.3) and (3.4) for approximating the phase in (3.2), we have (|xp − ys|, |xp − y|
are approximated by L in the amplitude)

�̂TR
0 (ξ, 0, ω) ≈ f̂ (ω)

(4πL)2
exp

(
ik

(
η +

ξ2

2(L + η)

)) N∑
p=−N

exp

(
−ik

(
ηx2

p

2L(L + η)
+

xpξ

L + η

))
,

(3.5)

and since xp = ph/2 and h is small (with respect to a and L) we approximate the sum in (3.5)
by an integral

�̂TR
0 (ξ, η, ω) ≈ f̂ (ω)

8π2 L2h
exp

(
ik

(
η +

ξ2

2(L + η)

))

×
∫ a/2

−a/2
exp

(
−ik

(
ηx2

2L(L + η)
+

xξ

L + η

))
dx . (3.6)

Finally, using the Fourier coefficients of the pulse (2.2) we obtain the time-reversed, back-
propagated field at the search point,

�TR
0 (ξ, η, t) ≈ − 1

2π

∫ ∞

−∞
dω

iω exp(− σ 2
t (ω−ω0)

2

2 )

8π2 L2h
exp

(
−iω

[
t − 1

c0

(
η +

ξ2

2(L + η)

)])

×
∫ a/2

−a/2
dx exp

(
−i
ω

c0

(
ηx2

2L(L + η)
+

xξ

L + η

))
. (3.7)

To estimate the spatial focusing resolution in cross-range, let us evaluate �TR
0 at the exact

range η = 0 and at the arrival time t = ξ2/(2c0 L),

�TR
0

(
ξ, η = 0, t = ξ2

2c0 L

)
≈ c0

4π2 Lhξ

−i√
2πσ 2

t

sin

(
ω0ξa

2c0 L

)
exp

(
− a2ξ2

8c2
0 L2σ 2

t

)
. (3.8)
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For the pulse (2.1), the cross-range focusing resolution is determined by the product of
sinc

(
πξa
λ0 L

) = sin
(
πξa
λ0 L

)
/
(
πξa
λ0 L

)
and a Gaussian exp(−(ξ2/2s2

0)) with standard deviation

s0 = 2c0σt L

a
= 2ν0σt

λ0 L

a
= 2

B

λ0 L

a
, (3.9)

where ω0 = 2πν0 and B = 1/(ν0σt ) is the relative bandwidth, 0 < B < 1. In the case of a
narrow-band pulse, s0 is large and the deterministic resolution limit λ0 L

a comes from the sinc
function. The Fresnel zones are also visible. For a broad-band pulse, s0 is comparable to
λ0 L

a , which is the spot size determined by the Gaussian factor, and the Fresnel zones are now
eliminated. In either case, the larger the aperture a, the better the focusing.

3.2. Time reversal in random media

The time-reversed, back-propagated field in the random medium is

�TR(ys, t) = 1

2π

∫
�̂TR(ys, ω)e−iωt dω, (3.10)

for

�̂TR(ys, ω) = f̂ (ω)
N∑

p=−N

〈Ĝ(xp, y, ω)Ĝ(xp, ys, ω)〉, (3.11)

where Ĝ is the random, time harmonic Green function and where, because of the self-averaging

property of �TR(ys, t) (see [8, 39]), we can take the expectation of ¯̂GĜ. We evaluate the field
at the exact range (η = 0) using the moment formula [32, 41],

〈Ĝ(xp, y, ω)Ĝ(xp, ys, ω)〉 ≈ Ĝ0(xp, y, ω)Ĝ0(xp, ys, ω) exp

(
−k2ξ2a2

e

2L2

)
, (3.12)

where

ae = ae(L) =
√

DL3 (3.13)

is a length that defines the effective aperture and D is a reciprocal length parameter that depends
only on the statistics of the random fluctuations of the speed of propagation. This moment
formula is valid in the regime of the paraxial and white noise approximation, which is discussed
further in the appendix. Using this formula we have [8]

�̂TR(ξ, η = 0, ω) ≈ f̂ (ω) exp

(
−k2ξ2a2

e

2L2

) N∑
p=−N

Ĝ0(xp, y, ω)Ĝ0(xp, ys, ω)

= �̂TR
0 (ξ, η = 0, ω) exp

(
−k2ξ2a2

e

2L2

)
(3.14)

and in time domain,

�TR(ξ, η = 0, t) ≈ c0

8π2 Lhξ sin α

1√
2πσ 2

t (1 + ε2)

× exp

(
−i

ω0

1 + ε2

(
−t +

ξ2

2c0 L

)
− ω2

0
a2

e ξ
2

2c2
0 L2(1 + ε2)

)

×
[

exp

(
−iω0

ξa sin α

2c0 L(1 + ε2)
− (−t + ξ 2

2c0 L + ξa sinα
2c0 L )2

2σ 2
t (1 + ε2)

)

− exp

(
iω0

ξa sin α

2c0 L(1 + ε2)
− (−t + ξ 2

2c0 L − ξa sinα
2c0 L )2

2σ 2
t (1 + ε2)

)]
, (3.15)
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where ξ is assumed to vary over a region smaller than

ξ � σt c0 L

ae
= ω0σt

2π

λ0 L

ae
= 1

B

λ0 L

ae
, (3.16)

so that ε = aeξ

σt c0 L � 1. Since the pulse is short, we evaluate the right-hand side of (3.15) at the

arrival time t = ξ 2

2c0 L and we get

�TR

(
ξ, 0,

ξ2

2c0 L

)
≈ c0

4π2 Lhξ

−i√
2πσ 2

t

sin

(
ω0ξa

2c0 L

)
exp

(
− A2

eξ
2

8c2
0 L2σ 2

t

)

= �TR
0

(
ξ, 0,

ξ2

2c0 L

)
exp

(
−2π2a2

e

L2λ2
0

ξ2

)
. (3.17)

Here Ae is the broad-band effective aperture given by

A2
e = a2 + 4ω2

0σ
2
t a2

e = a2 +

(
4πae

B

)2

. (3.18)

We can also write (3.17) in the form

�TR

(
ξ, 0,

ξ2

2c0 L

)
≈ c0

4π2 Lhξ

−i√
2πσ 2

t

sin

(
ω0ξa

2c0 L

)
exp

(
− ξ2

2s2
R

)
(3.19)

where the variance of the Gaussian sR is given by

sR = 2

B

λ0 L

Ae
. (3.20)

This is just like (3.9) but with the physical aperture a replaced by the effective aperture Ae.
From (3.18) we note that the product B Ae is

B Ae =
√

B2a2 + (4πae)2, (3.21)

so that for narrow-band signals the physical aperture a is negligible while for broad-band ones
it may contribute to super-resolution. By super-resolution we mean the ordering a < Ae. We
often have a � Ae when there is substantial multipathing.

