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Abstract

We analyze with extensive numerical simulations distributed sensor imaging algorithms for lo-

calized damage in a structure. Given a configuration of ultrasonic transducers, we assume that

a full response matrix for the healthy structure is known. It is used as a basis for comparison

with the response matrix that is recorded when there is damage. Our numerical simulations are

done with the wave equation in two dimensions. The healthy structure is a two dimensional region

containing many scatterers. We want to image point-like defects in this structure with several

regularly distributed sensors. Because of the complexity of the environment, the recorded traces

have a lot of delay spread and travel time migration does not work well. Instead, the traces are

back propagated numerically assuming that we have knowledge of the background. Since the time

at which the back propagated field will focus on the defects is unknown, we compute the Shannon

entropy of the image and pick the time where it is minimal. The bounded variation norm is also

a good indicator of when to stop the back propagation. This imaging method performs well for

distributed sensors networks because it produces a tight image near the location of the defects at

the time of refocusing. When there are several defects, the singular value decomposition of the

response matrix is also carried out, at each frequency, to resolve selectively the defects.

PACS numbers: 43.60.Gk, 43.60.Pt, 43.60.Tj
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I. INTRODUCTION

Signals recorded by sensors placed in a structure can be used to monitor its integrity and

to detect the appearance of defects. In ultrasonic non-destructive testing the sensors are

often small, isotropic transducers that operate in broadband regimes.

The regular monitoring of a structure generates huge amounts of data which are largely

redundant and difficult to use. Detection can be done, in principle, by comparing the

response of the structure in its normal state with that recorded when defects are present. The

literature for this problem goes back some 30 years1,2. To what extent can these responses

be used to also image the defects? Imaging the location and shape of the defects is a much

more complex problem that has received a lot of attention when arrays are used3. Imaging

with distributed sensors in structural health monitoring applications is considered in4–7. We

consider this question in this paper using time-reversal imaging methods. Numerical back

propagation of the recorded signals will focus them near the defects, which behave like weak

secondary sources. However, we do not know at what time during the back propagation

process this focusing will occur since the location of the defects is not known. We propose

here an algorithm for optimally stopping the back propagation by using an entropy or

bounded variation norm for the image. When several small defects are present we image

using the singular value decomposition of the response matrix together with the optimally

stopped back propagation. We carry out extensive numerical simulations in order to assess

the effectiveness of this algorithm. We find that back propagation with optimal stopping

works well, especially when the Green’s function for the structure is known. Travel time

migration imaging does not work as well because it does not use information about the

background, while full wave migration in the known background is computationally very

demanding and therefore not competitive.

One important difficulty for the data analysis is due to the complexity of the propaga-

tion of ultrasound in thin composite structures. Lamb waves propagating in a thin elastic

structure are dispersive. Also, structures like an airplane or a bridge contain many objects

like stiffeners or rivets. The propagating waves will be scattered at all these objects and

the recorded signals will have long codas. In this paper, we are interested in imaging in

such hetereogeneous media. We do not consider dispersive effects. Time reversal with Lamb

waves for an active source problem has been investigated in8. Time reversal imaging with
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dispersive waves is an important issue that will be addressed in a later study. There are

several idealizations in this approach to distributed sensor imaging that need to be pointed

out. Regarding the imaging algorithm, the main one is the assumption that the wave prop-

agation properties of the structure, its Green’s function, are known. This is a reasonable

one for nondestructive testing or structural health monitoring because a lot is known about

the structure. Another one is the use we make of the difference of signals with and without

defects, which is difficult to do in practice and requires high signal to noise ratios. Regarding

the numerical simulations, they are done in two dimensions with the wave equation, without

dispersion.

This paper is organized as follows. In the next section we present the numerical setup

used in this study. In section III we consider the travel time migration algorithm and show

that it does not perform well with the data that we use. In section IV, we present the time

reversal algorithm with optimal stopping. The numerical simulations confirm the expected

good performance of this algorithm as well as its reliability.

II. A DISTRIBUTED SENSOR FRAMEWORK FOR NUMERICAL SIMULA-

TIONS

In order to assess the effectiveness of distributed sensor imaging algorithms we have

carried out extensive numerical simulations with the wave equation in two dimensions. We

consider the structure shown in Fig. 1. It is a domain of size 50λ by 50λ, where λ = 1 cm is

the central wavelength of the probing pulse used by the sensors. All dimensions in this paper

are given in units of λ. The wave speed is taken to be c0 = 5000m.s−1, which is typically

the speed of the lowest symmetric propagating Lamb mode in a 1mm thick aluminum plate.

On this plate structure we place a fixed object of size 3λ and 25 smaller objects of size λ/2

which are on the same line. The later could represent a line of rivets, for example. We

simulate propagation in an infinite plate, as if we were considering a small part of a bigger

structure. Reflections from boundaries provide more information at the sensors and make

time reversal imaging more robust, as explained in section IV. Imaging in an infinite region

is therefore an important case to consider in some detail. There is no intrinsic absorption

in the structure, so the only cause of dissipation is the outgoing radiation.

