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Grégoire Derveaux†, George Papanicolaou‡ and Chrysoula

Tsogka¶

† INRIA, BP 105, 78150 Le Chesnay Cedex, France
‡ Department of Mathematics, Stanford University, Stanford, CA 94301
¶ Department of Mathematics, University of Chicago, Chicago, IL 60637

E-mail: gregoire.derveaux@inria.fr, papanico@math.stanford.edu and

tsogka@math.uchicago.edu

Submitted to: Inverse Problems

Abstract.
We consider the inverse problem of reconstructing surface displacements from

noisy acoustic measurements collected at a distance from the surface that is
comparable to the wavelength. As the detectors move closer to the surface
and information from evanescent waves is recorded, the resolution of the image
improves up to a level that is limited by the signal to noise ratio (SNR). We review
this basic trade-off in near-field imaging with narroband signals and then extend it
to broadband signals. We find that the resolution in broadband near-field imaging
is enhanced because the SNR effectively increases with increasing bandwidth. We
present the results of numerical simulations to illustrate this enhancement of the
resolution.

PACS numbers: 43.60.Gk, 43.60.Cg, 43.60.Rw, 43.60 Tj
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1. Introduction

We consider the problem of near-field imaging of surface displacements with noisy
measurements made with a planar array of sensors. We assume that a known incident
field impinges on the surface to be imaged and the scattered field is measured very close
to it so that exponentially small, evanescent components of the waves are significant
and can be measured. The resulting resolution enhancement is, however, limited by
the amount of the noise in the data, the signal to noise ratio (SNR).

This problem is similar to near-field acoustical holography (NAH), a technique
that was initially introduced in [21, 22] for imaging sources in air using planar arrays.
Since then the method has been generalized to imaging underwater sources [18] and
to more general array geometries [19, 7]. The basic difference between NAH and
classic holography is that in NAH evanescent components of the waves are used in the
reconstructions. To be able to record these exponentially small evanescent components
of the waves the measurements have to be made very close to the surface. When
this is possible and such evanescent waves are used in the inversion, the imaging
resolution can be much better than the wavelength of the incident field. According to
the Rayleigh criterion [8, 17], when only far field measurements are used then the image
resolution is proportional to the wavelength. Thus, by using near-field measurements,
it is possible to improve considerably the Rayleigh resolution [21, 2, 3].

The main issue in near-field imaging is noise amplification. It arises from
the inversion of evanescent waves, which means that the noisy measurements are
multiplied by exponentially increasing functions. Thus, there is an important trade-
off in near-field imaging between resolution and the signal to noise ratio (SNR) of
the data. A careful SNR analysis of the near-field data measurements is needed,
along with a regularization of the inversion. In [3, 21] this analysis has been carried
out for monochromatic incident waves and a cut-off regularization method is used.
Several other regularization methods applied to NAH are considered in [23]. We
do not address the issue of regularization methods here, and consider only a cut-off
based regularization. We note that NAH is a monochromatic inversion method. A
generalization to broadband excitation was proposed in [20] where, however, the SNR
issue was not considered.

In this paper we consider the reduction of noise effects by using a broadband
incident wave. Regularization is still needed for the inversion and we consider two
cut-off methods here that generalize the narrowband cut-off method used in [3]. The
use of broadband signals for improving image resolution by effectively reducing the
noise in the data by averaging over frequencies has not been considered previously, to
the best of our knowledge. We consider here an additive Gaussian white noise model,
both in time and space, and we show that near-field resolution in broadband regimes is
considerably better than in narrowband regimes. We illustrate this effect with several
results of numerical simulations.

Although, there has been a lot of interest in near-field imaging motivated by
different applications, like for example in near-field optics [11, 12, 1, 10], or detection of
buried objects with a radar [16], there seems to be no adequate resolution theory that
accounts for: (a) full scattering and not only single scattering (Born approximation),
(b) multiple scattering from clutter near the object to be imaged and (c) noise in the
measurements. When only single scattering and measurement noise are considered,
in the narrowband regime, a near-field resolution theory can be developed [2, 3]. We
review it briefly here before generalizing it to the broadband regime. In the far-field
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measurement noise is less important, since evanescent modes are absent, but clutter
is important. Some recent results in far field array imaging in clutter are presented in
[4, 5, 6].

The paper is organized as follows. In section §2 we give the analytical formulation
of the problem. The narrowband inversion method is reviewed in section §3 for both
far-field and near-field measurements, and the results of numerical simulations are
presented. In section §4 we present the analysis of broadband inversion with two cut-off
regularization methods. The improvement in resolution compared to the narrowband
case is illustrated with several numerical results. We end with a brief summary and
conclusions in section §5.

2. Formulation of the problem

2.1. The surface scattering model

y

ui

zd

x

z

z = h(x, y)

Ωh

Figure 1. The surface displacement is described by a time independent function
z = h(x, y). An incident field ui is impinging on this surface which is assumed to
be a perfect reflector. Measurements of the scattered field are made at distance
zd from the surface.