In the numerical simulations the range L is limited by our computational capabilities so
ae is roughly the same as a and the physical aperture as well as the bandwidth play a role
in (3.21). We also see from (3.21) that super-resolution is enhanced by larger bandwidths,
as is the statistical stability in time reversal refocusing. Because B is the relative bandwidth,
0 < B < 1, the value of B plays a significant role when a and ae are of the same order but does
not affect super-resolution if a � ae. However, narrow bandwidth will affect the statistics. At
fixed frequency, �̂TR is a random quantity which may or may not exhibit focusing, depending
on the realization of the medium [8]. In a broad-band regime, due to the frequency diversity
and the decorrelation of �̂TR(ys, ω), for different frequencies [8, 38], we obtain by Fourier
synthesis a stable quantity �TR(ys, t). The precise bandwidth needed to ensure statistical
stability is not known but we can use the following empirical rule: if �ω is an estimate of the
decoherence frequency interval for �̂TR, then the bandwidth B divided by�ω should be large
(∼30–50).

4. Interferometric and matched field imaging

In time reversal, one does not need to know the source location, but in imaging, one wishes to
find it, from the received echoes at the array. While it is often said that all imaging methods
use time reversal, there is a significant difference. Real time reversal is done by sending the



Theory and applications of time reversal and interferometric imaging S147

recorded, reversed signals at the array, back into the same random medium while in imaging
the back-propagation is done analytically or numerically, in a reference medium. For example,
when imaging in random media with index of refraction (2.5), we do not know the fluctuations
of the sound speed, so we use a reference, homogeneous medium with sound speed c0. The
imaging point-spread function is given by (2.10) and is radically different from�TR, in random
media. First, unlike �TR, �IM is wider in random media than in homogeneous ones, because
multiple scattering impedes the identification of the source location. Second, the imaging
point-spread function is not self-averaging, which is a serious problem that must be addressed
through appropriate data processing.

A key point in the self-averaging of �TR is the approximate cancellation of phases of the
random Green functions between y and the array, and between the array and ys, respectively.
Such phase cancellations do not occur in (2.10). Our key observation is that we can achieve
phase cancellations by taking correlations of the recorded signals at the array. For example, in
the remote regime with a � L, by taking the autocorrelation of�IM, we obtain a self-averaging
functional. At zero time-lag this is the matched field imaging functional

�MF(ys) =
∫ ∞

−∞
|�̂IM(ys, ω)|2 dω, (4.1)

which is statistically stable and provides an estimate of the cross-range of the source. The
range is lost, however, and it must be estimated separately, from arrival time information, for
example.

The matched field functional can be given an interferometric interpretation as follows.
Introduce the trace autocorrelations or interferograms at the array

SIM
pq = sp(·) ∗ sq(−·)(tp(ys)− tq(ys)) (4.2)

where ∗ denotes convolution in time. Note that the autocorrelation of the traces is evaluated
at the difference between the travel time from xp to ys and xq to ys because a peak is expected
when ys is close to the source location y. Now, if we sum these interferograms we get, up to
scaling factors, the matched field functional. Thus,

�KMF(ys) =
∑
p,q

SIM
pq , (4.3)

the Kirchhoff matched field functional, is essentially equivalent to �MF(ys), that is, they peak
at the same point y.

Various functionals for imaging the location of an active source and their relative
performance are considered in [6, 10]. Our main interest and result in this paper is an analytical
formula for the matched field functional �MF(ys) that can be used to estimate the narrow-band
effective aperture ae, when the range L is known. The estimation of ae is important in assessing
quantitatively super-resolution in time reversal and in estimating the loss of resolution of
matched field imaging in random media.

4.1. Matched field in homogeneous media

In homogeneous media, the matched field estimator is

�MF
0 (ξ, η) = 1

2π

∫
dω |�̂TR

0 (ξ, η, ω)|2. (4.4)

Using now expression (3.6) and the Fourier coefficients of the pulse (2.2) in (4.4) we obtain

�MF
0 (ξ, η) ≈ 1

2π

∫
dω

(
ω

8π2 L2h

)2

exp(−σ 2
t (ω − ω0)

2)
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×
∣∣∣∣
∫ a/2

−a/2
dx exp

(
−i
ω

c0

(
ηx2

2L(L + η)
+

xξ

L + η

))∣∣∣∣
2

. (4.5)

We show in figure 2 the plot of �MF
0 for the parameters in the numerical simulations described

in section 5. Because �MF
0 is an autocorrelation, range information is lost but the cross-range

can be estimated, with a resolution that decreases as we search deeper in the range (i.e. for
large η). To illustrate the dependence of the cross-range resolution on the array aperture a, we
evaluate (4.5) at the exact range (η = 0),

�MF
0 (ξ, 0) ≈ c2

0

64π4L2h2
√
πσ 2

t

[1 − exp(− a2ξ 2

4c2
0 L2σ 2

t
)

ξ2
+ 2

sin2(ω0ξa
2c0 L )

ξ2
exp

(
− a2ξ2

4c2
0 L2σ 2

t

)]
. (4.6)

We note now that, as in time reversal in homogeneous media, the cross-range resolution of
the matched field estimator is inversely proportional to the aperture a. In the next section, we
show that in random media, the matched field functional behaves very differently from time
reversal. In particular, we show that because of multiple scattering by the inhomogeneities,
the images are blurred in a manner quantified by the narrow-band effective aperture ae.