The defects we want to image are two identical point-like objects, located on the plate at
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(12,17) and (9,18). They are thus approximately 3λ apart. All the features and the defects

in our computations are perfect reflectors with Dirichlet boundary conditions. They could

also be penetrable objects, that is, heterogeneities of the background with finite propagation

speed. With point-like defects this does not affect much the imaging algorithms.

The structure is illuminated with a small number of sensors regularly distributed. There

are N = 12 of them that are placed in 4 rows of 3 sensors each. The rows of sensors are

separated by 10λ and in each row the sensors are 20λ apart. The location of the sensors is

denoted xp, 1 ≤ p ≤ N . They are point-like and isotropic, and capable of both emitting

a pulse into the medium and recording the vibration at their location. The probing pulse

that we use in the computations is the second derivative of a Gaussian given by

f(t) = (2[α(t− t0)]
2 − 1) exp(−[α(t− t0)]

2) (1)

where α = πν, and t0 is a translation of the time origin. It is shown in Fig. 3 along

with its Fourier transform. Its central frequency is ν = 500 kHz and with background

velocity c0 = 5000m.s−1 the central wavelength is λ = 1cm. The frequency band at -6dB is

approximately [220 kHz, 850kHz], which gives an 130% relative bandwidth.

The wave equation in two dimensions is solved with a numerical method based on the

discretization of the mixed velocity-pressure formulation for acoustics. For the spatial dis-

cretization we use a finite element method which is compatible with mass-lumping9,10, that

is, which leads to a diagonal mass matrix so that explicit time discretization schemes can be

used. For the time discretization we use an explicit second order centered finite difference

scheme. In the simulations the point-like defects are modeled by small squares whose side

is given by the space step of the grid, namely λ/32. The infinite medium is simulated by

embedding the computational domain into a perfectly matched absorbing layer11.

For the given distribution of sensors, the response matrix of the healthy structure is

computed in the time domain. Each sensor p = 1 . . . N emits a pulse into the structure

and the echoes are measured at all sensors q = 1 . . . N . This response matrix is denoted

P 0(t) = (P 0
pq(t))p,q=1...N . We call it the baseline. It is symmetric because of reciprocity. Each

column of P 0 corresponds to a different illumination of the structure: the pth column are

the signals or traces measured at all sensors when sensor #p is firing. The response matrix

of the damaged structure is computed with the same configuration of sensors and is denoted

by P d(t). The difference between the damaged and healthy response matrices is denoted
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by Ppq(t) = P d
pq(t) − P 0

pq(t), p, q = 1 . . . N. Henceforth we call P (t) the response matrix (of

the damaged structure). In this difference matrix the direct arrivals of emitted pulses and

reflections coming from the scatterers in the healthy structure have been removed. The

matrix P (t) contains therefore the back-scattered echos coming from the defects and from

multiple scattering between them and also with the scatterers in the healthy structure. Since

the sensors are close to each other in array imaging, the direct arrivals are in the early part

of the received signals. They can therefore be removed by cutting off that part of the signal,

as the region to be imaged is at some distance from the array. However, in distributed sensor

imaging the direct arrivals cannot be removed by a simple cut-off. This is one reason why

knowledge of the response of the baseline structure is needed when imaging with distributed

sensors.

The sixth column of each of the matrices P 0(t), P d(t) and P (t) is shown from left to

right in Fig. 2. The signals are the vibrations recorded as functions of time at one of the 12

sensors, when sensor #6 is firing. All signals shown are normalized so that their maximum

is 1. The direct arrival of the probing pulse is clearly visible on the traces for the healthy

structure at sensors #4 to #12, because they have a direct line of sight with sensor #6. The

smaller vibrations arriving at later times are from the multiple scattering with the reflectors

in the healthy structure. The sensors #1 to #4 are located behind the line of rivets so there

is no line of sight with sensor #6. Therefore there is no clear direct arrival of the probing

pulse but rather a long coda that comes from the multiple reflections with the rivets. This

signal coda is called the delay spread. The differences between P 0(t) and P d(t) can hardly

be seen by looking at them separately because the reflections coming from the defects are

very small compared to the direct arrivals. The amplitude of the signals coming from the

defects (in P (t)) is approximately 100 times smaller than that of the direct arrivals (in P 0(t)

and P d(t)). The difference traces contain signals coming only from the defects and it is quite

clear that the direct arrivals have been removed. However, there is also no clear arrival time

coming from the defects. This is because the healthy structure around the defects has other

scatterers that generate delay spread, which depends significantly on the illumination. We

also note that with distributed sensors the trace peaks do not form hyperbolas as is in array

imaging. It is therefore not possible to get a rough estimate of the location of the defects

from a quick glance at the data, as is often the case in array imaging.

We assume that the signal to noise ratio here is very high. Therefore the presence of
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defects can be detected if at least one singular value of the Fourier transform of P (t) is

above some threshold. Our purpose is to go well beyond this step, to an algorithm that

images the defects.