We want to image small surface displacements of a plane surface with
measurements of reflected waves at distance zd from it (see figure 1). The surface
displacement is described by the function h(x, y) and the domain of interest is the half
space Ωh defined by Ωh = {(x, y, z) ∈ R

3 / z > h(x, y)}. In the following, we use the

notation r = (x, y, z), ρ = (x, y) and r = |r| =
√

x2 + y2 + z2.
We consider an incident wave ui impinging on the domain Ωh. We want to

characterize the scattered field us produced by reflection from the boundary of Ωh. In
the frequency domain, the scattered field us is the solution of the Helmholtz equation
with Dirichlet boundary condition on z = h(ρ):



















(a) ∆us + k2us = 0, in Ωh,

(b) us(ρ, h(ρ)) = −ui(ρ, h(ρ)), ∀ρ ∈ R
2,

(c) lim
r→∞

(∂rus − ikus) = 0.

(1)

Here, k = ω/c is the wave number, ω is the angular frequency and c is the speed of
light. The associated wavelength is λ = 2π/k. Equation (1c) is the usual Sommerfeld
radiation condition.

Assuming that the displacement is sufficiently small, i.e., assuming
maxρ |h(ρ)| � λ, the boundary condition (1b) can be approximated by:

us(ρ, 0) +h(ρ)∂zus(ρ, 0) ≈ −ui(ρ, 0)− h(ρ)∂zui(ρ, 0), ∀ρ ∈ R
2.(2)
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This is the Born approximation, which consists in neglecting multiple reflections and
so the second term of the left hand side is dropped. Introducing the scattered field u0

produced by the flat surface, the measured field u = us − u0 satisfies the equation


















(a) ∆u+ k2u = 0, in Ω0 = {(x, y, z), z > 0},

(b) u(ρ, 0) = −h(ρ)∂zui(ρ, 0), ∀ρ ∈ R
2,

(c) lim
r→∞

(∂ru− iku) = 0.

(3)

In the following we write f(ρ) = −h(ρ)∂zui(ρ, 0) and we call it the surface
displacement.

We assume that the scattered field amplitude is measured in all the plane z = zd

and is corrupted by additive noise, so that the data to invert have the form

gzd
(ρ) = u(ρ, zd) + n(ρ). (4)

The noise n(ρ) is a stationary process with mean zero and covariance Rnn(ρ). The
inverse problem that we want to solve is the following: given the measured field in the

plane z = zd, that is given gzd
(ρ), we want to recover the surface displacement f(ρ).

2.2. Spectral representation

The solution u of (3) can be expressed as a superposition of plane waves [14] by using
the Fourier Transform in the transverse coordinates ρ = (x, y)



















∂2
z û(κ, z) + (k2 − |κ|2)û(κ, z) = 0, ∀κ ∈ R

2 and ∀z > 0,

û(κ, 0) = f̂(κ), ∀κinR
2,

Radiation condition at ∞.

(5)

This gives

u(ρ, zd) =
1

(2π)2

∫

κ

f̂(κ)ei(ρ.κ+zdkz(κ))dκ, (6)

where

kz(κ) =
√

k2 − |κ|2 (7)

and |κ|2 = κ2
x + κ2

y, with the square root of negative numbers chosen to have positive
imaginary part. Thus, at a given height for the measurements zd, the Fourier transform
of the scattered field û(κ, zd) is

û(κ, zd) = Ŝzd
(κ)f̂(κ). (8)

The multiplier Ŝzd
(κ) is the transfer function of the imaging system and is given by

Ŝzd
(κ) = eizdkz(κ). (9)

Plane waves with |κ| ≤ k are propagating in the z direction without any decay.
They carry information about features of the surface displacement f whose size is of
the order of the wavelength λ = 2π/k. On the other hand plane waves corresponding

to |κ| > k are evanescent in the z direction and they decay as e−zd

√
|κ|2−k2

. These
waves carry information about spatial features of f which are smaller than the wave
length. At higher observation distances zd the information in evanescent modes will
get lost in noisy measurements. Therefore two regions of observation are distinguished:
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• The far-field region, corresponding to observation distances larger than the
wavelength, zd >> λ. In this case the evanescent waves can be neglected.

• The near-field region, corresponding to observation distances smaller than the
wavelength, zd < λ. In this case the evanescent waves can be used.

3. Inversion with far-field data versus inversion with near-field data

In the Fourier domain, as in (8), the inverse problem to be solved has the form

ĝ(κ) = Ŝzd
(κ)f̂(κ) + n̂(κ). (10)

The Fourier transform of the noise process, n̂(κ), is a zero mean process with
orthogonal increments

E{n̂(κ)n̂(κ′)} = δ(κ − κ′)R̂nn(κ), (11)

where R̂nn(κ) is the power spectral density, that is, the Fourier transform of the
covariance Rnn(ρ).

We will now consider how the unknown surface displacement f , or equivalently
its Fourier Transform f̂ , can be recovered from far-field or near-field data. The results
presented briefly in this section are a summary of the inverse diffraction problem from
plane to plane, described in a paper of Bertero et al. [2] and we refer to this paper
for further details.

3.1. Far-field inversion

Only information carried by the propagating waves is used for the reconstruction of
the unknown f(ρ). The evanescent waves are thus neglected in (9). In that case
|Ŝzd

(κ)| ≤ 1 so (10) can be solved for f(ρ) since there is no noise amplification. The

far field estimate for f̂(κ) is thus

f̂F F (κ) = e−iakz(κ)ĝ(κ), for |κ| ≤ kand zero otherwise. (12)

If we introduce the inverse of the transfer function Ŝzd
,

ŜF F−

zd
(κ) =

{

e−iakz(κ) for |κ| ≤ k,
0 else,

(13)

we can write the far field estimate in the form

f̂F F (κ) = 1k(κ)f̂(κ) + ŜF F−

zd
(κ)n̂(κ), ∀κ ∈ R

2. (14)

Here 1k denotes the characteristic function of the spatial frequency band
Bk = {κ, |κ| ≤ k}.

