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An algebraic method is discussed for solving diophantine equations of Thue type 
associated with totally real normal extensions of degree 4 over the rationals. Use is 
made of a p-adic argument due to Skolem. The method is illustrated by a detailed 
description of the solution of the Thue equation 

x4 - 4x2y2 + y4 = - 47. 

Some of the tricks used in the process of solving this equation may be applied more 
widely. These aspects are discussed at length. 0 1988 Academic Press, Inc. 

I. INTRoOUCTI~N 

1. The main body of this paper is devoted to a description of an 
algebraic method for solving diophantine equations of Thue type, 
associated with certain totally real quartic fields. In order to clarify our 
argumentation we have singled out a specific equation, namely 

x4 - 4x*y* + y4 = -47, (1.1) 

which we solve completely in Section II. More about the reasons for choos- 
ing this particular equation is revealed in Section 4 of this Introduction. 

* A considerable part of the present paper was prepared when the second named author 
held a visiting positioa at the Econometric Institute of Erasmus University Rotterdam. He 
gratefully acknowledges the financial support granted to him by this host institution. 
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THUE EQUATIONS 167 

Although we deal principally with Eq. (1.1 ), we believe the crucial parts 
of our argumentation to be valid in more generality. We feel that a detailed 
exposition of a special case like (1.1 ), with a clear indication of approaches 
that are applicable in a broader sense, could be very useful for gaining a 
deeper understanding of our method and of the underlying difficulties in 
general. In Section IV a step by step description is given of the method 
used to solve (1.1 ), accompanied by a discussion as to how this method 
may be adapted to solve other equations of similar type. At the end of our 
exposition some ideas and arguments are discussed that are of a more 
general nature, in the sense that they can also be applied to different 
diophantine problems. 

Anticipating the brief overview of the main ideas of our method which is 
given in the final section of this introduction, we could mention that we 
shall work in a quadratic extension of the totally real quartic field 
associated with the relevant quartic equation in order to obtain a suitable 
system of exponential equations to which Skolem’s p-adic method may be 
applied. 

2. Thue equations can be characterized as follows. Let f be an 
irreducible form in Z[x, y] of degree at least 3. By a celebrated theorem of 
Thue [28], we know that the diophantine equation (a so-called Thue 
equation) 

f(x, Y) = c (1.2) 

for any constant c, has at most a finite number of solutions in rational 
integers x and y. Unfortunately, the proof of Thue’s theorem is ineffective. 
This means that for any given equation of type (1.2), Thue’s proof does not 
shed any light on its solvability, neither does it provide an effective method 
for finding the solution values if such exist. 

Moreover, Matiyasevich showed in 1970 [lg] that there is no general 
purpose algorithm by which every diophantine equation can be solved. 

As a result, in the past decades, many individual equations have been 
dealt with and quite a few successful methods and techniques have been 
developed to attack such diophantine problems. Most of these methods are 
elementary or have a distinct algebraic flavor. They nearly always depend 
on congruence considerations and artful factorization in suitable algebraic 
number fields. 

Another group of methods derives from Baker’s method on linear forms 
in the logarithms of algebraic numbers [ 11. In [lo] it is shown how this 
method can be used to solve diophantine equations. In contrast to the 
algebraic case, so far rather few Thue equations have been completely 
solved by analytic methods, in the sense that, as a result, all solutions can 
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be explicitly listed. In most cases only extremely large upper bounds for the 
size of the solutions are provided. Examples of equations or systems of 
equations that have been solved by Baker’s method can be found in 
[2,4, 11,251, and the very recent papers [S, 19,321. 

3. At the present time, it appears that for every cubic Thue equation 
the p-adic method of Skolem can be successfully applied; and although no 
proof guarantees its effectiveness, in all specific equations to which it has 
been applied it worked successfully. For a description of the p-adic method 
in general, we refer to [6, 13, 15, 17,22,23, 303. In case the cubic form f 
has negative discriminant, one can apply Skolem’s technique directly, 
because, in this case, there is only one fundamental unit in the field 
generated by a root of f(x, 1) = 0 (it should be mentioned that the com- 
putations needed in a search for such a unit are sometimes far from trivial), 
but iffis totally real this is impossible. However, in case of the latter, it has 
been shown by Ljunggren [16] and also by Tzanakis [29] that solving 
Eq. (1.2) is equivalent to solving a finite number of quartic Thue equations 

Ax, Y) = 4 (1.3) 

where each of the forms g involved has negative discriminant; for such 
quartic Thue equations the p-adic method of Skolem stands a fair chance 
of working successfully. 

One of the most notorious equations of this type 

x3-3x+y3=1, (1.4) 

was solved in the way described by Tzanakis [29]. The first to solve this 
equation was Ljunggren. In [14] he used an ingenious trick, working in a 
quadratic extension of the field associated with the cubic form of (1.4). 

As the cubic case has been settled, next in line is the quartic equation. 
We have mentioned above that Skolem’s method can be applied, provided 
the associated quartic form f has negative discriminant. However, in case f 
is totally real, this method cannot be applied, at least not directly, because 
there is one unknown exponent more than there are independent equations 
relating these unknowns. 

4. It appears that for Thue equations associated with a totally real 
quartic field, there is no known algebraic approach as promising in general 
as the method mentioned above for dealing with cubic equations and 
quartic equations associated with a form of negative discriminant. 

To illustrate an approach that might fill this gap in certain cases, we 
prefer to select a quartic Thue equation that has not been solved previously 
by any known method. The form associated with Eq. (1.1) seems a natural 
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choice: it has the required properties and it is simple in appearance. This 
equation is a special case of 

x4 - 4x2$ + y4 = c, (1.5) 

where c is a non-zero constant. Some motivation as to the reason for 
considering equations of this type at all is given in [27]. It is easy to prove 
by elementary means that the only c-values in the range - 100, . . . . 100 for 
which Eq. (1.5) admits solutions are c = -47, - 2, 1,46, and 81. 

All but the case c = -47 can be solved by reduction to an equation, the 
solutions of which are known (c = - 2, see [27]) or by applying Skolem’s 
p-adic method in the usual way (c = 1,46 and 81, see [30]). There is 
nothing more special about Eq. (1.1) than the mere fact that all existing 
factorization and generally algebraic methods seem to fail in this particular 
case. To the best of our knowledge, a case involving a totally real binary 
quartic has never been successfully attempted by. algebraic methods; at 
least such an approach has not appeared in print. Only recently we 
received two preprints [S, 191 in which certain Thue equations associated 
with totally real quartic fields are solved by Baker’s transcendental method. 
Apparently, the calculations involved are quite costly in the sense that they 
take up a great deal of computer time. 