4.2. Matched field in random media

The matched field functional in random media is

�̂MF(ys, ω) = | f̂ (ω)|2
N∑

p=−N

N∑
q=−N

Ĝ0(xp, ys, ω)G(xp, y, ω)Ĝ(xq, y, ω)G0(xq, ys, ω). (4.7)

Because of its statistical stability in the time domain [8, 38],
∫

dω �̂MF(ys, ω) is essentially
equal to its expectation. Using the moment formula (see [32, 41] and the appendix),

〈Ĝ(xp, y, ω)Ĝ(xq, y, ω)〉 ≈ Ĝ0(xp, y, ω)Ĝ0(xq, y, ω) exp

(
−k2a2

e

2L2
|xp − xq |2

)
, (4.8)

and equations (3.3), (3.4) we obtain

�̂MF(ξ, η, ω) ≈ | f̂ (ω)|2
(4πL)4

N∑
p=−N

N∑
q=−N

exp

(
−k2a2

e

2L2
(xp − xq)

2

+ ik(xp − xq)

(
(xp + xq)η

2L(L + η)
+

ξ

L + η

))
. (4.9)

As in section 3, we replace the sums in (4.9) with integrals and we let xp = ph/2 → x and
xq = qh/2 → x̃ so that (4.9) becomes

�̂MF(ξ, η, ω) ≈ 4| f̂ (ω)|2
(4πL)4h2

∫ a/2

−a/2
dx

∫ a/2

−a/2
dx̃ exp

(
−k2a2

e

2L2
(x − x̃)2

+ ik(x − x̃)

(
(x + x̃)η

2L(L + η)
+

ξ

L + η

))
. (4.10)

Now, let us make the change of variables

u = x − x̃, v = x + x̃

2
, (4.11)

which maps the square [−a/2, a/2] × [−a/2, a/2] into a parallelogram. Clearly, v ∈
[−a/2, a/2] and, since the integrand in (4.10) decays in u as exp(− k2a2

e u2

2L2 ), only the vicinity
of u = 0 matters. More precisely, we have a Gaussian in u with variance σ 2,

σ 2 = L2

k2a2
e

= L2λ2

4π2a2
e

, (4.12)
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Figure 2. The matched field estimator in deterministic media (left, equation (4.6)) and in random
media (right, equation (4.16)), for an effective aperture ae = 2a.

which is small because it is proportional to the refocusing spot size in time reversal. We can
therefore integrate over all u on the real line

�̂MF(ξ, η, ω) ≈ 4| f̂ (ω)|2
(4πL)4h2

∫ a/2

−a/2
dv exp

(
−k2σ 2

2

(
ηv

L(L + η)
+

ξ

L + η

)2)

×
∫ ∞

−∞
du exp

(
− 1

2σ 2

[
u − ikσ 2

(
vη

L(L + η)
+

ξ

L + η

)]2)
. (4.13)

The integral in u is equal to
√

2πσ . The variance of the v integrand is large compared to a,

L2(L + η)2

a2k2σ 2η2
=

(
L + η

η

)2(ae

a

)2

� 1,

at least for small η and/or ae � a. We can thus approximate the integral in v by the value of
the integrand at v = 0, times the aperture a. The result is

�̂MF(ξ, η, ω) ≈ C(L, a, λ) exp

(
− ξ2

2(L + η)2

(
L

ae

)2)
(4.14)

where

C(L, a, λ) = 4aLλ| f̂ (ω)|2√
2πh2ae(4πL)4

, (4.15)

is independent of the search point ys. We see from (4.14) that the zero-lag matched field
functional is essentially independent of frequency in random media, so that summing over
frequencies we have

�MF(ξ, η) ≈ C̃(L, a) exp

(
− ξ2

2(L + η)2

(
L

ae

)2)
, (4.16)

where C̃(L, a) is given by

C̃(L, a) =
∫ ∞

−∞
C

(
L, a, λ = 2πc0

ω

)
dω,

and is independent of the cross-range ξ .
We have now a simple analytical expression (4.16) that allows us to assess the effect of

the random medium when imaging an active source by the matched field functional. We must
know the range L of the target, however, since it is the ratio ae/L that appears in (4.16).
Unlike time reversal, where a larger ae (i.e. stronger multipath) gives a tighter point-spread
function (see equation (3.17)), in imaging the resolution is worse with larger ae. Rich scattering
environments produce blurry images of active stationary (not moving) sources. As we will
show in section 6, this is true in general for imaging in random media.
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Figure 3. The computational set-up. The dimensions of the problem are given in terms of the
central wavelength λ = 0.5 mm. The medium is considered to be infinite in all directions so in the
numerical computations an absorbing layer surrounds the domain.

Figure 4. A typical realization of the random sound speed c(x). The target is shown as a large
black dot •. The units in the horizontal and vertical axes are mm and, in the colour bar, km s−1.
The standard deviation for this example is s = 4.95%.

5. Estimation of the effective aperture

Using the explicit dependence of �MF on ae, we estimate the effective aperture by matching
the formula (4.16) with the numerically calculated imaging functional �MF

n (ξ, η). The set-up
of the numerical simulations is described below.

5.1. Set-up for the numerical simulations

We take an array of ten transducers at a distance h = λ0/2 from each other, which means that
a = 2.25 mm. The active source is a square of size λ0/30, located at range L = 2 cm and at
zero cross-range, measured with respect to the centre of the array. The pulse (2.1) has width
σt = 0.2325 µs, central frequency 2πω0 = 3 MHz (i.e. λ0 = 0.5 mm) and the bandwidth is
2–4 MHz (measured at 6 dB). The field c(x) is generated as a random Fourier series with mean
c0 = 1.5 km s−1 and Gaussian correlation, with correlation length l = 0.3 mm. The standard
deviation ranges from 1% to 5%. An example of a realization of the random medium is shown
in figure 4. We calculate the acoustic pressure at the array by solving the wave equation in
the time domain, with a finite element method that discretizes the mixed velocity–pressure
(first order system) formulation [3, 4]. To simulate the infinite medium, we surround the
computational domain by a perfectly matched absorbing layer (cf [5]), as shown in figure 3.

All computations are done in two dimensions, to avoid excessive computational time, but
the analysis is based on three-dimensional Green functions. However, we have seen that, in
remote sensing regimes, it is the phase of the Green function and not its amplitude that matters.
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Since the phases of the Green functions are the same in two and in three dimensions, we expect
that the results of our direct numerical computations will be in good agreement with the theory.

We note finally that the numerical simulations are done with solutions of the wave equation
and not its parabolic approximation, which is used in deriving the theoretical results. The ratio
a/L ≈ 0.125 here.