The first term of this expression is a low pass filtered function of f̂ . In the space
domain it is a convolution with the point spread function kernel

KF F (ρ) = kJ1(k|ρ|)/(2π|ρ|),
where J1 is the first order Bessel function of the first kind. The resolution limit from
this term is the famous Rayleigh limit [8, 17, 2]: only spatial features of f that are
greater than RFF can be distinguished where RFF , the distance of the central peak
of KF F to its first zero, is given by

RFF = 1.22
π

k
= 1.22

λ

2
. (15)
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The second term of (14) is the noise after low pass filtering. Since |ŜF F−

zd
(κ)| ≤

1, ∀κ ∈ R
2, this noise term is not amplified by the inversion. Thus, as far as corruption

by noise of the reconstructed surface displacement is concerned, the estimate provided
by (14) is stable in the sense that the noise is not amplified. Also, since the propagating
waves are traveling without decay, the images obtained from far-field data do not
depend on the distance zd .

3.2. Near-field inversion

Information carried by the evanescent waves is now used to reconstruct the surface
displacement. This means that we solve equation (10) without neglecting the
evanescent modes which makes the problem ill posed. Following [2, 21] we regularize
it by truncation. This consists in taking into account only the evanescent waves whose
amplitude is greater than the noise level. Note that other regularization techniques
can be used [9, 23]. We do not address the question of the regularization method
in this paper and present only the cut-off regularization. We obtain the following
estimate

f̂NF (κ) = ŜNF−

zd
(κ)ĝ(κ), (16)

where

ŜNF−

zd
(κ) =

{

e−izdkz(κ) for |κ| ≤ kNF ,
0 for |κ| > kNF .

(17)

Here the cut-off wavenumber kNF > k is defined by

kNF = max

{

|κ| ,
∣

∣

∣
Ŝzd

(κ)
∣

∣

∣
≥ 1

SNR

}

, (18)

and SNR is an estimate of the signal-to-noise ratio. A determination of this cut-off
from a formulation of near-field imaging as a deblurring problem [9, 15] is given in the
next subsection. Using (10) in (16) we can write the near-field estimate of the surface
displacement in the form

f̂NF (κ) = 1kNF
(κ)f̂(κ) + ŜNF−

zd
(κ)n̂(κ), ∀κ ∈ R

2. (19)

The first term has clearly better resolution compared to (14) since kNF > k, with
SNR > 1. A calculation similar to the one used for the Rayleigh resolution criterion
shows that features of f on scales greater than RNF can be recovered, where

RNF =
1.22π

kNF

=
RF F

[

1 + 1
4π2

(

λ
zd

)2

log2 SNR

]
1

2

< RF F . (20)

This resolution limit is a decreasing function of the distance of observation zd and an
increasing function of the signal-to-noise ratio SNR. Table 1 gives some values of the
ratio RFF /RNF for several values of distance of observation and SNR.

The improvement in resolution in near-field inversion, compared to the far-field
one, can be very substantial if measurements are made very close to the surface. For
example, the resolution is increased by a factor 73 when zd = λ/100 and SNR = 40
dB. Moreover, the rate of improvement increases as measurements are made closer to
the surface. This is shown in figure 2 where the resolution limit is plotted as a function
of the distance of observation, relative to the wavelength λ and for a given signal to
noise ratio. If measurements are made at a distance greater than the wavelength then
there is no significant resolution improvement.
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Distance of observation zd/λ
SNR 1/100 1/10 1/5 1/2 1 2
40 dB 73.300 7.397 3.798 1.774 1.239 1.065
20 dB 36.660 3.798 2.087 1.239 1.065 1.016
12 dB 22.086 2.422 1.489 1.093 1.024 1.006

Table 1. Improvement of the resolution in near-field imaging: values of
RFF /RNF for different values of noise and observation distance.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

zd/λ

R NF
/λ

Near−field Far−field

Figure 2. Dimensionless resolution RNF /λ versus dimensionless distance of
observation zd/λ, relative to the wavelength λ, for SNR = 40 dB

Table 1 shows also the important influence of SNR on the resolution improvement.
The ratio RFF /RNF decreases from 73 to 36 at observation distance zd = λ/100 when
the SNR decreases from 40dB to 20dB. This is a consequence of the corruption of
evanescent waves by noise.

3.3. Deblurring formulation of near-field imaging

We can give a more precise algorithm for estimating the cut-off wavenumber kNF of
(18) and of (20) by reformulating near-field imaging as a deblurring problem [9, 15].

The difference between the estimate f̂NF (κ) of (19) and the true surface

displacement f̂(κ) is

êNF (κ) = f̂NF (κ) − f̂(κ) = (1 − 1kNF
(κ))f̂(κ) + ŜNF−

zd
(κ)n̂(κ).