5. In Section II Eq. ( 1.1) will be completely solved. By means of a 
trick, which can be seen as the quartic equivalent of the one employed by 
Ljunggren in [14]-in our case we work in a number field of absolute 
degree 8-we shall reduce (1.1) to a p-adic system to which Skolem’s 
method can be applied successfully with prime p = 71. 

We shall show that the only solutions of (1.1) in rational integers x and 
y are given by (x,y)=(+2, f3) and (-13, +2). 

Although Section II deals with a single equation, our attention is focused 
on the method rather than on this particular equation, The two most 
important ingredients of our method, which also may be used profitably in 
different settings, are the manipulation of units and the application of 
Skolem’s p-adic method. In Section IV these matters are discussed in great 
detail. Also, leaving Eq. (1.1) for what it is, a more general discription of 
the method is given as applied to quartic Thue equations associated with 
totally real normal extensions of Q. 

Finally, the proofs of a number of technical lemmas that are needed in 
Section II are deferred to Section III, so as to avoid unnecessary interrup- 
tions of the line of reasoning. Because units play such a decisive role in our 
exposition, the lemmas on the properties of units are stated and proved 
there where they are needed. 
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II, SOLUTION 0F x4 - 4x5’ + y4 = -47 

1. In this section we set the scene for the actual solving of Eq. (1.1). 
Ultimately (the proof is clinched in the final section) we shall prove the 

THEOREM 1. The title equation (1.1) has no other solutions than those 
given by the eight pairs (x, y) = ( + 2, + 3), ( f 3, f 2). 

We start to work in the field K =Q(p), where p is defined by 
p4-4$+1=0. Cl early, H is a totally real field and the conjugates of p 
are -p, p-l, and -p-l. 

Equation ( 1.1) is equivalent to 

Norm,,,(x + yp) = -47. (2.1) 

From the definition of p it follows easily that 47p2 = (3 - 2p)(3 + 2~) 
(2 - 3p)(2 + 3~) and since p is a unit, the ideal (47) splits into four different 
prime ideals, namely the ideals 

(3 -2~)~ (3 + 2p), (2 -3~)~ and (2 + 3~). 

Consequently, (2.1) implies that 

(x+YP)=:P 

(2.2) 

(2.3) 

is one of the prime ideals mentioned in (2.2). We assert that we may take 
p = (2 + 3p), without any loss of generality. Indeed, if (x + yp) = (2 - 3~) 
then, in view of the automorphism characterized by p t-, -p, we have also 
the ideal relation (x - yp) = (2 + 3p), which is obtained by simply replacing 
y by - y. Moreover, if (x + vp) = (3 + 2p), then, analogously, we obtain 
the relation (x+ yp-i) = (3 +2p-‘) and since p is a unit, this gives 
(y + xp) = (2 + 3~). Clearly this can be effected by interchanging x and y in 
(1.1). Similarly, if (x + vp) = (3 - 2p), we replace - y by x and x by y to 
obtain (x + vp) = (2 + 3~). Thus, in view of (2.3) and the above, we get 

x+yp=~(2+3p), (2.4) 

where E is a unit of K. In IM we have three fundamental units. From the 
tables of Pohst and Zassenhaus [ZO], we find a triad of fundamental units 
in K: 

El=P, Ed= -2-3p+p2+p3, E3=3+4p-pZ-p3 

with 

NormK,o(si) = + 1 (i’l, 2, 3). 
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As a consequence, (2.4) implies a relation 

x+yp= *E(p), 

where E(p) := E~~E;*(E,E~)“~ (2 + 3~) and a,, u2, a3 E Z. The minus sign in 
the relation above may be ignored on replacing (x, y) by (-x, - y), if 
necessary. Then, considering all the conjugate relations, eliminating y, we 
get E(p) + E( -p) = E(p-‘) + E( -p-i), which can also be written as 

A,AzA,(2+3~)=A1(-2+3p)+A~(3+2p)+~~(-3+2~), (2.5) 

where 

and 

A, :=E~l+I(-l)~l+~3, A, :=&p( - l)Q+u3, 

A, := (&*&#y -l)01+a2. 

Note that the A;s are units of K. Analogously, eliminating x gives 
E(p)-E(-p)=p*(E(p-‘)-E(-p-‘)), or 

A,A,A,(2+3p)=A,(2-3p)+A2p2(3+2p)+A,p2(3-2~). (2.6) 

Eliminating the product A,A2Aj by subtracting (2.5) from (2.6) leads to 

2(3p-2)$+(2p-3)(p2+1)$=(2p+3)(p2-1). 
2 2 

Since a, -a, - u3 (mod 2) (cf. Lemma 5 of Section III) and p* + 1 = & p, 
this relation can be written as 

ax*+py*=a+j, (2.7) 

where cc:=(3p--2)& /?:=(2p-3),/?, so that a+/?=2p+3 and 

xc ETfE2-a2 > Y= (E1&3)a3 EFa2. 

From the definitions of a and /!? it follows that 

-aB=13p2-36p+13=(1+p2)(13-6&)=(1+p)*(75-31&) 

= (1 + p)’ ?$ = e*, 

where, by definition 

~=JiCTQeilw and O=q(l +p). 
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Now (2.7) may be rewritten as 

(ax)* - (Or)* = a(a + /3). (2.8) 

We define L=Q(q), Ml =Q(0) and we note that M =Q(p, q) (see 
Lemma 6 of Section III) is an octic extension of Q. Ideal factorization in 
the field Ml gives 

(2P + 3) = wl’, 

with q := (2~ + 3,28 + 3) and q’ := (2~ + 3,20 - 3), and 

(3p - 2) = a*, 

with a := (3~ - 2, q). Hence, under the conjugation map characterized by 
8 H - 0, the ideal q is mapped to q’ and a is mapped to itself. 

Now (2.8) may be written in ideal form as 

( Lx-FjY a 
l+p )( 

-X+rjY =qq’d 
l+p ) 

Note that $=p-‘(pt l)(p- l), so that a/(1 +p)=p-l(p-1)(3p-2) is 
integral. Consequently, 

( a 
-X++Y 
l+p ) 

=qa or q’a. 