III. TRAVEL TIME IMAGING

Perhaps the simplest way to image with distributed sensors is by triangulation. The main

difficulty in implementing triangulation is getting a reliable estimate of arrival times from

the traces of the response matrix P (t). This difficulty can arise from the dispersive nature

of Lamb waves, as it is discussed in7, or from multiple scattering that generates large delay

spread in the traces, as described in the previous section.

Travel time imaging, or travel time migration, or Kirchhoff migration is an important

imaging algorithm that is based on travel time computations. It is different from basic

triangulation because it does not require the estimation of arrival times from the traces. It

is used extensively in seismic array imaging3,12 and elsewhere. Several variants of it have

also been used in structural health monitoring4–6. The main idea in travel time migration

is to compute the value of an imaging functional of the data at each “search point” yS in

the region that we want to image. With the traces recorded at the N receivers at (xq)1≤q≤N

when the sensor at xp is firing, we compute for each yS

IKM
p (yS) =

N∑
q=1

Ppq(τp(y
S) + τq(y

S)). (2)

where τp(y
S) = |xp − yS|/c0 is the travel time from xp to yS and c0 is the background

propagation speed. That this is an imaging algorithm can be seen as follows. The travel

time τp(y
S) + τq(y

S) is the time for the wave to go from the source at xp to the search point

yS and then from yS to the receiver at xq. If yS is near a defect location then the trace

Ppq(t) will have a peak at that time. The imaging functional IKM
p (yS) sums coherently these

peak values for the different sources and receivers, producing a local maximum or minimum.

However, if yS is far from the location of a defect, then the traces will be added incoherently

and |IKM
p (yS)| will be small.

The imaging functional IKM
p (yS) is an approximation to the least squares solution of

the linearized inverse scattering problem3,12, and its resolution gets better as the number

of sensors increases. The resolution theory for travel time migration is well understood for
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sensor arrays in a homogeneous or smooth background3,13,14. It is well known, for example,

that the range resolution, that is, the resolution in the direction orthogonal to the array, is

controlled by the bandwidth B of the probing pulse and is given by c0/B. The cross range

resolution, that is, the resolution in the direction parallel to the array, is limited by the

aperture of the array a and the distance L between the array and the defect, and it is given

by λL/a, where λ is the central wavelength. There does not appear to be a resolution theory

for travel time migration with distributed sensors while range and cross range are no longer

relevant terms. It is expected that the resolution is limited by the bandwidth of the probing

pulse and by the uniformity of distribution of the sensors around the defect. Imaging with

travel time migration improves, in general, if a large number of sensors is used.

The three images obtained with the travel time migration algorithm in our numerical

simulations are shown in Fig. 4, when the structure is illuminated with the second row of

sensors, that is, when sensors #2, #6 and #10 are probing. The migration images obtained

with the other rows are very similar.

All images in the figures in this paper show the imaging function in a square of size 10λ

centered on the defect located at (12, 17), with a grid resolution of λ/4. This imaging square

is shown with dashed lines in Fig. 1. The second defect is in the upper left part of this image

domain.

Because the sensor data in our simulations has a lot of delay spread, travel time migration

does not work well. The three images in Fig. 4 differ a lot and depend sensitively on which

sensor is illuminating. It is not possible to rely on any particular illumination more than

another.

The difference traces have a lot of delay spread because of multiple scattering between

the defects and the reflectors that are in the background. In travel time migration the

background is assumed to be homogeneous and multiple reflexions between the defects are

neglected, which is the Born approximation.

We will next introduce an imaging method that uses knowledge of the background. It

gives more reliable results that are stable when different sensors illuminate.



Time reversal imaging for sensor networks 9

IV. TIME REVERSAL WITH OPTIMAL STOPPING

A. Physical time reversal

In physical time reversal sensor arrays focus energy on sources with resolution that im-

proves when there is multiple scattering15–19. The signal emitted by a source is received by

the sensor array, it is time reversed and then re-emitted into the medium. The waves prop-

agate back toward the source and focus around it. The refocusing location is not known

in this process but the time of refocusing is known if we know at what time the source

started to emit. Refocusing occurs both in space and time15. The spatial resolution of

the focusing is better when there is a lot of multiple scattering19,20 because the complex

medium effectively enhances the size of the sensor array, and the quality and stability of

the refocusing improves when the bandwidth of the pulse emitted by the source is large.

Physical time reversal provides therefore an efficient way to focus energy on a defect16 or for

communications17,21.

B. Numerical time reversal for imaging

Time reversal can also be used for imaging sources. In this case, the traces recorded at the

sensors are back propagated numerically in an idealized medium, since the actual medium

is not known in detail, in general. An image of the location of the sources is obtained by

taking a snapshot of the back propagated field at the refocusing time. This procedure can

be applied both with active sources and with passive scatterers. Indeed, back-propagation

of the recorded traces with travel times is the migration algorithm of the previous section.