5.2. The estimation of ae

To find ae, we match formula (4.16) with the numerically computed�MF
n (ξ, η) as follows. We

calculate numerically the signals sp(t) received at the array elements p = −N, . . . , N , for
a time interval of length T , which is long enough to ensure that all is quiet for t > T . The
numerical matched field functional at the search point

ys = (ξ, 0, L + η)

is

�MF
n (ξ, η) =

∫
�̂MF

n (ξ, η, ω) dω, (5.1)

where

�̂MF
n (ξ, η, ω) =

∣∣∣∣
N∑

p=1

ŝp(ω)Ĝ0(xp, ys, ω)

∣∣∣∣
2

. (5.2)

To find ae we sample the search domain in steps of λ0/2, and we minimize the discrepancy
between the theoretical and numerical matched field functionals (4.16) and (5.1), respectively,

min
β

5∑
j=−5

4∑
m=−4

[
γ

(
j
λ0

2
,m
λ0

2

)
− exp

(
− β(jλ0/2)2

2(L + mλ0/2)2

)]2

. (5.3)

Here

β =
(

L

ae

)2

, (5.4)

and for each η we normalize (5.1) by

γ (ξ, η) = �MF
n (ξ, η)/max

ξ
�MF

n (ξ, η). (5.5)

The minimization (5.3) is done in MATLAB with fminunc. We find ae from the minimizer β,
by substituting the correct range L in (5.4).

To assess the feasibility and robustness of our estimation approach, we take different
realizations of the random medium. Since �MF is self-averaging, we expect the value of the
estimated ae to be stable. Take for example four realizations of the random medium. The
estimated ae are 1.43, 1.54, 1.37, 1.46 in mm, respectively, and the fluctuations are small
(the standard deviation about the mean 1.45 is 7%). We show in the top two panels of figure 5
the numerically computed matched field functional (5.1), for two realizations. The theoretical
matched field functional (4.16) when calculated with the estimated ae looks the same as the
numerical ones.

Once ae is estimated, we can use it to compute the time reversal functional �TR given
by (3.19). This prediction can be compared with the numerically computed time reversal
point-spread function, in order to assess the feasibility of our estimation approach. The results
are shown in the bottom panels of figure 5. Note the super-resolution phenomenon, manifested
by the tighter focal spot in the random medium than in the homogeneous one. Note also that the
theoretical formula (3.17) with the estimated ae gives a rather accurate spot size at the source.
The fluctuations that we observe (for large ξ ) in the numerically computed field (right bottom
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Figure 5. Top: �MF(ys) computed numerically for two realizations of the random medium, the
estimation of ae is 1.43 mm (resp. 1.47 mm) for the data on the left (resp. right). The horizontal
axis is L + η in mm and the vertical axis is the cross-range ξ in mm. Bottom (left to right): the
theoretical prediction of the time-reversed field in a homogeneous medium, in a random medium
(obtained using ae = 1.45 mm in (3.17)) and the numerically calculated time-reversed field for the
same two realizations of the random medium considered in the top matched field estimates. The
horizontal axis is time in µs and the vertical axis is the cross-range ξ in mm.

panels) are not captured by the theoretical result (3.17), as expected. However, near the source,
the refocused field is predicted accurately. The statistical stability of both (5.1) and the time-
reversed field is observed in numerical simulations with several realizations of the random
medium.

6. Application to distributed reflectivity imaging

We will consider briefly the inverse problem of imaging the reflectivity �(y) of an extended
target compactly supported in the domain D ⊂ R

3. As in the previous section, our objective
here is to analyse the resolution obtained by the matched field imaging method when the
target is embedded in a randomly inhomogeneous medium. The regime of physical scales is
the same as previously, i.e. we focus attention on remote sensing in a random medium with
significant multipathing and a homogeneous background. The geometry of the problem is
shown in figure 6.

Signals are recorded on two small linear arrays covering a possibly large synthetic aperture.
The physical aperture of the transmitting array is as and that of the receiving one ar. Let us
assume that a reference point of D is located at

y0 = (0, 0, L)
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Figure 6. The set-up for distributed reflectivity imaging.

with respect to the centre Os of the transmitter array. Both arrays have point transducers
located on the x-axis and separated by h/2, as in section 2. That is, we assume that the array of
transmitters is orthogonal to the axis Osy0, Os being the origin of our coordinate system, and
we denote by α the angle between Osy0 and Ory0 (see figure 6). The transmitter and receiver
array elements are located at

transmitter: xp = (xp, 0, 0), xp = p
h

2
, p = −N, . . . , N,

receiver: xr = (Or + xr, 0, 0), xr = r
h

2
, r = −Nr, . . . , Nr .

(6.1)

The data for the distributed reflectivity imaging problem are the response matrix P(xp, xr, t),
obtained as follows. A pulse f (t) is emitted from an array element, located at xp, and the back-
scattered returns, P(xp, xr, t), are recorded at xr, r = −Nr, . . . , Nr , for a sufficiently long time
interval [0, T ]. Probing of the medium is done by using all transducers at xp, p = −N, . . . , N .

To analyse the resolution of the matched field imaging method for this extended reflectivity
problem, we first introduce an imaging functional which is the generalization of the method
presented in section 4. We consider here a more general set-up (see figure 6) with a source
and a receiver array offset by an angle α. Note that the geometry of the previous sections can
be recovered by letting α = 0. The overall range L of the extended reflector is assumed fixed
and, because we are interested in a remote sensing regime, we also assume that

as

L
� 1,

ar

L
� 1 and

|y − y0|
L

� 1, ∀y ∈ D.
Using the Born approximation for scattering from the extended reflector we have the following
theoretical expression for the response matrix:

P(xp, xr, t) = 1

2π

∫ ∞

−∞
e−iωt P̂(xp, xr, ω) dω, (6.2)

with

P̂(xp, xr, ω) = k2 f̂ (ω)
∫
D
�(y)Ĝ(xp, y, ω)Ĝ(xr, y, ω) dy. (6.3)

Here, as before, k = ω/c0 is the wavenumber, c0 is a reference speed of propagation
and Ĝ(xp, y, ω) is the two point (random) Green function satisfying the reduced wave
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equation (2.4). We note that the data, i.e. the elements of the response matrix, are not self-
averaging because the product of the random Green functions Ĝ(xp, y, ω)Ĝ(xr, y, ω) has a
large random phase, for there is no complex conjugation (time reversal) in (6.2) to eliminate it.