Choose the sign of Y such that the former possibility is 
other hand, since X= Y = 1 gives a solution, while q’ 
a/(1 +p)+q, it follows that (a/(1 +p)+q)=qa. Hence 

and thus 

aX+ ey= c(a + e), 

where c is a unit of M and, in fact, it is a unit of the order 

0 := al, p, P2, P3, v, VP, VP*, ?P31. 

adopted. On the 
does not divide 

(2.9) 

We have also the conjugate relation, which corresponds to the 
automorphism characterized by et-+ -8, 

ax- ey= (‘(a - e), (2.10) 
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where cc’ = 1, as can be seen from (2.8) and the relation a* - f3* = ar(a + /3). 
But cc’= 1 is equivalent to 

Normcv,,(O = 1, 

so that c E@~, where +&, is the subgroup of the unit group % of M, 
consisting of those units of 0 with norm relative to I6 equal to + 1. By 
Lemma 7 of Section III, the group a0 has two generators of infinite order 
I, and A2, say, and - 1 is its only generator of finite order. Thus we can 
write 

[ = *nyq, with b,, b, E Z. (2.11) 

On adding (2.9) and (2.10) we obtain the following expressions for X 
and Y: 

x= i(a + 0) + i’(a - 0) 
2c( ’ 

y= i(a 
+ 

4 
- 

(‘(a 
- 

0) 
28 

. 
(2.12 ) 

Since by their initial definition, X and Y are units of I-6, we have 

Norm.,,(X) = 1 = Norm,,,( Y). (2.13 1 

As the quantities X and Y depend on [ and [’ only, the norm functions 
in (2.13) can be considered as polynomial functions with coefficients in Ml, 
of the eight conjugates cCi) (i= 1, . . . . 8) of [. To be more precise, 

Norm,,,(X) = 1 is equivalent to G,([(‘), . . . . CC*)) = - 188 

and 

Norm,,,( Y) = 1 is equivalent to G,(c”), . . . . cC8’) = -2, 

where Gj6 Ml[r,, . . . . t,], j= 1, 2, and Gi([(‘), . . . . CC*‘), i= 1, 2, are the 
norms of aX and (1 + p)Y, respectively (we have taken into account 
that Norm,,,(a) = -4.47 = - 188 and Norm.& 1 + p) = -2; see also 
immediately after (2.29)). For the sake of convenience, we write 

G(i) := (G,([“‘, . . . . (@‘), G,(((‘), . . . . (@‘)) 

so that G(c) represents a pair of rational integers for every unit [E 0. 
We say that [ is an acceptable unit if it satisfies G(r) = ( - 188, -2). Also, 

for any rational prime p, we say that [ is an acceptable unit modulo p if it 
satisfies G(c) E (- 188, -2) (mod p). 

We conclude this section with pointing out that our original task of 
finding all solutions of (1.1) has been reduced to determining all acceptable 
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units [E +&. We intend to show that + 1 and - 1 are the only such units. 
As is easily traced back through the previous arguments, this means that 
the eight pairs (x, y) = ( + 2, + 3) and ( + 3, f 2) give the only solutions of 
(1.1). 

2. In order to find the explicit p-adic system in the unknown 
exponents b, and b2 to which (2.13) leads, we first have to know the 
generators 1, and A2 of the group @,. In general, it is not very difficult to 
find a pair of independent units [21,24]. However, to prove or disprove 
that a given set of independent units, having the right cardinality, 
constitutes a fundamental set, is far from easy. 

Having little hope of finding a fundamental set {A,, A,} in a reasonable 
amount of time and with adequate effort, we tried instead to find a pair of 
merely independent units cl, c2 that “behaves p-adically as a pair of 
fundamental units.” What we mean by this will be explained in the 
following proposition (see also Section 5 of [9], Section 4 of [26], and 
Section 7.2 of [7]). 

PROPOSITION 1. Let 1,) & be an unknown pair of fundamental units for 
the unit group a,, and let cl, c2 be a known pair of independent units of 4!&,. 
Put 

cl= &A;l’@,[,= +qn; with m,, m,, n,, n,EZ (2.14) 

and 

(obviously, D # 0). 

Let p be an odd prime and let et, denote the least positive integer such that 
a’r s 1 (mod p) for every a E 0, relatively prime to p. Also denote by q = q(p) 
the least positive integer such that 

[f - 1 (mod p), for i=l,2. (2.15) 

Further, assume that 

(1) (D, pep)= 1, (2.16) 

(2) tf [ = 1ilnp is acceptable then b, = b2 = 0 (mod q), (2.17) 

(3) the only unit CC@, that can be expressed in the form 
r = W” GK where M and N are p-adic integers, is 
[= 1. (2.18) 

Then the only acceptable units of CT&, are + 1. 
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Pro@ We show first that 

A: = 1 (mod p), for i= 1, 2. (2.19) 

By (2.14) and the fact that D does not vanish, there exist rational integers 
xii for i, j = 1,2, such that JD = c~’ [;‘2, for i= 1,2, and thus, on taking qth 
powers, we get 

lrD = 1 (mod p), for i= 1, 2. (2.20) 

Next, in view of (2.16), there exist two rational integers r and s such that 
rD + sep = 1. Then (2.20) implies that Ai d1 -se~)z 1 (mod p) for i= 1, 2. In 
view of the definition of ep, (2.19) now follows. 

Let c E a,, be an acceptable unit and write [ = + nfl@ with b,, b, E Z. 
Since -[ is also acceptable, we may ignore the minus sign and it remains 
to prove that c=nilAp equals 1. By (2.17) we may write b,=qB, with 
Bier! (i= 1, 2) and in view of (2.14) 

CD = {(n;)& (~932)” = rf: (j~)(nzB1-n1B2)(i~)(-m~B1+m1B2), (2.21) 

while by (2.15), (2.19), and p # 2 we see that the plus sign holds. This 
relation (2.21) can be viewed as a relation in the p-adic field, where the 
right-hand side as well as the bracketed quantity { ..} are p-adic binomial 
power series. Also note that (nzB, -n, B,)/D and (-m, B, + m, 8*)/D are 
p-adic integers, in view of (2.16). Therefore, 

c = (~~)‘“‘B’-nlB2)/D(~~)(~m2Bl +mlB2w, 

and by (2.18) we conclude that [ = 1. 1 

In the following two sections we intend to prove that the conditions of 
Proposition 1 are fulfilled in our case. 

3. In the usual way (hard work as it may be), by considering many 
ideals of small norms, we found with the aid of a microcomputer the 
following independent units (see [27]; for cz see also Section IV, 
Remark (ii) after Theorem 2): 

5, = 355967 - 726615~ + 145323~’ + 28974~ - 59145qp + 11829~~~ 

l2 = -355 + 685~ - 137~~ - 32~ + 57~~ + 16~~~ - 19~~~. 