If ∆ is any interval of horizontal wavenumbers κ then

1

∆
E{(

∫

∆

(êNF (κ))2dκ} =

{

1
∆

∫

∆
(ŜNF

zd
(κ))−2R̂nn(κ)dκ, ∆ ⊂ {|κ| ≤ kNF },

1
∆

∫

∆(f̂(κ))2dκ, ∆ ⊂ {|κ| > kNF }.
(21)

Let

P 2 = max
κ

|f̂(κ)|2,

be the signal power and

N2 = max
κ

R̂nn(κ),

be the noise power, with the signal to noise ratio defined by

SNR =
P

N
.
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Then

lim
∆→0

1

∆
E{(

∫

∆

(êNF (κ))2dκ} ≤
{

(ŜNF

zd
(κ))−2N2, |κ| ≤ kNF

P 2, |κ| > kNF
(22)

and if we now choose kNF so that (ŜNF

zd
(kNF ))−2N2 = P 2, we obtain

max
κ

lim
∆→0

1

∆
E{(

∫

∆

(êNF (κ))2dκ} ≤ P 2.

The near-field cut-off wavenumber is thus given by
(

kNF

k

)2

= 1 +

(

logSNR

kzd

)2

,

which is the same as the cut-off wavenumber in (20).
The resulting cut-off wavenumber obtained with this calculation depends mainly

on: (i) the form of the regularization used, i.e., in our case we seek the surface
displacement as a function that has a compactly supported Fourier transform. (ii)
the way the estimation error is minimized, that is, the norm used in the minimization
and the criterion employed for selecting kNF .

3.4. Numerical examples

In the following numerical experiments, we give some examples of reconstructions
obtained with far-field and near-field data measurements for two incident fields: a
single monochromatic plane wave and a beam of monochromatic plane waves.

3.4.1. Description of the numerical experiments The following experiments are
realized at central frequency f0 = 5 GHz associated to the central wavelength
λ0 = 6 cm. All dimensions of the problem are given with respect to the central
wavelength. The object to be recovered consists in 2 disks of diameter λ0/2 with
centers separated by 3λ0/4, so that the distance between the two objects is λ0/4. One
of the disks is 1 µm high and the other is 2 µm high (see figure 3).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

x 10−7

x

z

2D linear scale 1D section in the plane y = 0

Figure 3. Original shape: two disks of diameter λ0/2 and separated by a distance
of λ0/4. One is 1 µm high and the other is 2 µm high.

The measurements are realized at distance zd above the plane z = 0, on a
two dimensional array composed by a 128 × 128 points separated by the space step
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∆x = λ0/16. The propagated field u(ρ, zd) is computed by FFT using (8) and the
measurements are corrupted by additive white Gaussian noise with standard deviation
σ. The value of σ is defined as a given percentage s of the L2 norm of the propagated
signal so that σ = s ‖ (|u(ρ, zd)|) ‖L2 . The corresponding value of the signal to noise
ratio used in formula (18) is thus SNR = s or in decibels, SNR = 20 log10 s dB.

We first consider a case with high signal-to-noise ratio, SNR= 40dB. For each
incident field, the image is reconstructed using far-field data measured at zd = 5λ0

and using near-field data measured at the following distances: zd = λ0/10, zd = λ0/2
and zd = 2λ0. In addition, in order to analyze the effect of noise, we also consider
a case with lower signal-to-noise ratio, SNR= 12dB. For that latter case, the image
is reconstructed using far-field data (zd = 5λ0) and near-field data measured at the
distance zd = λ0/2.

The reconstructed objects are represented in 2D using a 40dB scale, whose
reference is the maximum value of the plotted function. We also show the comparison
between the original and reconstructed shapes in the plane y = 0 (1D plots).

3.4.2. Single monochromatic plane wave In the case of a single monochromatic
incident plane wave, one has simply ui(r) = exp(iki.r), where ki is the incident wave
vector with |ki| = k. As there is no noticeable change when the direction of incidence
is modified, we only show here results for normal incidence, i.e., for ki = (0, 0,−k)

−40 −35 0 dB−10 −5−15−25 −20−30

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

x 10−7

x

z

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

x 10−7

x

z

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

x 10−7

x

z

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−5

0

5

10

15

20

x 10−7

x

z

Far-field

zd = 5λ0

Near-field

zd = λ0/10
Near-field

zd = λ0/2
Near-field

zd = 2λ0

Figure 4. Single monochromatic plane wave, normal incidence. SNR= 40
dB. Reconstruction obtained with far-field data (zd = 5λ0) and with near-field
data for zd = λ0/10, zd = λ0/2 and zd = 2λ0. Above: 40dB scale. Bottom:
comparison between original and reconstructed shape in the plane y = 0.

For high signal-to-noise ratio (SNR = 40 dB), the reconstructions are represented
on figure 4. As expected, since the two disks are too close, it is not possible to
separate them using far-field data. On the other hand, the inversion using near-field
data performs much better when measurements are made sufficiently close to the
surface (zd = λ0/10 or zd = λ0/2). The improvement is spectacular when zd < λ0

while the result obtained with zd = 2λ0 is almost the same as the one obtained with
far-field inversion. Notice also that the results obtained with near-field data are much
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−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
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−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
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15
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x 10−7

x

z

Far-field, zd = 5λ0 Near-field, zd = λ0/2

Figure 5. Single monochromatic plane wave, normal incidence. SNR= 12 dB.
Reconstruction obtained with far-field data (zd = 5λ0) and with near-field data
for zd = λ0/2. 40dB scale and comparison between original and reconstructed
shape in the plane y = 0.

more corrupted by noise than the one obtained with far-field data. The amplification
of the high spatial frequency components of the noise is clearly visible for zd = λ0/10,
while it is smoother for zd = λ0/2. These results illustrate very well the trade-off
between resolution and noise amplification.