To image the unknown reflectivity �(y) we back-propagate each element of the response
matrix P̂(xp, xr, ω) to the search point ys in a homogeneous medium. This can be done by
evaluating P(xp, xr, t) at the deterministic arrival time

tpr (ys) = |xp − ys|
c0

+
|xr − ys|

c0
,

which gives the Kirchhoff migration [7, 17] imaging functional

SIM(xp, xr, ys) = P(xp, xr, t = tpr (ys)) = 1

2π

∫ ∞

−∞
P̂(xp, xr, ω) exp(−iωtpr (ys)) dω. (6.4)

As in the case of a point scatterer, (6.4) is not self-averaging. To obtain a statistically stable
imaging functional we correlate SIM(xp, xr, ys) with the time-reversed SIM(x′

p, x′
r, ys), that is

we multiply them and we sum over the array elements xp, xr, x ′
p, x ′

r, which gives

�IM(Or,Os, ys) =
N∑

p=−N

N∑
p′=−N

Nr∑
r=−Nr

Nr∑
r ′=−Nr

1

2π

×
∫ ∞

−∞
P̂(xp, xr, ω)P̂(x′

p, x′
r, ω) exp(−iω(tpr (ys)− tp′r ′(ys))) dω. (6.5)

Since h is small compared to as, ar we can approximate the sum by an integral as in section 4,

�IM(Or,Os, ys) =
(

2

h

)4 ∫ as/2

−as/2

∫ as/2

−as/2

∫ ar/2

−ar/2

∫ ar/2

−ar/2
dxp dx ′

p dxr dx ′
r

× 1

2π

∫ ∞

−∞
dω P̂(xp, xr, ω)P̂(x′

p, x′
r, ω) exp(−iω(tpr (ys)− tp′r ′(ys))). (6.6)

In the following we will systematically use (6.6) with the integrals instead of (6.5). In
more detail, the Kirchhoff migration imaging functional for the distributed reflectivity is

�IM(Or,Os, ys) =
(

2

h

)4 ∫ as/2

−as/2

∫ as/2

−as/2

∫ ar/2

−ar/2

∫ ar/2

−ar/2
dxp dx ′

p dxr dx ′
r

× 1

2π

∫ ∞

−∞
dω

(
ω

c0

)4

| f̂ (ω)|2 exp(−iω(tpr (ys)− tp′r ′(ys)))

×
∫
D

∫
D

dy dy′ �(y)�(y′)Ĝ(xp, y, ω)Ĝ(xr, y, ω)Ĝ(x′
p, y′, ω)Ĝ(x′

r, y′, ω).

(6.7)

For this to be a self-averaging functional phase cancellation is needed, which means that xp and
x′

p must be close to each other (resp. xr and x′
r). This is why we consider the imaging functional

�IM for small arrays. However, because we use an approximation like the one in (4.13), the
array apertures as and ar must be large compared to the spot size σ , defined in (4.12), but not
too large so that this coarse graining uses too much of the data.

If we only have a single source rather than an array of sources, but still have an array of
receivers, then we lose resolution in range, which we cannot recover by using data for different
offsets α [11]. This seems surprising at first but it can be explained from the cone-like structure
of the support of the matched field functional for point scatterers. We discuss this further in
section 6.3.
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6.1. Imaging an active point scatterer

Let us note briefly that this process of back-propagation,or Kirchhoff migration,and correlation
is a generalization of the matched field method presented in section 4. To see this, let us consider
an active source located at y = (0, 0, L) with the same geometry as above but with the receiver
array at the location of the transmitter array, which is absent here. The receiver array elements
are at xr = xp = (xp, 0, 0), xp = ph/2, p = −N, . . . , N . The response matrix P is now a
vector and we can re-derive the matched field method in the following way.

We first back-propagate each element of the response vector P̂(xr, ω) to the search point
ys = (ξ, 0, L + η) in a homogeneous medium. This can be done by evaluating P(xr, t) at the
deterministic arrival time,

tr (ys) = |xr − ys|
c0

.

We thus get

SIM
A (xr, ys) = P(xr, t = tr (ys)) = 1

2π

∫ ∞

−∞
P̂(xr, ω) exp(−iωtr (ys)) dω. (6.8)

To obtain a statistically stable imaging functional we consider the correlation of SIM
A (xr, ys)

with the time-reversed SIM
A (x

′
r, ys),

1

2π

∫ ∞

−∞
P̂(xr, ω)P̂(x′

r, ω) exp(−iω(tr (ys)− tr ′(ys))) dω

= 1

2π

∫ ∞

−∞
| f̂ (ω)|2Ĝ(xr, y, ω)Ĝ(x′

r, y, ω) exp(−iω(tr (ys)− tr ′(ys))) dω. (6.9)

Summing now (6.9) over the array elements xr, x ′
r gives the matched field function (4.16) (up

to a constant),

�IM
A (L, ar, ar

e, ys) =
(

2

h

)2∫ ar/2

−ar/2

∫ ar/2

−ar/2
dxr dx ′

r

× 1

2π

∫ ∞

−∞
dω P̂(xr, ω)P̂(x′

r, ω) exp(−iω(tr (ys)− tr ′(ys)))

≈ C̃ ′(L r, ar) exp

(
− ξ2

2(L r + η)2

(
L r

ar
e

)2)
. (6.10)

If we identify ar = a, L r = L and ar
e = ae = √

DL3, which is the effective aperture,
then (6.10) is the same as (4.16).

6.2. Imaging a passive point scatterer

The generalization of the result (6.10) to the case of a passive point scatterer located at
y = (0, 0, L) is obtained in a similar way. We now use the expression of P̂(xp, xr, ω) for
a passive point target with scattering coefficient τ (ω) in (6.6) and we get

�IM
P (Or,Os, ys) =

(
2

h

)4 ∫ as/2

−as/2

∫ as/2

−as/2

∫ ar/2

−ar/2

∫ ar/2

−ar/2
dxp dx ′

p dxr dx ′
r

× 1

2π

∫ ∞

−∞
dω | f̂ (ω)|2|τ̂ (ω)|2Ĝ(xr, y, ω)Ĝ(x′

r, y, ω)

× Ĝ(xp, y, ω)Ĝ(x′
p, y, ω) exp(−iω(tpr (ys)− tp′r ′(ys))). (6.11)
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This is just like (6.7) but without integration over y, y′ and we note that it involves the product
of four (random) Green functions.

To show that the imaging functional�IM
P (Or,Os, ys) is self-averaging and that only second

moments of the Green function are needed, let us consider

App′rr′(t) =
∫ ∞

−∞
| f̂ (ω)|2|τ̂ (ω)|2Ĝ(xp, y, ω)Ĝ(x′

p, y, ω)Ĝ(xr, y, ω)Ĝ(x′
r, y, ω)e−iωt dω,

(6.12)

which appears in (6.11) evaluated at the deterministic time

t = tpr (ys)− tp′r ′(ys).