Next we have to choose a convenient prime for our p-adic argument. A 
reasonable choice would be a prime p that splits in M into eight distinct 
prime ideal factors, because the integer ep for such a prime p is a divisor of 
p - 1, which is relatively small. Examples of such primes are 71 and 97. The 
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corresponding value of q for these two primes is p - 1, so that in both cases 
eP = p - 1. All this was checked by computer. 

In order to show that cl and c2 can play the role as described in the 
previous section with p = 71 (the prime p = 97 also plays a part, be it a 
minor one), we need a sequence of lemmas. 

LEMMA 1. For any rational prime p, D is divisible by p iff there exists at 
least one s E (0, 1, . . . . p - 1 } such that either [,c; or c;c2 is a pth power of 
some unit of 8. 

Proof. The determinant D satisfies D = 0 (mod p) iff a pair 
(u, V)E (0, 1, . . . . p-l}’ exists with (u, v) # (0,O) and such that 

(1: I:)(:)=($ (modp). 
The latter condition is equivalent to: for some integer s E (0, 1, . . . . p - 1 } 
either ( 1, s) or (s, 1) is a solution of 

and this in turn can be phrased equivalently as: either [,c; 
( = IZ;~I~+“~IZ’;ZZ~+“*) or [;cZ ( = A;~I+~I~J’;*+“~~) is a pth power in 0. 1 

LEMMA 2. D is relatively prime to p for p = 2, 3, 5,7, and 71. 

Proof: We only consider the most difficult case in detail, namely p = 71. 
Following Bremner [7], we search for a rational prime n = 1 (mod 71) 
which has prime ideal divisors in Ml of degree 1. Such a prime is K = 6959. 
The defining polynomial of 0 has the following eight roots mod n: rl = 713, 
r,=1647, r,=3430, r,=2208, r5= -r,, r6= -r2, r,= -r3, rs= -rd. 
Therefore, 8 = ri (mod pi) for i= 1,2, . . . . 8, where the pfs are the eight 
different prime ideals into which (rr) splits. Thus, every integral element in 
Ml is congruent mod pi to a rational integer. 

Consider first the case 0 E 713 (mod pi ). Then, by the expressions of p 
and q in terms of 8 (see Appendix A in [27]), we easily find p 3 1232 and 
n z 6192 (mod pi). Then c, = 4147 and c2 = 2889 (mod p,). 

Next consider a relation 

il t-5 = A’l, o<s<70, for some 1 E 0. (2.22) 

Since ,l z k (mod pi) for some k E Z, (2.22) implies that 4147.2889” = k” 
(mod p,) and consequently 

4147 .2889” z k’l (mod 6959), (2.23) 
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and this is an ordinary congruence in Z. The number 7 is a primitive root 
mod 6959 and ind(4147) = 5004, ind(2889) = 5. Thus (2.23) is equivalent to 
5004 + 5s c 71 . ind(k) (mod 6958). In particular, 5004 + 5s s 0 (mod 71), 
from which we deduce that s = 50. Thus (2.22) implies that s = 50. 

Next we consider the relation (2.22) mod p2, with s = 50. From the 
congruences 

0 E 1647, p s 5727, q E 971, cl E 4033, cz - 813 (mod p2), 

and 

ind(4033) = 2081, ind( 8 13) = 6090, 

it follows that 2081 + 50.6090 = 0 (mod 71), which is clearly contradictory. 
Therefore, (2.22) is impossible and in a completely analogous way it can be 
shown that its companion [;c2 = L” is equally impossible. In view of 
Lemma 1 it follows that (D, 71)= 1. 

For p = 7, 5,2, and 3 we proceed in a similar fashion. We delete the 
details, but the necessary numerical information is incorporated in the 
table below. 

prim. 
P ‘I root OE pc qz [, z cz- ind(c,) ind(c,) 

mod p 

2, 5, 7 71 7 8 39 57 20 46 40 21 
23 32 5 59 8 3 18 

3 73 5 14 60 11 39 42 65 47 
27 28 11 39 40 65 25 

Proceeding as in the case p = 71, it is not difficult to check with the 
assistance of this table that for each p-value a contradiction is reached, and 
this shows that D is prime to 2, 3, 5, and 7. Q 

In view of Lemmas 1 and 2 it follows that condition (2.16) is fulfilled if 
p = 71 and also that (D, e,) = 1 if p = 97. 

LEMMA 3. Let (D, ep) = 1. Then for every mod p acceptable unit 
[ = Awl@, there exists a mod p acceptable unit co = I;fl[p with (fi,, fi2) E 
(0, 1, . . . . q - 1 }*, where the his and /?i’s are related by 

(2.24) 

Proof. We want to specify the fi;s so that G(&,) = G(5) (mod p). In 
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view of the definition of G (see the end of Section 1 ), it &ices to specify 
the /Ii’s so that co = c (mod p), and this is equivalent to 

;lylSt + n18~~;1281+ n282 z 1f1 ly (mod p). (2.25) 

Since, by hypothesis, D and q are co-prime, it follows that, given (b,, b,), 
we can find (/Ii, /?*)E (0, 1, . . . . q - 1 }’ satisfying (2.24). But then, in view of 
(2.19), (2.25) is true, as we set out to prove. 1 

LEMMA 4. If the unit c = AflAp is acceptable, then b, - b2 E 0 (mod 70). 

ProoJ: Since [ is acceptable mod 97 and also mod 71, it follows, in view 
of Lemmas 3 and 2, that there exist pairs (/II, /&)E (0, 1, . . . . 95)’ and 
(y,, y2) E (0, 1, . . . . 69}2 satisfying 

and 

(2.26) 

(2.27) 

where the units Cfl [E’ and CT’ Q are acceptable modulo 97 and 71, respec- 
tively. With the aid of a computer we found that the unit [$?l[p is accep- 
table modulo 97 only if (/I,, fi2) = (0, 0), (0,48), (24,24), (24, 72), (4&O), 
(48,48), (72,24), or (72,72). In particular, (2.26) then implies that both b1 
and b, are even. But then, in view of (2.27) and Lemma 2, both y, and y2 
are even too. The same computer program also found that, if the unit <;I@ 
is acceptable mod 71, then (yl, y2)~ ((0, 0), (0,35), (11, 14), (40,43), 
(63,29)}. Since both yi and y2 are even, this leaves only (yi, y2) = (0,O) 
and hence, by (2.27), we obtain (b,, b2) = (0,O) (mod 70). 1 

Lemma 4 proves that, if p= 71, then condition (2.17) is satisfied also. 
Thus, working with p = 71, only condition (2.18) remains to be proven. 
This will be done in the following section. 