In structural health monitoring it is reasonable to assume that we have some knowledge

of the healthy structure, up to some level of detail. We will assume here that the background

is known, meaning that the traces can be back propagated in the healthy structure shown

in Fig. 1.

For each illumination of the structure the difference traces recorded at each sensor are

time reversed and back propagated numerically in the medium. Let up(y, t) denote the field

at time t and point y that is back-propagated when the traces of the pth column of the



Time reversal imaging for sensor networks 10

response matrix P are used. Then up(y, t) is the solution of the partial differential equation




∂2up

∂t2
(y, t)− c2

0∆up(y, t) =
N∑

q=1

δ(y=xq)Ppq(T − t) in R2 r Ω,

up(y, t) = 0, on δΩ,

(3)

where Ω is the set of all reflectors in the healthy structure, as shown in Fig. 1, and δΩ denotes

their boundary. Here δ(y = xq) is the Dirac function at xq and (0, T ) is the recording time

interval. This equation is solved numerically with the finite element method discussed in

section II.

We want to obtain an image of the defects by taking a snapshot of the back propagated

field up(y, t) at the time it refocuses on them. The problem with this approach is that the

refocusing time is not known, as explained schematically in Fig. 5. This is a major difference

between active source imaging by time reversal and the echo mode imaging. In echo mode

the wave emitted by the probing sensor must first reach the defects before they can act as

a secondary sources. Since the location of the defects is not known, the time t∗ at which

they start emitting is not known. The back-propagated field will first focus on some defect

at time t∗. If we continue back propagating it will focus on the emitting sensor, which is

the actual source, at time 0, but we are obviously not interested in this. Therefore we must

consider ways to determine the refocusing time t∗.

We want to distinguish between back propagated fields that are spread out from those

that are more focused. A simple way to do this is to pick the time at which the amplitude

of the field is maximal because at that time the signals coming from all the sensors are

superposed constructively. This does not work because of the decrease in amplitude with

distance from the emitting source. It is not possible to compensate for this when the sensors

are distributed because the defect might be anywhere, near or far from any sensor. The

situation here is different from that encountered with arrays. If the defect is far enough

from the array then the sensor-to-defect distance is approximately the same for all sensors

and an amplitude correction could be considered.

For distributed sensors that are more or less uniformly distributed around the defects,

the back propagated field is coming toward them from every direction. It will focus locally

in time and it is spread around the defects both before and after the refocusing time. A

way to characterize focused images is to measure them with norms that are small in that

case and large otherwise. Norms that penalize images with a lot of fluctuations, a lot of
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speckles or many geometrical features, are called sparsity norms. They do not work so well

with back propagation from an array because the field is coming mostly from one direction.

It works well with distributed sensors as can be seen in Fig. 6.

We consider here two sparsity norms:

• The Shannon entropy, S(up(., t)), which is a measure of the information needed to

encode a pixelized image,

• The Bounded Variation norm, BV (up(., t)), which is an L1 sparsity norm that tends

to penalize images that have a lot fluctuations.

Let uij(t), i, j = 1 . . . Nd denote the space-discretized version of the continuous field

up(y, t) at time t on a square grid with spatial step h containing Nd points in each di-

rection. We denote by yij = y0 + ihex + jhey, i, j = 1 . . . N, the discretization points, where

y0 denotes the lower left corner of this square grid and (ex, ey) are the coordinate vectors.

We define uij(t) = up(yij, t), i, j = 1 . . . Nd. In the images shown in this paper, the square

grid contains 41 points in each direction and the space step is λ/4. We use a square grid for

simplicity.

1. Shannon entropy

Shannon’s definition22 of the entropy of a pixelized image uij is a measure of the sparsity

of the histogram of the gray levels of the image. For a given number of gray levels Nc we

introduce a linear gray level scale (ck), k = 0 . . . Nc, ranging from the minimum of uij to its

maximum. The histogram of gray levels of the image is defined by counting the number of

pixels contained in each gray level set:

hk =
∑
i,j

1{[ck,ck+1]}(uij), k = 0 . . . Nc − 1. (4)

Here 1A is the characteristic function of a set A. Clearly,
Nc∑
k=0

hk = N2
d and thus (hk/N

2
d ) is

the probability distribution of gray levels of the image for a given number Nc. The Shannon

entropy of the image is the Boltzmann entropy of that probability distribution, defined by:

S(uij) = −
Nc−1∑

k=0

(
hk

N2
d

)
log2

(
hk

N2
d

)
(5)
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In this paper the number of gray levels is Nc = 256. The results are not sensitive to Nc

unless it is very small, such as Nc = 2.

The entropy quantifies the amount of information needed to encode an image and is often

given in bits per pixel (bpp). It is used in image compression23 and for other applications

in image analysis24,25. It penalizes back propagated fields that have a lot of speckles. The

definition of entropy in Eq. (5) treats all points in the image independently. Therefore the

entropy of an image whose pixels have been shuffled around has exactly the same entropy

as the original.