We can write (6.12) as,

App′rr′(t) =
∫ t

0
�pp′(s)�rr′(s − t) ds, (6.13)

with

�pp′(t) =
∫ ∞

−∞
f̂ (ω)τ̂ (ω)Ĝ(xp, y, ω)Ĝ(x′

p, y, ω)e−iωt dω. (6.14)

The process �pp′(t) is a weighted cross-correlation and is self-averaging because the large
random phases of the Green functions nearly cancel in (6.14). Since (6.13) is the convolution
of�pp′(t) and�rr′(t), which are self averaging, we can replace�pp′(t) and�rr′(t − s) in (6.13)
by their expectations and conclude that App′rr′(t) is self-averaging with only second moments
needed.

From (6.11) we obtain for a search point located at ys = (ξ, 0, L + η),

�IM(Or,Os, ys) ≈ C̃(Ls, as, L r, ar, α) exp

(
− ξ2

2(Ls + η)2

(
Ls

as
e

)2)

× exp

(
− [ξ cosα − η sin α]2

2(L r + [ξ sin α + η cosα])2

(
L r

ar
e

)2)
, (6.15)

where as
e = √

DL3
s and ar

e = √
DL3

r are the effective apertures associated with the source
and receiver arrays, Ls = L, L r = L/ cosα. Note that (6.15) is the intersection of two cones
with each one similar to the cone obtained for the active source case (see figure 5 top) but
with different axes of symmetry. Thus (6.15) indicates that using a source and a receiver array
with offset angle α may allow the recovery of some range information for the target. It is not
possible to obtain any range information, however, when the two arrays coincide, as we can
see by taking α = 0 in (6.15),

�IM
P (ys) ≈ C̃ ′′(L, a) exp

(
− ξ2

(L + η)2

(
L

ae

)2)
. (6.16)

This expression is the square of (6.10) and this is because the random medium is traversed
twice, from the array to the scatterer and from the scatterer back to the array. In other words, in
the zero offset case α = 0 we sum twice over the same array. This is not necessary, however.
In fact, when the receiver and transmitter arrays coincide, we can use only a column of the
response matrix to image a passive point target. Taking xp = x0 fixed, a source at the central
array element, we get

�IM
P (ys) = 1

2π

(
2

h

)2 ∫ a/2

−a/2

∫ a/2

−a/2
dxr dx ′

r

∫ ∞

−∞
dω | f̂ (ω)|2|τ̂ (ω)|2

× Ĝ(xr, y, ω)Ĝ(x′
r, y, ω)

× Ĝ(x0, y, ω)Ĝ(x0, y, ω) exp(−iω(t0r (ys)− t0r ′(ys))), (6.17)
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which gives the same result (6.10) for an active source. This is because the large random

phases of the Green functions Ĝ(x0, y, ω)Ĝ(x0, y, ω) cancel exactly in (6.17), so that in (6.17)
the blurring comes from traversing the random medium once, from the target to the array. This
is the same as for an active source.

6.3. Imaging the reflectivity of an extended scatterer

We can use the same techniques to imaging the distributed reflectivity �(y). After some
calculations similar to the ones above, given in [11], we get from (6.6)

�IM(Or,Os, ys) ≈ C̃(Ls, as, L r, ar, α)

×
∫
D+y0

dyx dyz �
2(yx, yz) exp

(
− (yx − ys

x)
2

2(Ls + ys
z)

2

(
Ls

as
e

)2)

× exp

(
− [(yx − ys

x) cosα − (yz − ys
z) sin α]2

2(L r + [ys
x sin α + ys

z cosα])2

(
L r

ar
e

)2)
, (6.18)

for a search point located at ys = y0 + (ys
x, 0, ys

z) and for y ∈ D parametrized by
y = y0+(yx, 0, yz). The geometry of the problem is described in figure 6 with the array element
locations defined by (6.1) and where as

e = √
DL3

s , Ls = L, ar
e = √

DL3
r , L r = L/ cosα.

This is the generalization of (6.15) to the case of an extended object with reflectivity �(y).
We can analyse roughly the imaging resolution provided by the functional (6.18) when the
overall range L is assumed known and in a remote sensing regime, i.e.

|y − y0|
L

� 1, ∀y ∈ D.
We also consider this functional in a domain of interest DI probed by the search point ys and
which can be parametrized in the same way, that is, we also assume that

|ys − y0|
L

� 1, ∀ys ∈ DI.

Note that this assumption is not restrictive as it follows from (6.18) that only ys satisfying

|ys − y0| � ae

will contribute to a significant value of the functional �IM(Or,Os, ys).
In this regime we can approximate the denominators in the exponent of (6.18),

L + ys
z ≈ L,

L r + [ys
x sin α + ys

z cosα] ≈ L r

and obtain

�IM(Or,Os, ys) ≈ C̃(Ls, as, L r, ar, α)

∫
D+y0

dyx dyz �
2(yx , yz) exp

(
− (yx − ys

x)
2

2(as
e)

2

)

× exp

(
− [(yx − ys

x) cosα − (yz − ys
z) sin α]2

2(ar
e)

2

)
. (6.19)

Note that we do not recover the reflectivity �(y) pointwise but rather �2(y) averaged over an
area defined by the intersection of two Gaussians centred at ys and with variance proportional
to the effective apertures. When two arrays are used then some range information remains in
the matched field imaging functional, as can be seen from (6.19). This is similar to the result
obtained for the point scatterer case and suggests that it is necessary to have both an array of
sources and an array of receivers in order to get some range resolution. When only one array is
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Figure 7. Symmetric geometry set-up for distributed reflectivity imaging.

available, all range information is lost as we can easily verify from (6.19) by letting the offset
angle be zero (α = 0),

�IM(ys) ≈ C̃(L, a)
∫
D+y0

dyx dyz �
2(yx, yz) exp

(
− (yx − ys

x)
2

a2
e

)
. (6.20)

From the expression (6.19) we can also see that as the angle α decreases the variance of
the Gaussian in the range direction increases. This expression (6.19) suggests also that for
a symmetric geometry the reflectivity imaging functional satisfies a diffusion equation. We
consider in the next section such a symmetric geometry set-up.

6.4. Symmetric geometry set-up

Consider a symmetric source–receiver set-up with the two arrays of equal size (ar = as = a)
as shown in figure 7. This can be viewed as a change in the coordinate system where the new
origin is the centre between the two arrays

X0 = Os + Or

2
,

and in this case the array elements’ locations are

transmitter: xp = (Os + xp, 0, 0), xp = p
h

2
, p = −N, . . . , N,

receiver: xr = (Or + xr, 0, 0), xr = r
h

2
, r = −Nr, . . . , Nr .