4. We apply Skolem’s p-adic method to prove that (2.18) is satisfied. 
We have a + 0 = - 3 f 6p + 3p2 - 2p3 + rl+ rip and for a typical unit 

[~a~, we put 

5 = A, + A,P + -4~~ + A3p3 + Borl+ B,r/p + B2qp2 + B3w3 

and (2.28) 

(a+~)i=x~+x~p+x2p2+x3p3+~olf+~l~p+~2~p2+~3tlp3. 
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Hence 

c 3 r x0 -3 2-3 2 44 -31 31 -44‘ 
XI 6 -3 2 -3 -80 44 -31 31 
x2 3 -2 9 -6 -31 44 -80 145 
-x3 -2 3 -2 9 31 -31 44 -80 

= 
Yo 1 0 0 -1 -3 2 -3 2 
Y I 1 1 0 0 6 -3 2 -3 
Y2 0 1 1 4 3 -2 9 -6 
Y3 0 0 1 1 -2 3 -2 9 

L 1 

On the other hand, in view of (2.12) and (2.28), 

179 

A, 

> 

A, 

A2 

As3 (2.29) 

BY 
B2 

B3 

ctx=x,+x,p+x,p2+x3p3, (1 +P) y= Yo + YIP + Y2P2 + y3p3, 

so that (2.13) is equivalent to the system (recall the comments immediately 
following (2.13)) 

NormK,o(xO + x1 p + x,p* + x3p3) = - 188, 

Norm.,,(y,+~~p+J~~p~+y~p~)= -2, 

which, in turn, is equivalent to 

I CiO - Gil ci2 ci3 

-ci3 - cio c,1 + 4ci3 ci2 
= cj (2.30) 

-ci2 -ci3 cio + 4ci2 cjl + 4cj3 

--Cd -4c, -ci2 4Cj, + 15Ci3 CjO + 4C, 

(i= 1, 2), where cv=xj, czj= y/- (j=O, . . . . 3), c, = -188, and c2= -2. 
In view of (2.18), we need only consider units c E a0 that can take the 

shape 

i = (iv (MN? where M and N are p-adic integers 

(in our case p = 71 and q = 70). Thus we expand (if)” (cj)” in a p-adic 
power series in order to obtain a p-adic power series expansion for the unit 
[E a0 of the said shape. Some computer calculations showed that 

[To s 1 + 71( 13~ - 28~~ + 341~~) (mod p2). 

~~0~1+71(-31~-22~p-20~p2+31~p3)(modp2), 
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and it is easy to show that the coefficients A,,, . . . . A3, B,, . . . . B, in the 
71-adic expansion of 5 = (CT”)” ([i”)” are 

A,=1+712() B,=71(13M-31N)+712( ), 
A, =712( ), B,=71(-28M-22N)+71*( ), 
A,=712( ), B, = -71 .20N+ 712( ), 
&=712( ), B3=71(34M+31N)+712( ), 

where in expressions like 71( ) and 71( )2 we write parentheses ( ) to 
indicate 71-adic integers whose exact values are immaterial. 

Formula (2.29) then provides the values for the xI)s and yis and 
consequently also for the cii of formula (2.30). Note that the expansion of 
the determinant on the left-hand side of (2.30) does not present any 
calculational difficulties, because the exact values of the coefficients of p* 
are irrelevant. In this way we find that the system (2.30) is equivalent to 

26M- 18N+71( )=0 
-15M-35N+71( )=O 

and 1 -:z Iii1 & O(mod 71). 

As a result (see [22] or the footnote on p. 152 of [31]), this means that 
both M and N must vanish, and the proof of Theorem 1 is complete. 

III. SOME TECHNICAL LEMMAS 

1. In Section 11.1 we used certain, thus far unproven, properties of 
the number fields K and Ml, in order to avoid unnecessary diversions from 
the main line of reasoning. In the lines to follow we shall supply the mis- 
sing information in a sequence of lemmas. But first we recall the definitions 
of the number fields involved and their interdependencies. 

The number field H = Q(p) has defining equation p4 - 4p2 + 1 = 0 and 
we choose p = (1 + J3)/J2. The field K is a Galois field with 
automorphisms characterized by 

PHP, PH -P, P+w19 and p H -p-l. 

Further, by definition, L = C!!(q) and Ml = Q(p, q), where 
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The following diagram results: 
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K 
Y&J6i”/ ’ \ \ Q(J3) Q(J2) 

\(!/ 
2. We continue with a lemma on certain algebraic integers of K. As 

stated before, the set {sl,e2,s3} with E~=P, Em=-2-3p+p2+p3, 
e3 = 3 + 4p - p* - p3 is a set of fundamental units of W (see [20]). 

LEMMA 5. If for some rational integers x, y, a,, a2, a3 the relation 

x+yp=~y’~y(~,~~)~~(2+3p) (3.1) 

holds, then a, G a2 E a3 (mod 2). 

Proof: Write A, = .$‘+l( - l)nt+a3, A, = E?( -1)‘*+03, and A3 = 
(E, E3)*y - l)“‘+ Q. Elimination of Ix and 11 y from the four conjugate 
relations of (3.1) leads to the following identities (see (2.5) and (2.6)): 

&‘&A3(2+3~)=A,(-2+3p)+A2(3+2~)+A3(-3+2~), (3.2) 

A,A,A3(2+3p)=A,(2-3p)+&p2(3+2p)+A3p2(3-2~). (3.3) 

Since E, = p > 0 and A 1 A z A 3/~ r is a real square, it follows that 

A,A,A,>O. (3.4) 

Multiplying (3.2) by p* and adding (3.3) to the result we get 

(~‘-1)(3p-2)A,+2p*(3+2p)A2=(p*+1)(2+3p)A,A2A3>0. 

The coefficients of A, and AZ are positive (p z 1.93), therefore, 

if A,<0 then A,>0 and hence A,<O, (3.5) 

in view of (3.4). 
Multiplying (3.2) by p2 and subtracting (3.3) leads to 

($+1)(3p-2)A,+2p2(2p-3)A,=(p*-1)(2+3p)A,A,A,>O 
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which shows that 

if A,<0 then A,>O. 