2. BV norm

The bounded variation norm26 of a regular function u(x) defined in a domain Ω is given

by

BV (u) =

∫

Ω

(|u(x)|+ |∇u(x)|)dx. (6)

For a pixelized image uij defined on a grid with spatial step h the BV norm is given by

BV (uij) = h2
∑
i,j

(|ũij|+ |∇hũij|) , (7)

where |∇hũij| is a finite difference approximation of the gradient of ũij. We let ũij =

uij/ max
i,j

(|uij|) be the normalized version of the image uij. As already noted above, the

amplitude of the field at the time of refocusing depends on the distance between the defect

and the sensors. So it is necessary to normalize the image before taking its BV norm so as

to avoid dependence on field amplitudes. Note that this normalization is intrinsically made

with entropy since S(uij) = S(αuij) for all α > 0. The BV norm penalizes images that

have a lot of oscillations, because it has the gradient in it. It also penalizes images that are

spread out diffusely, and the L1 norm plays an important role in this. The BV norm is used

widely in image denoising because it preserves sharp features27,28.

3. Time reversal imaging with optimal stopping

The imaging algorithm we use is the following:

1. For the pth column of the response matrix P , compute numerically the wave field

up(y, t) defined by Eq. (3).
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2. Compute the sparsity norm (Shannon entropy or BV norm) of the field uij(t) =

up(yij, t) in the imaging domain (yij) as a function of time.

3. Pick the time at which it is minimal, denote it t∗.

4. Plot the image uij(t
∗).

4. Results of numerical simulations

The entropy and BV norm versus time are plotted in Fig. 6 for the three illuminations

from the second row of sensors (sensors #2, #6 and #10). The back propagated wave fields

are also shown at the optimal time. These three illuminations are typical and the results

obtained with the other rows of sensors are similar. The time plots are shown in a time

window that is zoomed near the focusing events. The results are good because they give

rather clean images of the defects. There are few speckles, the focusing spot is smooth, the

defects are at the right locations, and there are no ghosts. The two norms, Shannon entropy

and BV, give comparable results. They both pick a stopping time close to the refocusing

time on one of the 2 defects. The optimal stopping times picked by the two norms differ by

at most one or two time steps.

However, since only one refocusing time is picked with this technique, one cannot get an

image for each defect at the same time. This method images the strongest defect as it is

perceived by the sensors for a given illumination of the structure. For example, the method

picks the defect located at (9, 18) when sensor #2 is illuminating, and there is only one

minimum, which means that only one defect is detectable. This may be explained roughly

by noting that the defect (9, 18) and the sensor #2 are located on the same side of the line

of rivets. On the other hand, The strength of the defects is roughly the same when they

are illuminated with sensors #6 or #10. There are 2 clear minima that have almost the

same value, both with the entropy and the BV norm. The minima are focusing times on

each of the two defects. Therefore it is not possible to select one minimum rather than the

other. This is an illumination issue that is best dealt with the Singular Value Decomposition

(SVD) that allows for selective imaging of each defect. It is discussed in the next section.
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C. Separation of the defects by Singular Value Decomposition

1. SVD of the Response Matrix in the frequency domain

The relation between the singular vectors of the the response matrix P (t) and the scat-

terers has been analyzed extensively29–31. Each localized defect can be associated with a

singular vector of the response matrix, except for a few degenerate cases. It is called the

DORT method, which is the French acronym for ”Decomposition of the Time Reversal Op-

erator”. The SVD is a way of finding the optimal illumination of a defect32,33, that is, the

one that generates the strongest received signals at the sensors. Selective time reversal fo-

cusing using the SVD of the response matrix has been successfully used theoretically and

experimentally29–31, as well as for imaging in random media34,35.

One rather direct application of the SVD of the response matrix is estimating the number

of localized defects15. The number of non-zero, leading singular values is an estimate of the

number of localized defects. This is seen very well in our numerical simulations. The first

three singular values versus frequency are shown in Fig. 7. There are clearly 2 distinct leading

eigenvalues at each frequency inside the bandwidth of the probing pulse, which correspond

to the two point-like defects. These two singular values are very well separated over the

frequency band. This could not have been anticipated since the defects are identical. The

curves of singular values versus frequency will, in general, cross each other.

Localized defects are said to be well resolved (or well separated) if the illuminating vectors

associated with them are orthogonal. The elements of the illuminating vectors are the

Green’s functions from the sensors to the defects35. These vectors are also right singular

vectors in this case. Of course a larger number of sensors helps in resolving defects so

illuminating vectors are more likely to be orthogonal in that case. We consider imaging with

time reversal and the SVD in the next section.

2. Imaging the defects using the traces projected on each singular vector

We can say that, in principle, the Singular Value Decomposition transforms an echo

mode problem into an active source problem. This is because at least for well separated

defects the singular vectors are also illuminating vectors to the unknown defect locations.