A reference point of D is located at

y0 = (L, 0, 0),

with respect to X0 and the distance from the central array points to y0 is L/ cosα. For
ys = y0 + (ys

x, 0, ys
z) and y = y0 + (yx , 0, yz), (6.19) becomes

�IM(X0, α, ys) ≈ C̃(L, a, α)
∫
D+y0

dyx dyz �
2(yx, yz)

× exp

(
− (yx − ys

x)
2 cos2 α + (yz − ys

z)
2 sin2 α

DL3
cos3 α

)
. (6.21)
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If we let

I (ys, D, L, α,X0) = 1

C(L, a, α)
�IM(L, α, a, ae, ys),

then I (ys, D, L, α,X0) is the solution of a diffusion equation with anisotropic and singular
coefficients,

∂ I

∂D
= L3

cos3 α

(
1

4 cos2 α

∂2 I

∂(ys
x)

2
+

1

4 sin2 α

∂2 I

∂(ys
z)

2

)
,

I |D=0 = �2(ys).

(6.22)

When a large aperture is available, the matched field functional �IM(X0, α, ys) can be
viewed as the result of pre-processing (coarse graining of the data). Specifically, by dividing the
large array into smaller ones and by calculating local data covariances,we obtain�IM(X0, α, ys)

which is a blurry but stable view (image) of the reflectivity and can be described by (6.21)
when the physical array aperture a is large compared to the spot size σ , defined in (4.12) (cf
approximation (4.13)). The imaging resolution for the matched field method in random media
is determined by the narrow-band effective aperture ae, which does not depend on the physical
aperture. Moreover, as (6.22) suggests, the optimal resolution in cross-range can be obtained
for α = 0, and in range for α ≈ 40◦. Large synthetic apertures can be used to improve the
imaging resolution of the matched field method by providing multiple blurry views of the
reflectivity obtained for different source–receiver offset angles α and mid-points X0. One
way to do this is to estimate �2 by a least squares deblurring method using data for several
source–receiver offset angles α and mid-points X0.

We do not attempt to address the full inverse problem of imaging the reflectivity of an
extended target in random media. Here, we have focused attention on the matched field
imaging functionals and we have shown the importance of a key parameter, the effective
aperture. Imaging of extended targets in random media is considered further in [11].

7. Application to secure communication schemes

The use of time reversal in wireless communication was suggested early in time reversal
experiments in the framework of underwater acoustics [35, 31, 27]. More recently, in [24, 22]
experimental results using a multiple input single output (MISO) communication scheme with
time reversal have been presented. We describe this scheme here. It is another important
application of time reversal, as discussed in section 3.2, but now in communications. The
estimation of ae in this framework allows us to assess at the transmitter the region around
the receiver in which spatially localized, no-interference communications through a cluttered
medium can be realized.

A schematic view of the communication scheme is presented in figure 8. The intended
receiver first sends a pilot signal s0(t) = e−iω0 t g(t) which is recorded by each element of the
transmitter array. The modulating pulse is often the sinc function whose Fourier transform is

ĝ(ω) = 1, for |ω| � 4πW

and zero outside, with 2W the bandwidth. If we denote by hp(y, t) the impulse response
function between the receiver located at y and the pth element of the transmitter array then
the signal recorded on the array is

rp(y, t) = hp(y, t) �t s0(t) + np(t). (7.1)

Here �t denotes convolution in time and np(t) is the instrument white noise at the pth element
of the transmitting array. In the frequency domain (7.1) is

r̂p(y, ω) = ĥp(y, ω)ŝ0(ω) + n̂p(ω). (7.2)
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Tx so(t)

r1(t)

rN(t)

Rx Tx r(t)

s1
TR(t;b)

sN
TR(t;b)

Rx dM*Γ

(a) (b)

Figure 8. The MISO time reversal scheme. (a) The intended receiver first sends a pilot signal
s0(t) to the transmitting array. (b) Each element of the transmitting array records, time-reverses
and encodes a bitstream on the pilot signals received, and then sends them back.

In the second step of this communication scheme the transmitter time-reverses the recorded
signal, encodes a message on it and sends it back into the channel. The encoding scheme that
we consider here is the BPSK (binary phase shift keying). Given a modulation pulse s0(t) a
BPSK encoding scheme of an M-symbol data stream {bm} is

dM(t) =
M∑

m=1

bms0(t − mδT ), (7.3)

where δT is the pulse repetition interval. The information is in the bitstream {bm}, with binary
variables taking the values (−1, 1). In the frequency domain this scheme gives the signal

d̂M(ω) = ŝ0(ω)

M∑
m=1

bme−imωδT , (7.4)

where d̂M(ω) and ŝ0(ω) are the Fourier transforms of the message to be transmitted and the
pilot pulse, respectively. Thus, for an M-symbol data stream the signal emitted from the pth
element of the transmitter is

ŝp(y, ω) = r̂p(y, ω)
M∑

m=1

bme−imωδT = (ĥp(y, ω)ŝ0(ω) + n̂p(ω))

M∑
m=1

bme−imωδT , (7.5)

where the bar in (7.5) stands for complex conjugation. After propagation through the channel,
the signal at a receiver located at ys is

r̂(ys, y, ω) =
NT∑
p=1

ĥp(ys, ω)ŝp(y, ω) + n̂0(ω)

=
( NT∑

p=1

ĥp(ys, ω)ĥp(y, ω)ŝ0(ω) +
NT∑
p=1

ĥp(ys, ω)n̂p(ω)

) M∑
m=1

bme−imωδT + n̂0(ω)

(7.6)

where n̂0(ω) is an additional noise term at the receiver. Allowing the receiver to move from y
to ys probes the spatial focusing properties of the communication schemes.

To interpret the message the receiver correlates r(ys, y, t) with the pilot pulse s0(t). In
the frequency domain, the resulting signal is

Ŝ(ys, y, ω) =
(
�̂(ys, y, ω) +

NT∑
p=1

ĥp(ys, ω)n̂p(ω)

)
d̂M(ω) + ŝ0(ω)n̂0(ω), (7.7)

where �̂(ys, y, ω) is the response function of the communication scheme,

�̂(ys, y, ω) =
NT∑
p=1

ĥp(ys, ω)ĥp(y, ω)ŝ0(ω), (7.8)
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and d̂M(ω) is the M-symbol data stream carried by the pilot pulse, defined by (7.4). In
an infinite random medium the transfer function ĥp(y, ω) is the two point Green function
Ĝ(xp, y, ω) satisfying the reduced wave equation (2.4) and we have

�̂(ys, y, ω) = �̂TR(ys, ω) = �̂TR
0 (ys, ω) exp

(
−k2a2

e ξ
2

2L2

)
, (7.9)

for ys = y + (ξ, 0, L), s0(t) = f (t). When the signal to noise power is high, that is, when the
noise terms n̂p and n̂0 can be neglected, then we can apply the theoretical results of section 3.2.
In particular we can use the method of section 5.2 to estimate the effective aperture ae at the
transmitter and predict the refocusing spot size from (3.17). This provides a robust estimate at
the transmitter of the area in which the intended receiver can move without losing reception
of the message, and/or the area around the receiver in which the message can be intercepted.