Compare this with (3.5) to get a contradiction. Therefore A, is positive and 
by (3.4) also A,A, is positive. So A, and A, have the same sign. We will 
show that both A2 and A3 can only be positive. 

Subtracting (3.2) from (3.3) gives 

2(3p-2)$+(2p-3)(p2+1)2=(2p+3)(p2-1). (3.6) 
2 2 

Let n := 2p - 3; 7c is a prime divisor of 47 so that from 2p = 3 (mod rr) it 
follows that 

p 5 -22 (mod n). (3.7) 

Now (3.6) implies the relation 

2(3p-2)+ (2p + 3)(p2 - 1) (mod rr). 
2 

(3.8) 

Recall that A,/A,=p( - l)a1+o*(~ql~;a2)2. From the assumption that A, is 
negative, it follows that a, + a2 is odd and hence A,/A, = -pi’, for some 
unit E of K. Consequently, by (3.8), 

-2p(3p - 2) c2 - (2p + 3)(p2 - 1) (mod rr). 

In view of (3.7), we deduce that 16~~~ - 16 (mod n), and thus 
s2 E - 1 (mod x). But also, because of (3.7), E is congruent to a rational 
integer modulo x, say E = z (mod 71) with z E Z. Hence z2 - - 1 (mod rr) and 
this implies z* = - 1 (mod 47), which is false. This contradiction proves 
that both A2 and A, are positive. Hence Ai > 0 for i= 1,2, 3, and this is 
equivalent to a, E a2 E u3 (mod 2). 1 

3. Next we prove a lemma on the field Ml and its subfield [1. 

LEMMA 6. (a) M = Q(p, q) is a quadratic extension of IL = Q(q), 

(b) M = Q(0), where 8 := q( 1 + p), 

(c) M has four real embeddings and two pairs of complex conjugate 
embeddings. 

ProoJ (a) From the definition of q, it is easily seen that 
31p2+(q2-75)p+31 =O. Now 31t2+($-75) t+31eL[t] is irreducible. 
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Because, if this were not the case then, p E [I so that K G II. It would follow 
that K = L, since both lt6 and k are extensions of Q of degree 4. This is 
clearly false, because K is totally real and II is not. 

(b) It is a straightforward exercise to check that the powers 02, e4, 
and e6 belong to the order Z[l, p, p2, p3]. This means that p can be 
rationally expressed in terms of powers of 0, and the same is true for q. 
Thus p, rl E Q(0), so that Ml G Q(0). On the other hand, by definition, 
Q(O) 5 fbll. 

(c) The isomorphic embeddings gi: M + c~(MI) G @ (i = 1, . . . . 8) are 
characterized by their action on p and q as follows: 

a*(P)=P, o,(v)=% fl,(P) = PI (72(v)= -% 

03(P) = -PY a,(?) = rl’; a,(P) = -P, f74(v) = - 49 

a,(P)=P-‘, a,(9) = vi a6b)=d, a6(q) = --yl, 

a,(p)= -p-l, aArt)=?‘; fJs(p)= -p-l, us(v)= -rl’, 

where q’ := J--$ 75 + 31 6. From this the result is immediate. 1 

4. The final lemma of Section III gives information on the unitgroup 
of Ml. 

LEMMA 7. (a) The unit group % of M has five fundamental units and 
the only roots of unity belonging to t&I (and hence to K also) are + 1. 

(b) The subgroup SC,, of a’, defined by 

a,,= {EE%nO~NormMIK(s)= +l}, 

has two generators of infinite order and - 1 is its only generator of finite 
order. 

Proof (a) The first assertion is a direct consequence of Lemma 6(c) 
and Dirichlet’s unit theorem. The second assertion follows immediately 
from the fact that Ml has a real conjugate field. 

(b) Here we are dealing with a special case of the following 
proposition. 

PROPOSITION 2. Let H c Ml be finite extensions of Q with k and m fun- 
damental units, respectively. Further let 0 be an order of MI containing a set 
of [K : Q] Q-independent elements of C-6. Then the group ‘-?& of those units E 
of 0 for which Norm,,,( ) E is a root of unity has m -k generators of infinite 
order. 

Proof Let {A,, . . . . A,,,} be a set of fundamental units of the order 0 and 
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let %$ := (A,, . . . . A,,,) be the group generated by these fundamental units. 
Consider the subgroup S!, of S0 consisting of those units J E a0 for which 
Norm,,,(l) is a root of unity. Then clearly, every UE a0 is of the form 
u = 5 . ui , where u1 E %, and [ is a root of unity belonging to Ml. Thus we 
have to show that %, has rank m-k as a free abelian group. 

Let {E,, . . . . sk} be a set of fundamental units for H and put 
aK := (El, . . . . Q). We define a homomorphism 4: q0 + +& as follows: if 
1 E 4!& and Norm,,,(lZ) = [ . E with E E %!u and root of unity [ belonging to 
K, then b(n) := E. Clearly, Ker 4 = Q!,. Since 4(a0) is a subgroup of 4&, it 
is a free abelian group of rank <k. 

On the other hand, by hypothesis, 0 n H is a full module of H and con- 
sequently it is an order of 06. Therefore, it contains a set of k fundamental 
units (E; , . . . . E;} C S!@. If d= [Ml:W], then @(E;)=E;~ (i= l,..., k) and 
therefore the subgroup d( (a;, . . . . E; ) ) of d(+&) has rank k. We conclude 
that ,j(%$)gZ’. Recall that SOzZZm and Ker 4=4Z,. Hence (see [12, 
lemma on p. 44]), a0 = %’ 0 Q, , where %’ is a subgroup of aO, isomorphic 
to $(a@). Hence, Z” g Zk @ a1 so that %I is of rank m -k, as claimed. 1 

Part (b) of Lemma 7 follows immediately from this proposition. To see 
this, note that in our particular case M and od have 5 and 3 fundamental 
units, respectively, while the only possible roots of unity are + 1. On the 
other hand, there are no units E E M with Norm,,,(a) = - 1. Indeed, every 
E E M has the form a + jq with ~1, BE Q(p), so that Norm,,,(s) = 
a* - f12q2 = (a + &I’ > 0. Thus the group a0 defined in the statement of 
Proposition 2 coincides in our particular case with the 4?,, of Lemma 7(b). 
Also 0 n Db contains 4 = [K :Q] Q-independent elements, namely 1, p, p*, 
and p3, so that Proposition 2 applies to show that a,, has two generators of 
infinite order. Also the generators of finite order are the roots of unity and 
hence by (a), - 1 is the only such possibility. 