Results obtained in the case of lower signal-to-noise ratio (SNR= 12 dB) are
presented on figure 5. As expected, decrease in the SNR does not affect much the image
obtained with the far-field data: the image is almost the same as the one obtained
for the higher SNR, with a slightly higher speckle. This is one of the advantages of
far field inversion: there is no noise amplification and thus the method is very robust
to noise. On the other hand, when comparing the near-field image corresponding to
zd = λ0/2 with the one obtained at higher SNR (see figure 4) we see that lower SNR
clearly affects both the resolution and the noise level of the reconstructed image. This
shows that near-field inversion is very sensitive to noise.

3.4.3. Beam of monochromatic plane waves We consider here the case of a beam of
incident monochromatic plane waves, given by ui(r) =

∫

θ,ϕ a(θ, ϕ) exp(ikk̂i(θ, ϕ).r),

where k̂i(θ, ϕ) is the unit vector defined in spherical coordinates associated to
colatitude θ and longitude ϕ. a(θ, ϕ) is a normalized window function which defines
the spread of the beam. In practice, it has a constant value around the central
direction of incidence k0

i with an opening angle of ∆φ = 10◦ in both latitude and
colatitude (see figure 6). The central direction of incidence is the normal incidence.
We recall that the function obtained with the inversion process described in section §3
is f(ρ) = −h(x, y)∂zui(ρ, 0). Thus, in order to recover the shape, h, one has to divide
f by ∂zui(ρ, 0). Since the beam of plane waves has a peak centered at the origin and
then vanishes, we invert it only for the values which are above the cut-off of 5dB. This
results in recovering the values of the shape h(ρ) only in a disk centered at origin.

∆ϕ

k
0

i

Figure 6. Description of the beam of monochromatic plane waves
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Figure 7. Beam of monochromatic plane waves, normal incidence. SNR= 40
dB. Reconstruction obtained with far-field data (zd = 5λ0) and with near-field
data for zd = λ0/10, zd = λ0/2 and zd = 2λ0. Above: 40dB scale. Bottom:
comparison between original and reconstructed shape in the plane y = 0.
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Figure 8. Beam of monochromatic plane waves, normal incidence. SNR= 12
dB. Reconstruction obtained with far-field data (zd = 5λ0) and with near-field
data for zd = λ0/2. 40dB scale and comparison between original and reconstructed
shape in the plane y = 0.

Results obtained with high SNR are represented on figure 7. They are very close
to those obtained with a single monochromatic plane wave. The same holds for the
results obtained with lower SNR presented on figure 8. Thus we can conclude that
the use of a beam does not provide any improvement in the image reconstruction.

4. Use of a broadband incident plane wave

4.1. Broadband inversion method

If the incident wave is a plane wave with direction of incidence k̂i, it can be written
in the time domain ui(r, t) = ψ( 1

c k̂i.r − t), or equivalently, as a superposition of
harmonic plane waves:

ui(r, t) =
1

(2π)

∫

ω

ei( ω
c

k̂i.r−ωt)ψ̃(ω)dω,
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where ψ̃(ω) =
∫

e−iωtψ(t)dt denotes the Fourier Transform with respect to the time
variable of the function ψ.

For each pulsation ω in the bandwidth of ψ̃, it is possible to reconstruct an image
of the displacement, using either far-field or near-field data. This image is denoted
fω(ρ). Notice that ω plays here simply the role of a parameter and is not a variable.
The broadband image is obtained by computing the average value of the family of
images (fω), using the power spectrum of the function ψ̃ as weight, which leads to

fBB(ρ) =
1

‖ψ̃‖2
2

∫

ω

fω(ρ)|ψ̃(ω)|2dω, (23)

where ‖ψ̃‖2 denotes the L2 norm of ψ̃. For a given angular frequency ω, we let
Ŝzd

(ω,κ) be the pseudo-inverse of the transfer function defined for either the far-field
or near-field inversion and given by (13) or (17), respectively. Using (14) or (19),
equation (23) can be written in the spatial Fourier domain as

f̂BB(κ) = K̂BB(κ)f̂(κ) + N̂BB(κ), (24)

where

K̂BB(κ) =

∫

ϕ(ω)1kc(ω)dω,

N̂BB(κ) =

∫

ϕ(ω)Ŝzd
(ω,κ)n̂(ω,κ)dω.

(25)

We have introduced here the weighting function ϕ(ω) = |ψ̃(ω)|2/‖ψ̃‖2
2. The cut-

off spatial frequency kc(ω) is given by kc(ω) = ω/c in the far-field case and by
kc(ω) = kNF (ω) in the near-field case, where kNF is defined by (18). The first term of
(24) provides a low pass filtered version of the function f while the second term is the
resulting noise.

ωω1 ω̄ ω2

ϕ(ω)

ω
∆

1

ω∆

Figure 9. Step shaped power spectrum of the signal.

Results with SNR = 40dB are plotted in figure 10. In this example, ϕ(ω) is
the simple step shaped function shown in figure 9, that is, ϕ(ω) = 1/(ω2 − ω1)
for ω ∈ [ω1, ω2] and 0 elsewhere. The central angular frequency is defined by
ω̄ = (w1 +w1)/2 and the angular bandwidth by ω∆ = w2 −w1. The central frequency
used in the experiments is 5 GHz and the frequency range is from 2.5 GHz to 7.5 GHz,
which corresponds to 100% relative bandwidth. All other parameters are the same as
those used in section §3.4. A small improvement of the resolution in comparison to
the narrowband case is clearly visible in the figures. However it remains difficult to
distinguish the two circles in the far-field case even with a very large bandwidth. The
analysis of the kernel KBB associated to the reconstruction of these images and defined
by (25) allows for characterizing the improvement of the resolution. This analysis is
presented in the next section.