However, because they carry an arbitrary, frequency-dependent phase, the singular vectors
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look incoherent in the time domain. In order to get rid of this arbitrary phase, we first

project the response matrix on the space spanned by each singular vector. We now image

the defects with the response matrix Pk(t), k = 1 . . .M, obtained by projection of the full

response matrix onto each leading singular vector35. The pth column of the Fourier transform

of Pk(t) is given by

P̂
(p)
k (ω) =

(
ÛH

k (ω) P̂ (p)(ω)
)
Ûk(ω), p = 1, . . . N. (8)

Here P̂ (p)(ω) denotes the pth column of Fourier transform of the full response matrix P̂ (ω).

Because of the orthogonality of the singular vectors, this projection removes the reflections

coming from the other defects. We can think of Pk(t) as the response matrix of the dis-

tributed sensors when only the kth localized defect is present.

Since the phases of the projected response matrices are preserved, any algorithm that can

be used for processing the original response matrix P (t) can also be used with the projected

matrices, without any change. For example, this can be done with travel time migration or

with time reversal imaging and optimal stopping. By analogy with the columns of P (t), we

refer to the columns of Pk(t) as responses from illumination by the sensor labeled with the

column index.

Time reversal images obtained by optimal stopping using the traces projected on the first

and second singular vectors are shown in Fig. 8 and Fig. 9, respectively. As before, only

results obtained with the illuminations corresponding to the second row of sensors (#2, #6

and #10) are shown, for they are typical. The BV norm and entropy versus time are plotted

above each image.

First, it clear that all the images obtained with the first singular vector focus on the

defect at (9, 18) and all those obtained with the second singular vector focus on the other

defect. This illustrates well the stability of this algorithm. For the images obtained with data

projected on the first singular vector there is now only one minimum for all 12 illuminations.

So the ambiguity that was noted in the previous section has disappeared. This remark holds

also for images obtained with the data projected on the second singular vector. Moreover,

in this case the illumination of the defect at (12, 17) from sensor #2 is now possible. This

is an illustration of the ability of the Singular Value Decomposition to provide an optimal

illumination that will focus selectively on one particular localized defect.
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D. Cumulative images

All the algorithms presented above give an image for each illumination of the medium.

The images can be enhanced by averaging over all illuminations. More precisely, if Ip(y
S) de-

notes the image with the pth column of the response matrix with either travel time migration,

time reversal imaging with entropy stopping or time reversal imaging with BV stopping, we

form the following cumulative image:

I(yS) =
1

N

N∑
p=1

Ip(y
S)

max
yS

|Ip(yS)| (9)

Note that forming the mean value is one possibility among many.

We have computed cumulative images obtained with the traces of the original response

matrix as well as with the traces projected on the first and second singular vectors. Results

are shown in Fig. 10. Note that the averages shown are computed with all illuminations and

not only the three illuminations that were shown previously. As expected, these images have

fewer speckles. They show that even with averaging, the travel time migration algorithm

does not perform well. Projection on the singular vectors does not improve the performance

of this algorithm.

The time reversal algorithm takes advantage of the multiple scattering and of knowledge

of the Green’s function of the healthy structure so it works well with both entropy stopping

and BV stopping. When used with the original traces the defects are imaged as if they have

different strength, depending on how they are perceived by the distributed sensors. The

projection onto the singular vectors of the response matrix improves the resolution of the

defects.

V. IMAGING OF AN EXTENDED DEFECT

a. Formulation of the problem We consider now the imaging of a spatially extended

defect, rather than two point-like defects. The defect has the shape of a cross as shown in

Fig. 11. Each of the four sides of the cross is of size λ times λ/2, so that its overall size

is 2.5λ. Its shape is not convex, which makes it more difficult to image. Its size has been

chosen to be larger that the resolution limit so that it may be possible to image its different

features. As in the previous computations, the defect is modeled as a perfect reflector using
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Dirichlet boundary conditions. The healthy structure is the one shown in Fig. 1. Both the

response matrix of the healthy and of the damaged structure are computed. We want to

image the shape of the defect using the difference traces.

b. Travel time migration The results obtained using travel time migration are shown

in Fig. 13 for three different illuminations of the medium (the second row of sensors, #2,

#6 and #10). As in the case of two point-like defects, the results are very unstable with

respect to the illumination. This is due to the multiple scattering between the defects and

the scatterers that are present in the healthy structure, which is not taken into account in

travel time migration.

c. Singular Value Decomposition In the case of an extended defect the number of

leading singular values is not related to it in a simple manner36–38. The 12 singular values

of the response matrix are plotted as functions of frequency in Fig. 12.

d. Time-Reversal algorithm The images obtained with the time reversal algorithm

described in section IV for three different illuminations of the structure (#2, #6 and #10)

are shown in Fig. 14. For simplicity, only the results obtained using the BV norm are shown.

The images we get using the entropy stopping are similar. Even for an extended defect, this

algorithm gives an image of one part of the object, the one that has the strongest reflection,

depending on the illumination. However, it gives an image of the back propagated field at

only one time. Therefore we cannot expect to get an image of the defect with only one

illumination because the back propagated field does not surround it at one particular time.

If the illumination is coming from the left of the defect, then the image tends show the left

tip of the cross, as can be seen in the left image in Fig. 14. If the illumination is coming

from the right, then the right tip of the cross can be seen in the right image in Fig. 14.