This completes the proof of the lemma. 1 

IV. DISCUSSION 

1. In this section it is our aim to show that the method we used to 
solve Eq. ( 1.1) is worth trying on quartic Thue equations of a more general 
type. The successive stages of the method are labeled by capitals. 

We consider the quartic Thue equation 

.I-(xv v) = c (4-l) 

under the following assumptions: 



THUEEQUATIONS 185 

(1) The root p of the equation f (x, 1) = 0 is an algebraic integer, and 
the number field K = Q(p) is a totally real normal field. 

(2) A finite set S := {(ui, u,), i= 1, . . . . m} of solutions to (4.1) is 
known (we aim to prove that this solution set is complete). 

Clearly (4.1) is equivalent to 

Norm,,,(x - yp) = c. 

STAGE A. Prove that for every solution (x, y) of Eq. (4.1) a pair 
(u, u) E S exists for which the ideal relation 

can be vertfied. 

(4.2) 

This is accomplished using factorization in 116 and possibly a few more or 
less standard tricks. 

STAGE B. Find a set of fundamental units for K. 

This task is rather more difficult. In fact, sometimes, a substantial com- 
putational effort is needed. For general methods that deal with the problem 
of constructing fundamental units, we refer the reader to [20] (in this 
paper one finds, among other things, a table of 20 totally real quartic fields 
with their corresponding sets of fundamental units), [S], and [3]. In an 
appendix of a forthcoming paper by B. M. M. de Weger and N. Tzanakis 
[32] the reader will find an adaptation of BilleviE’s algortihm [3] to the 
case of a totally real quartic field. 

STAGE C. For each (u, u) E S, or at least for those (u, v) representing the 
different ideals (u-up), reduce ideal Eq. (4.2) in. the unknown rational 
integers x and y to an equation of the form 

ax2 + /I Y2 = a + /?, where a, B are known elements of K with afl> 0 
and X, Y are unknown units of K. (4.3) 

For a E 06, we shall denote the algebraic conjugates of a by a”‘, i = l,..., 4. 
Let cl, i= 1, 2, 3, be a triad of positive fundamental units of K (i.e., 
of the maximal order of K; we can, however, work with any order of 06 
containing p). Now (4.2) is equivalent to 

x- yp=v.p, with p := u - up and N-unit v (4.4) 
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and we would like to prove that v = f 1 is the only possibility. Since we 
expect v to be f 1, we hope to be able to prove at this stage at least that 
for i#j P/V(~) is a square in lt6. In the case of Eq. (1.1 ), this is implied by 
Lemma’5, Section 111.1. We suppose in the sequel that we have established 
this fact. 

For distinct i, j, k E (1, 2, 3,4}, set zijk := (p”’ -p(j)) ,u(‘). Combining the 
three i, i, k-conjugate relations of (4.4), we get on eliminating x and y 

tiik dk) + Tjkiv(i) + T&j) = 0. (4.5) 

From the definition of riik it also follows that 

which shows that i, j, k can be chosen such that 

sign(rjki) = sign(r,@) = -sign(r,,). 

For this choice, setting 

,,W,+k) _. _. ~2 
7 

,,(j)/,,(k) =- . Y2, Tjki=: a, rkii=: /.3 

in (4.5), we see that Eq. (4.3) is obtained. 
From our discussion it is clear that v in (4.4) can attain no other values 

than f 1, if it can be shown that (4.3) can have no solutions but those 
given by (1x1, 1 YI ) = (1, 1). Thus, from here on we direct our efforts to 
proving that the only solutions of (4.3) are given by 1x1 = I YI = 1. 

STAGE D. Reduce (4.3) to a system of equations to which Skolem’s 
p-adic method can be applied. 

This reduction can be achieved by working in a certain quadratic 
extension of K. Write (4.3) as 

(a-Q2 - (c~Y)~ = a(a + /3), (4.6) 

where O2 := -ab, so that 8 E i[w. Therefore, Ml := K(O) is a quadratic exten- 
sion of K and an octic extension of Q. The Galois group of the extension 
Ml : K is generated by the automorphism characterized by 0 I-+ -8. For 
elements of Ml we shall use the dash (‘) to indicate conjugation under this 
automorphism. 
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Since we expect to prove that the only solutions to (4.6) are given by 
IXl=lYI=l, and because (c( + @(a - 0) = ct2 - 13~ = a(a + p), it seems 
reasonable to expect that for suitable choices of the signs of X and Y, we 
can prove the ideal relation (ax+ OY) = (a + O), using ideal factorization in 
the extension Ml: 06. This, in turn, implies 

aX+tlY=[(a+d), for some unit i of Ml. (4.7) 

Its conjugate relation is aX- BY = [‘(a - 0), which gives on multiplication 
by (4.7) 

a(a + /?) = (aX)2 - (OY)2 = (aX+ OY)(aX- OY) = {c’(a2 - 0’) = <[‘a(a + /?), 

so that ii’ 7 1. Therefore the unknown unit [ E Ml has the special property 
that 

Nom,,,(i) = + 1. (4.8) 

So our problem reduces to the task of finding all units [E Ml with 
relative norm + 1 (see (4.8)), and with the property that the corresponding 
X and Y are units of K. 

Solving (4.7) and its conjugate equation for X and Y, we obtain the 
following expressions 

,=Ib+W+i-‘(a-e) 
2a ’ 

,Jb+W-i-‘(a-0) 
28 (4.9) 

for which 

Norm,,,(X) = f I and NormK,,( Y) = + I. (4.10) 

Our work environment is an order 0 = Z[ 1, p, p2, p3, q, qp, vp2, $1 of 
M, where q is some conveniently chosen algebraic integer of M such that 
tI/q E IK, not belonging to It6. Let 4 be the unit group of 0 and a0 its sub- 
group consisting of those units of % with norm relative to I6 equal to + 1. 
In view of Proposition 2, (Section 111.3), so has m - 3 generators of infinite 
order, where m is the number of corresponding generators of 4. The num- 
ber m depends on the number I of real embeddings of Ml and, since 8 E ilw, 
r = 0, 2,4, or 6 with m = 3,4, 5, or 6, respectively. Assuming that the 
infinite generators for %$ can be constructed, our unit i may be expressed 
in terms of at most three unknown rational integral exponents. As we have 
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only two equations (4.10), we must exclude the case r = 6. This leaves us 
with two equations in at most two unknowns. 