Resolution and Denoising in Near-Field Imaging 13

−40 −35 0 dB−10 −5−15−25 −20−30

−4 −3 −2 −1 0 1 2 3
−5

0

5

10

15

20

x 10−7

x/λ

z

−4 −3 −2 −1 0 1 2 3
−5

0

5

10

15

20

x 10−7

x/λ

z

−4 −3 −2 −1 0 1 2 3
−5

0

5

10

15

20

x 10−7

x/λ

z

−4 −3 −2 −1 0 1 2 3
−5

0

5

10

15

20

x 10−7

x/λ

z

Far-field

zd = 5λ0

Near-field

zd = λ0/10
Near-field

zd = λ0/2
Near-field

zd = 2λ0

Figure 10. Broadband plane wave (central frequency 5 GHz, bandwidth =
100%), normal incidence. SNR= 40 dB. Reconstruction obtained with far-field
data (zd = 5λ0) and with near-field data for zd = λ0/10, zd = λ0/2 and zd = 2λ0.
Above: 40dB scale. Bottom: comparison between original and reconstructed
shape in the plane y = 0.

In addition, the integration over the bandwidth results in a clearly visible
reduction of speckles. This is a consequence of the fact that the additive noise
n(t,ρ) is assumed to be stationary and uncorrelated in both time and space and thus
uncorrelated in both angular frequencies and spatial frequencies. For a stationary and
uncorrelated random process X(ω) with mean zero and variance σ2, that is, such that

〈X(ω)〉 = 0 and 〈X(ω)X̄(ω′)〉 = σ2δ(ω − ω′),

the integral N =
∫

ϕ(ω)X(ω)dω is a random variable which satisfies

〈N〉 = 0 and 〈N2〉 = σ2

∫

ϕ(ω)2dω.

For the weight ϕ given above the variance of N is 〈N 2〉 = σ2/(w2 −w1) and thus the
larger the bandwidth, the lower the level of the averaged noise. Similarly, an estimate
of the level of the noise NBB(ρ) can be given by computing its covariance.

The main effect of broadband inversion with far-field data is to decrease the noise
level. For inversion with near-field data, however, since the resolution is limited by the
SNR, it is possible to take advantage of the noise reduction in order to improve the
resolution. This means that we can use a higher value for the cut-off spatial frequency
kc(ω) in (25) without degrading the reconstructed image, as would be the case with
narrowband inversion.

This idea is illustrated in figures 11 and 12 which show the results obtained for
near-field inversion with SNR = 12dB and zd = λ0/2 in the narrowband case and in
the broadband case with 100% bandwidth. Figure 11 is obtained with kc(ω) = kNF (ω)
given by (18) while figure 12 is obtained with kc(ω) = 1.9kNF (ω), that is 90% higher.
First, in the narrowband case, the use of a higher value of the threshold kc(ω) produces
a very noisy image in which the object is completely lost. However, in the broadband
case, since the noise is averaged the use of a higher cut-off frequency produces an image
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with better resolution and without a lot of noise. The two disks are now well separated,
which was not the case with narrowband inversion or with broadband inversion with
a lower value of kc(ω). This result shows clearly the significance of using broadband
signals in near-field imaging. Of course, there is a limiting cut-off for the broadband
case also, after which the image will be very corrupted by noise. This cut-off is in
general higher than the one obtained in the narrowband case and that is why we
expect an improvement in resolution. We will describe two methods for choosing the
cut-off in the broadband case in section §4.3.
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Figure 11. Reconstructions obtained with near-field data for normal incidence
illumination and measurements at zd = λ0/2. SNR= 12 dB. The cut-off
frequency is kc(ω) = kNF (ω). Left narrowband inversion and right broadband
inversion (Central frequency 5 GHz, bandwidth = 100%). 40dB scale and
comparison between original and reconstructed shape in the plane y = 0.
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Figure 12. Reconstructions obtained with near-field data for normal incidence
illumination and measurements at zd = λ0/2. SNR= 12 dB. The cut-
off frequency is kc(ω) = 1.9kNF (ω). Left narrowband inversion and right
broadband inversion (Central frequency 5 GHz, bandwidth = 100%). 40dB scale
and comparison between original and reconstructed shape in the plane y = 0.

4.2. Resolution analysis of the broadband inversion

In this section we give the analysis of the kernel KBB associated to the broadband
inversion method discussed above. The analysis is performed in the 2D case (and thus
for a 1D boundary), which simplify the computations.