A rough overall image of the damage can be obtained by summing over the images

with different illumination, as in Eq. (9). The cumulative images obtained for the three

algorithms (travel time migration, time reversal with entropy stop and time reversal with

BV stop) are shown at the top of Fig. 15. The image obtained by simple summation over

each illumination shows only the strongest edge of the cross. The other parts of the cross

do not appear because they cancel out along with the speckles. We can get around this

problem if we first threshold the image obtained for each illumination and then sum over
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the illuminations. More precisely we compute:

Ĩp(y
S) =





Ip(y
S), if |Ip(y

S)| ≥ α max
yS

|Ip(y
S)|

0, otherwise

(10)

where α ∈ [0, 1] is a thresholding parameter. We then form

Ĩ(yS) =
1

N

N∑
p=1

Ĩp(y
S).

The images obtained by thresholding (with α = 0.6) and summation are shown at the

bottom of Fig. 15. The image obtained with travel time migration is definitely better than

the images obtained for single illuminations. One can even guess the shape of right side of

the cross. However there are still speckles and the size of the defect is overestimated. The

images obtained with the time reversal algorithm are more stable and have fewer speckles.

Even if they do not provide a clear contour of the defect, some important features can be

seen and its size is rather well estimated.

VI. SUMMARY AND CONCLUSIONS

Imaging with distributed sensors is different from imaging with arrays mainly because we

need to know the response matrix of the healthy structure in order to remove direct arrivals

and other strong scattering from the background. There are many important issues that

need to be addressed in order to deal effectively with noise in the data and with small scale

inhomogeneities in the structure, which are not considered here.

We have presented here a detailed numerical study of several algorithms for distributed

sensor imaging in the context of structural health monitoring. When the propagation char-

acteristics of the healthy structure are known, as we assume, then time reversal imaging

with optimal stopping, introduced here, gives good images of localized defects. When we

also use the singular value decomposition, then the time reversal images improve. Time

reversal imaging with distributed sensors also gives rough but stable images for extended

defects.
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Figure captions

Fig. 1: Description of the structure. It is a plate of size 50λ by 50λ on which are placed a

fixed object of size 3λ and 25 smaller objects of size λ/2. λ = 1 cm is the central wavelength

of the probing pulse used by the sensors. All dimensions are given in units of λ. The wave

speed is taken to be c0 = 5000m.s−1. For numerical simulations the domain is surrounded

by Perfectly Matched Layers (PML) in order to simulate propagation in the free space. We

want to image two point-like defects shown by the red dots. All images in this paper show

the imaging function in a square of size 10λ centered on the defect located at (12, 17), with

a grid resolution of λ/4. This imaging square is shown with dashed lines.

Fig. 2: Traces recorded at all 12 sensors when sensor # 6 is firing. ¿From left to right:

Traces in the healthy structure, in the damaged structure and difference between them. All

signals shown here are normalized so that their maximum is 1. X-axis: time, Y-axis: number

of sensor.

Fig. 3: The probing pulse used by the sensors in the time domain (left) and its Fourier

transfom (right). It is a second derivative of a Gaussian whose central frequency is 500kHz.

Fig. 4: Travel time or Kirchhoff Migration images in a square domain of size 10λ centered

at (12, 17). Each figure corresponds to a different illumination of the structure. ¿From left

to right, illumination with sensor # 2, # 6 and # 10.

Fig. 5: Schematic of echo-mode Time Reversal explaining why the refocusing time is not

known.

Fig. 6: Top 2 rows: Entropy versus time of the back propagated field in a square domain

of size 10λ centered at (12, 17) and snapshot of the back propagated field at the time where

entropy is minimum. Each figure corresponds to a different illumination of the structure.

¿From left to right, illumination with sensor # 2, # 6 and # 10. Bottom 2 rows: Same

results with BV norm.

Fig. 7: The first three singular values of the response matrix P̂ (ω) versus frequency.

There are clearly two distincts leading singular values at each frequency in the frequency

band, which correspond to the two point-like defects.
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Fig. 8: Same as Fig. 6 but with back propagating traces projected on the first singular

vector.

Fig. 9: Same as Fig. 6, but with back propagating traces projected on the second singular

vector.

Fig. 10: Cumulative images obtained by summation over each illumination as in Eq. (9).

Left: With full traces, Middle: With traces projected on the first singular vector, Right:

With traces projected on the second singular vector.

Fig. 11: Schematic of the extended defect. Zoom in the square of size 10λ centered at

the point (12, 17). The defect is a cross whose 4 sides are of size λ times λ/2, so that its

overal size is 2.5λ.

Fig. 12: The twelvesingular values of the response matrix P̂ (ω) versus frequency when

the defect is the cross depicted in Fig. 11 The number of singular values of the response

matrix is not related in a simple manner to the defect in the structure.