Another reason for using time reversal in communications, in addition to spatial
localization at the receiver, is the following. Time reversal is a temporal matched filter so
the indented receiver can be very simple and need not use sophisticated decoding. If we let
ξ = 0 in (7.9) we see that the signal at the receiver (for y = ys) has no random phase, even
when transmission is through a cluttered (random) medium. This means that inter-symbol
interference is reduced significantly because of the time reversal process.

This simple MISO time reversal coding scheme achieves signal compression both in
time and space allowing for secure communications with reduced inter-symbol interference.
Moreover, the rate of information transmission for this scheme realizes the Shannon capacity
for a flat frequency channel that is known at the transmitter [40]. For a frequency selective
MISO channel, as we have in random media, the Shannon capacity is not realized unless a
more elaborate frequency dependent coding scheme [40] is used. We compare the performance
of time reversal communication schemes with other MISO (multiple input single output) and
SIMO (single input multiple output) communications schemes in rich scattering environments
(clutter) in [9]. Numerical results illustrating the efficiency of time reversal and generalized
time reversal coding schemes when the receiver has perfect channel knowledge (and the signal
to noise ratio is high) are presented in [34].

Perfect channel knowledge means that the transfer function ĥp(y, ω) remains the same
between the first and the second step of the communication scheme, which may not be true
if, for example, the propagation medium changes in time or if the transmitter knows the
transfer function up to an error [40]. We are currently working on this problem as well as
on the generalization of the time reversal process to MIMO (multiple input multiple output)
communication schemes. As for the MISO scheme, depending on the parameters of the
problem, we expect the narrow-band or broad-band effective aperture to play an important role
for communications through clutter.

8. Summary

We have analysed the matched field imaging functional, which can be used for locating small
active scatterers embedded in a random medium. In a remote sensing regime with significant
multipathing we obtained an analytical expression for the imaging functional. Using this
expression we have quantified the imaging resolution in random media and we have shown
that this depends on a single parameter, the narrow-band effective aperture ae. Using this for
the matched field functional we have proposed a simple and robust method for estimating the
unknown effective aperture ae. We have assessed the feasibility of our estimation approach
with direct numerical simulations. In particular, using the estimated ae we can predict the
refocused spot size for time reversal in random media. We have seen remarkably good
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agreement between the predicted and the observed refocused spot size in direct numerical
simulations of time reversal in a random medium. We have also indicated how the concept of
effective aperture enters in matched field or interferometric functionals for the reflectivity of
an extended scatterer as well as in wireless communications with time reversal.

Acknowledgments

The work of LB was partially supported by the Office of Naval Research, under grant N00014-
02-1-0088 and by the National Science Foundation, grant DMS-0305056. The work of GP
was supported by grants AFOSR F49620-01-1-0465, ONR N00014-02-1-0088 and 02-SC-
ARO-1067-MOD 1. The work of CT was partially supported by the Office of Naval Research,
under grant N00014-02-1-0088.

Appendix. The white noise limit and the parabolic approximation

We collect here some comments on the scaling analysis of the random Helmholtz equation (2.4)
and refer to [1, 36, 44] for additional comments and results on scaling and asymptotics in the
high-frequency and white noise regime.

Let Lz be a range scale and Lx a cross-range scale and define the dimensionless parameters
ε = l/Lz , δ = l/Lx , where l is the correlation length of the fluctuations in the index of
refraction. Let γ = 1/k0l. We also define the Fresnel number

θ = Lz

k0 L2
x

= γ
δ2

ε
.

Then the scaled Helmholtz equation, with the phase eikz removed, is

ε2θ2

δ2
ψzz + 2ikθψz + θ2�xψ +

k2δ

ε1/2
µ

(
x
δ
,

z

ε

)
ψ = 0. (A.1)

Here we relate the strength of the fluctuations σ to ε and δ by ε = σ 2/3δ2/3. It is in this regime
that fluctuation effects have a fully developed form.

We first need to examine when the parabolic approximation is valid. It is in the white
noise limit ε → 0, with Fresnel number θ and δ fixed, that the parabolic approximation is valid
as was pointed out in [1]. This is easily seen if the random fluctuations µ are differentiable in
z. The parabolic approximation is clearly not valid in the high frequency limit θ → 0, before
the white noise limit ε → 0 is also taken. In the white noise limit, the wavefunction ψ(z, x)
satisfies an Ito–Schrödinger equation

2ikθdzψ + θ2�xψ dz +
ik3δ2

4θ
R0(0)ψ dz + k2δψdz B

(
x
δ
, z

)
= 0. (A.2)

Here R0 is the integrated covariance of the fluctuations µ and the Brownian field B(x, z) has
covariance

〈B(x, z1)B(y, z2)〉 = R0(x − y)z1 ∧ z2.

This Ito–Schrödinger equation is the result of the central limit theorem applied to (A.1). Let

Bε(x, z) = 1√
ε

∫ z

0
µ

(
x,

s

ε

)
ds.

Then, as ε → 0 this process converges weakly, under suitable hypotheses, to the Brownian
field B(x, z)with the above covariance. The extra term in (A.2) is the Stratonovich correction.
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It is from this stochastic equation that the moment formula (3.12) that we use in this paper is
obtained. This moment formula is an exact solution of the second moment equation that arises
from (A.2) using Itô’s formula. The parameters δ and θ are fixed here. When δ is small then
we have statistical stability in the time domain.

The white noise limit for stochastic partial differential equations is analysed in [15] and
a rigorous theory of the Itô–Schrödinger equation is given in [20]. The ergodic theory of the
Itô–Schrödingerequation is explored in [33]. Wave propagation in the parabolic approximation
with white noise fluctuations is considered in detail in [29, 43].
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[4] Bécache E, Joly P and Tsogka C 2000 An analysis of new mixed finite elements for the approximation of wave
propagation problems SIAM J. Numer. Anal. 37 1053–84
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