Far-field broadband inversion The Fourier Transform of the far-field broadband
kernel K̂F F

BB
(κ) introduced in (25) is given by:

K̂F F

BB
(κ) =

∫

ϕ(ω)1 ω
c
(κ)dω =

∫ ∞

ω≥c|κ|

ϕ(ω)dω, ∀κ ∈ R. (26)
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Figure 13. The Fourier Transform of the far-field broadband kernel K̂F F
BB(κ) in

the 2D case for a step-shaped ϕ.
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Figure 14. The Imaging Point Spread Function for a 1D boundary in the
broadband case for different values of bandwidth (—) compared to the kernel in
the narrowband case at central frequency (- - -) [ all curves are normalized so that
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NB(0) = 1]

It is shown in figure 13. It can be written as a convolution

K̂F F

BB
(κ) =

1

k∆
1k̄ ? 1k∆/2(κ), ∀κ ∈ R. (27)

where we introduced the central wave number k̄ = ω̄/c and k∆ = ω∆/c, with ω∆ the
angular frequency bandwidth. In the space domain the kernel is therefore given by

KF F

BB
(x) =

k̄

π
sinc(k̄x)sinc(

k∆x

2
). (28)

We recall that in the narrowband case, at the central frequency and for a 1D boundary,
the kernel is the inverse Fourier Transform of the characteristic function 1k̄, that is

KF F

NB
(x) =

k̄

π
sinc(k̄x). (29)
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The kernels for different values of the bandwidth are shown in figure 14 for a
central frequency of 5GHz. We see that the effects of integrating over the bandwidth
are (i) a decrease in the size of the side lobes of the kernel compared to the narrowband
case and (ii) a decrease in the width of the central peak when the bandwidth is larger
than 100% (i.e., for k∆ ≥ k̄). When the width of the central peak is the same for
narrowband and broadband data, we still see a slight improvement in the resolution
(compare Figure 10 with Figure 4). This suggests that the Rayleigh criterion used in
section §3 to define the resolution is rather crude as it does not take into account the
level of the side lobes. Many other criteria have been proposed in order to provide
a more realistic measure of resolution, but it is not our purpose here to address this
question in detail (see for example [13]).

4.3. Selection of the cut-off kc(ω) in the case of broadband inversion

In order to determine the cut-off kc(ω) in the case of broadband near-field inversion
we analyze in this section the amplification of the back-propagated noise N̂BB(κ). The

difference between the estimate f̂ω(κ) and the true surface displacement f̂(κ) is,

ê(ω, κ) =

{

Ŝ−
zd

(ω, κ)n̂(ω, κ) for |κ| ≥ kc(ω)

−f̂(κ) else.
(30)

After integration over the bandwidth B and a small interval of wavenumbers ∆ we
obtain

lim
∆→0

1

∆
E{

∫

∆

∫

B

|ê(ω, κ)|2dωdκ}

≤
∫

B

1{|κ|≤kc(ω)}|Ŝzd
(ω, zd)|−2ϕ(ω)2N2dω

(31)

where N2 = max
κ,ω

R̂nn(ω, κ) is an estimation of the noise level.

In the following, we consider again the function ϕ(ω) shown in Figure 9. We have
that ϕ2(ω) = 1/∆Bϕ(ω). As in the narrowband case, we require that this variance
be smaller than the power of the signal P 2. In other words, we require that

F(κ) =

∫ ω2

ω1

1{|κ|≤kc(ω)}|Ŝzd
(ω, zd)|−2dω ≤ ∆B(SNR)2. (32)

We introduce the following dimensionless variables:

ω′ = ω/ω̄ the relative angular frequency
β = B/ω̄ the relative bandwidth
k̄ = ω̄/c the central wavenumber
κ′ = |κ|/k̄ the relative wavenumber
k′c(ω) = kc(ω)/k̄ the relative cut-off wavenumber
α = zdk̄ the dimensionless distance of measurements.

Equation (32) can then be written as

F ′(κ′) =
1

β

∫ 1+β/2

1−β/2

1{κ′≤k′

c(ω
′)}(κ

′)e−2iα
√

ω′2−κ′2

dω′ ≤ (βω̄)(SNR)2(33)

and we have F(κ) = F ′(|κ|/k̄). We shall now consider two different ways of choosing
the cut-off k′c(ω

′).
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4.3.1. Uniform cut-off. We first consider the case of a uniform cut-off, independent
of the frequency ω. It is defined by

kopt
c = max{κ′ / F ′

∞(κ′) ≤ (βω̄)(SNR)2}. (34)

Here F ′
∞ is the function F ′ obtained when no cut-off is used, that is, for k′c(ω

′) = ∞.
The computation of F ′

∞(κ′) and the resolution of (34) are done numerically. The
cut-off values kopt

c obtained using (34) for different signal to noise ratios and distances
of observation are given in table 2. Here the central frequency is 5GHz and the
relative bandwidth is 100%. We note that kopt

c is the relative cut-off wavenumber
which is equal to the ratio RFF /RNF so that we can compare table 2 with table 1.
There is considerable improvement compared to the narrowband case. However, when
the SNR is very low and the distance of measurements is relatively big, equation (34)
leads to a cut-off wavenumber that is smaller than some of the wavenumbers in the
available bandwidth. This is what happens for example in table 2 for zd/λ0 = 2 and

SNR = 20dB or 12dB. In this case the images f̂ω′ constructed at frequencies ω′ ≥ kopt
c

are less resolved than the far-field estimates. This is because we use a uniform value
for the cut-off and by trying to control the amplification of the noise at low frequencies
we penalize the higher frequencies. In such cases another strategy should be followed.
We propose such a strategy in the next section.

Distance of observation zd/λ0

SNR 1/10 1/5 1/2 1 2
40 dB 26.5840 13.3220 5.4051 2.7998 1.5074
20 dB 22.9226 11.4959 4.6852 2.4487 1.3403
12 dB 21.4658 10.7699 4.3999 2.3100 1.2750

Table 2. Improvement of the resolution for broadband near-field inversion:
values of kopt

c for different values of noise and observation distance. The central
frequency is 5GHz and the relative bandwidth is 100%

For a constant cut-off wavenumber the global transfer function is

K̂BB(κ) =
1

β

∫ 1+β/2

1−β/2

1{|κ|/k̄≤kopt
c }dω

′ = 1{|κ|/k̄≤kopt
c }, (35)

and thus the global point spread function (PSF) is a Bessel function (as for the
narrowband case) whose central peak’s width is 1.22π/(k̄kopt

c ). Contrary to what
occurs in the far-field broadband inversion, there is no attenuation of the side lobes
in this case. There is, however, a significant improvement in resolution as the central
peak is now much narrower than in the narrowband case.