Fig. 13: Travel time or Kirchhoff Migration in a square domain of size 10λ centered at

(12, 17) when the damage is the cross depicted in Fig. 11. Each figure corresponds to a

different illumination of the structure. ¿From left to right, illumination with sensor # 2, #

6 and # 10.

Fig. 14: BV norm versus time of the back propagated field in a square domain of size

10λ centered at (12, 17) and snapshot of the back propagated field at time where BV norm

is minimum. The damage is the cross presented on Fig. 11 . Each figure corresponds to a

different illumination of the structure. ¿From left to right, illumination with sensor # 2, #

6 and # 10.

Fig. 15: Imaging of a the cross shaped defect depicted in Fig. 11. Left: Kirchhoff-

Migration, Middle: Time-reversal imaging with entropy stopping, Right: Time-reversal

imaging with BV stopping, Top: Cumulative images obtained by summation over each

illumination as in Eq. (9). Bottom: Cumulative images after thresholding as discussed in

Eq. (10).
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FIG. 1: Description of the structure. It is a plate of size 50λ by 50λ on which are placed a fixed

object of size 3λ and 25 smaller objects of size λ/2. λ = 1 cm is the central wavelength of the

probing pulse used by the sensors. All dimensions are given in units of λ. The wave speed is taken

to be c0 = 5000m.s−1. For numerical simulations the domain is surrounded by Perfectly Matched

Layers (PML) in order to simulate propagation in the free space. We want to image two point-like

defects shown by the red dots. All images in this paper show the imaging function in a square of

size 10λ centered on the defect located at (12, 17), with a grid resolution of λ/4. This imaging

square is shown with dashed lines.
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FIG. 2: Traces recorded at all 12 sensors when sensor # 6 is firing. ¿From left to right: Traces in

the healthy structure, in the damaged structure and difference between them. All signals shown

here are normalized so that their maximum is 1. X-axis: time, Y-axis: number of sensor.
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FIG. 3: The probing pulse used by the sensors in the time domain (left) and its Fourier transfom

(right). It is a second derivative of a Gaussian whose central frequency is 500kHz.
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FIG. 4: Travel time or Kirchhoff Migration images in a square domain of size 10λ centered at

(12, 17). Each figure corresponds to a different illumination of the structure. ¿From left to right,

illumination with sensor # 2, # 6 and # 10.
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FIG. 5: Schematic of echo-mode Time Reversal explaining why the refocusing time is not known.
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Time Reversal Imaging with entropy stopping
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FIG. 6: Top 2 rows: Entropy versus time of the back propagated field in a square domain of size

10λ centered at (12, 17) and snapshot of the back propagated field at the time where entropy is

minimum. Each figure corresponds to a different illumination of the structure. ¿From left to right,

illumination with sensor # 2, # 6 and # 10. Bottom 2 rows: Same results with BV norm.
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FIG. 7: The first three singular values of the response matrix P̂ (ω) versus frequency. There

are clearly two distincts leading singular values at each frequency in the frequency band, which

correspond to the two point-like defects.
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Time Reversal Imaging with entropy stopping
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FIG. 8: Same as Fig. 6 but with back propagating traces projected on the first singular vector.
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Time Reversal Imaging with entropy stopping
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FIG. 9: Same as Fig. 6, but with back propagating traces projected on the second singular vector.
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Cumulative Kirchhoff-Migration

Cumulative Time Reversal Imaging with entropy stopping

Cumulative Time Reversal Imaging with BV stopping

FIG. 10: Cumulative images obtained by summation over each illumination as in Eq. (9). Left:

With full traces, Middle: With traces projected on the first singular vector, Right: With traces

projected on the second singular vector.
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FIG. 11: Schematic of the extended defect. Zoom in the square of size 10λ centered at the point

(12, 17). The defect is a cross whose 4 sides are of size λ times λ/2, so that its overal size is 2.5λ.
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FIG. 12: The twelvesingular values of the response matrix P̂ (ω) versus frequency when the defect

is the cross depicted in Fig. 11 The number of singular values of the response matrix is not related

in a simple manner to the defect in the structure.
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FIG. 13: Travel time or Kirchhoff Migration in a square domain of size 10λ centered at (12, 17)

when the damage is the cross depicted in Fig. 11. Each figure corresponds to a different illumination

of the structure. ¿From left to right, illumination with sensor # 2, # 6 and # 10.
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FIG. 14: BV norm versus time of the back propagated field in a square domain of size 10λ centered

at (12, 17) and snapshot of the back propagated field at time where BV norm is minimum. The

damage is the cross presented on Fig. 11 . Each figure corresponds to a different illumination of

the structure. ¿From left to right, illumination with sensor # 2, # 6 and # 10.
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Cumulative images

Cumulative images after thresholding

FIG. 15: Imaging of a the cross shaped defect depicted in Fig. 11. Left: Kirchhoff-Migration,

Middle: Time-reversal imaging with entropy stopping, Right: Time-reversal imaging with BV

stopping, Top: Cumulative images obtained by summation over each illumination as in Eq. (9).

Bottom: Cumulative images after thresholding as discussed in Eq. (10).