4.3.2. Proportional cut-off. We consider now a cut-off wavenumber which is
proportional to the one used in the narrowband case. That is, we take

k′c(ω
′) = γk′

NF
(ω′),

with k′
NF

(ω′) defined by (18), which is recast in dimensionless variables

k′
NF

(ω′) =

√

ω′2 + (log SNR/(α))
2
.
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We denote by F ′
γ the corresponding function defined by (33) and note that the

family (F ′
γ)γ is increasing with respect to the parameter γ. The optimal value of

the proportionality constant γ is given by the constraint (33), which reduces to

γopt = max{γ s.t. F ′
γ ≤ β(SNR)2} (36)

In the case where the SNR = 12dB and zd/λ0 = 1/2 at central frequency 5GHz,
and with a relative bandwidth of 100%, we obtain γopt = 3.26 so that the cut-offs at the
lowest and highest frequencies are k′c(ω

′
1) = 2.17 and k′c(ω

′
2) = 5.1 respectively. Not

surprisingly, the value of kopt
c (= 4.3999) obtained in Table 2 is between these extremes.

This strategy allows for cutting-off at higher spatial frequency in the higher range of
the bandwidth while using a smaller cut-off in the lower range of the bandwidth. In
this case, it is not possible to compute analytically the global point spread function. A
numerical approximation is shown in Figure 16 and is compared to the one obtained
with uniform cut-off. We note that with the proportional cut-off we do have an
attenuation of the side lobes.

4.4. Numerical results: A comparison between the different cut-off wavenumbers

We consider here the same setup as in section §3.4. The central frequency used
in the experiments is 5 GHz and the frequency range is from 2.5 GHz to 7.5 GHz
corresponding to 100% relative bandwidth.

We compare the following different choices of cut-off wavenumbers for
measurements made at distance zd = λ0/2 and SNR = 12dB:

• kc(ω) = 3.26kNF (ω), i.e. , γ = γopt as determined in the section §4.3.2, the results
are shown in Figure 17,

• kc(ω) = 4.39k̄ i.e. a uniform cut-off with the optimal value computed in section
§4.3.1, the results are shown in Figure 18,

• and kc(ω) = 5.2k̄ i.e. a uniform cut-off with higher value than the optimal one
for which the results displayed in Figure 19.

These results should also be compared with the ones of figures 11 and 12 where non-
optimal values for γ are used, that is kc(ω) = kNF (ω), γ = 1 for Figure 11 and
kc(ω) = 1.9kNF (ω), γ = 1.9 for Figure 12.

We see in figures 17 and 18 that the results obtained by both methods for the
optimal cut-off values are very good and we can distinguish clearly the two objects.
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These results are much better than the one obtained with the naive use of γ = 1 (see
Figure 11).

As in the narrowband case there is a trade-off between resolution and noise
amplification that is illustrated by the results in Figure 19 where a higher value than
the optimal cut-off is used. In this case one obtains a much worse image.
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Figure 17. Reconstruction of the shape obtained with near-field data for normal
incidence illumination and measurements at zd = λ0/2. SNR= 6 dB. The cut-
off frequency is kc(ω) = 3.26kNF (ω). Left narrowband inversion and right
broadband inversion (Central frequency 5 GHz, bandwidth = 100%). 40dB scale
and comparison between original and reconstructed shape in the plane y = 0.
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Figure 18. Reconstruction of the shape obtained with near-field data for normal
incidence illumination and measurements at zd = λ0/2. SNR= 6 dB. The cut-

off frequency is uniform kc(ω) = 4.39k̄ = k
opt
c k̄. Left narrowband inversion

and right broadband inversion (Central frequency 5 GHz, bandwidth = 100%).
40dB scale and comparison between original and reconstructed shape in the plane
y = 0.
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Figure 19. Reconstruction of the shape obtained with near-field data for normal
incidence illumination and measurements at zd = λ0/2. SNR= 6 dB. The cut-
off frequency is uniform kc(ω) = 5.2k̄. Left narrowband inversion and right
broadband inversion (Central frequency 5 GHz, bandwidth = 100%). 40dB scale
and comparison between original and reconstructed shape in the plane y = 0.
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5. Summary and Conclusions

In the first part of the paper we have reviewed near and far-field imaging of small
surface displacements in the narrowband regime. We considered carefully the trade-
off between distance of the measurements from the surface and the signal to noise
ratio, which determines the frequency cut-off that regularizes the inversion. We have
illustrated the theory with numerical simulations.

The main results of the paper are in the second part, which is an analysis
of the extension of near-field imaging to broadband regimes. We have found that
inversions with broadband signals have better resolution at a given noise level because
of frequency averaging. The suppression of speckles in broadband images effectively
increases the SNR, which determines the frequency cut-off in the regularization of the
inversion. This is the reason why smaller scale evanescent waves can be used in the
inversion, which gives better image resolution. We have illustrated the theory with
the results of several numerical simulations.

is independent of the discretization.
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