For (~4&,, we set 

i=A,+A,p+A,pZ+A,p3+Bor+B,‘IP+B*~p2+B3~p3, (4.11) 

where the A;s and Bis are unknown rational integers. From (4.9) we find, 
after some tedious computations (recall that X, YE W), 

ax=x,+x,p+x,p2+x3p3, ; y= Yo + YlP + Y,P2 + Y,P3Y (4.12) 

where the xis and y;s are linear expressions in the Als and Bls with 
explicitly known rational coefficients. These resulting expressions for aX 
and (8/q) Yin terms of the Als and B:s will be used in the equations (4.10). 

A method that is worth trying for solving these equations (4.10) is the 
p-adic method of Skolem. Although there is no theoretical guarantee, it is 
our experience that in each particular instance the chances that it will work 
are rather good. 

STAGE E. Try to apply Skolem’s p-adic method to (4.10) for a suitable 
choice of the prime p. 

We only discuss the most difficult case, corresponding to r = 4, m = 5, in 
which e. has two infinite generators; from this discussion it is easy to see 
how to deal with the simpler cases. 

To start with, we construct a pair of independent units cl, c2 of ao. This 
requires much computational power. To get an idea of what is involved, we 
refer the reader to Section 4 of [27], where the case of Eq. (1.1) is 
considered. 

Next we check the conditions of Proposition 1 (Section 11.2). If condition 
(2.16) is not satisfied, then the algorithm of Theorem 2 of Subsection 2 
below can be applied in order to find a new pair (cl, c2) that does satisfy 
(2.16). However, in that case non-trivial computations are needed. There is 
no theoretical guarantee that condition (2.17) can be satisfied. An 
appropriate choice of the prime p, however, makes this highly probable. 
Suppose therefore that conditions (2.16) and (2.17) are already fulfilled. In 
view of Proposition 1 it remains to show that (2.18) is also fulfilled. Thus 
we need to consider only those units [ E a0 that can be written in the form 

5 = (53” GY, where M and N are p-adic integers. (4.13) 

Since c1 and c2 are explicitly known, we can compute cy and 4’; modulo p2 
and then expand (CT)” ([z)“’ in a p-adic power series to obtain p-adic 
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power series expressions for the Als and Bis appearing in (4.11). These 
expressions will have the form 

A, = 1 + P .fo(M, N) + P2( 1, Ai= P ‘fit”, NJ + P*( )Y 

Bj= P .gj(M, W + P*( 11 i= 1, 2, 3,j=O, 1, 2, 3, 
(4.14) 

where the f+ and gis are linear forms in M and N with p-adic integral 
coefficients. As before, in expressions like p( ) and p*( ) we write 
parentheses ( ) to indicate p-adic integers whose exact values are 
immaterial. By means of (4.14) we can find the p-adic power series 
expressions for the xI)s and y,‘s appearing in (4.12). Inserting these in the 
equations (4.10), where X and Y are replaced by their expressions in terms 
of the xI(s and yis, and adopting only one of the four possible sign- 
combinations leads to a system of the form 

C,~M+c,*N+p( )=O 

C*,M+c**N+P( I=& 

(4.15) 

where the coefficients are explicitly known p-adic integers. If det(cV) f 0 
(mod p) (this is highly probable if p is not very small, say, if p > lo), then 
Skolem’s result, mentioned at the end of Section II, implies that 
(M, N) = (0,O) is the only solution of (4.15) and, consequently, the only 
acceptable unit i of the form (4.13) is 1. This confirms condition (2.18) as 
required. 

2. The study of the diophantine equations of the previous section 
gives cause for venturing some remarks of a more general nature. 

The setting of the problem is provided by two algebraic number fields K 
and RYU, where M is a finite extension of H, and an order 0 of M such that 
0 n I-6 is an order of I-6 and such that the group %,, of units E E 0 with 
Norm&s) = + 1 has two generators of infinite order, while - 1 is its only 
generator of finite order. We want to prove that the only unts [ E +X0 having 
a certain property (such units are called a&eptable) are + 1. If 
‘?&,= (- 1, A,, 1,) then, equivalently, we want to show that the only 
acceptable unit of the form LflQ (b,, b, E Z) is 1 and our aim is to 
construct a proof which uses Skolem’s p-adic method, with a convenient 
choice for the prime p. 

In order to apply this method it is not strictly necessary to construct a 
pair of generators &, rZ2 ; a pair of independent units [, , c2 satisfying 
certain weaker conditions will usually do the trick. All this is explained in 
Stage E of the previous section and in Sections II.2 and 11.3. One may 
observe that the arguments used in these sections are quite general: they 
can be applied in any extension M : W as above (e.g., in case I6 = Q and Ml 



190 STROEKER AND TZANAKIS 

is a semi-real quartic number field) and they do not depend on the par- 
ticular fields I6 and Ml that were used for the purpose of solving Eq. (1.1). 
Even Lemmas 2 and 4 of Section 11.3, although appearing to be very 
special, give a clear idea of some general arguments that may be suc- 
cessfully applied in different settings. An analogous remark can be made for 
the theorem that we prove below: although the notations and the phrasing 
of proof and algorithm clearly depend on the particular extension M : H, 
the reader is invited to agree that this does not play an essential role. 

3. From here on we shall refer to the notations, etc., of Sections II.2 
and II.3 without explicitly stating so. 

In Proposition 1 we refered to certain conditions the independent units 
ii and cz must satisfy. The most important one, which enables the pair 
[i, c2 to “behave p-adically as a pair of generators of infinite order for qO,” 
is the validity of the relation (2.16). In the particular example that we study 
in the present paper, the requirement mentioned above turns out to be 
(D, 2 .3 .5 .7 + 71) = 1, whose validity was proved in Lemma 2. 

One may object, however, that in our particular example we were lucky 
in finding a pair 5,) cz for which the corresponding D happened to be prime 
to 2, 3, 5, 7, and 71, so that only verification of this fact was needed. 
But-and this is the point of the objection-how would we have acted 
upon finding a pair [,, [I with corresponding D being divisible by some 
p E { 2, 3, 5, 7, 71}? A general answer is implicit in the following result. 

THEOREM 2. Let p be any rational prime. Then, given a pair cl, c2 of 
independent units of Co, there exists an algorithm for deciding whether D f 0 
(mod p) or D - 0 (mod p). In the latter case a new pair of independent units 
[f, c; of 0 can be explicitly constructed, such that (cl, c2 > is a proper 
subgroup of (cf, Cf > and the corresponding D* is not divisible by p. 

Remarks. (i) In view of this result, the validity of condition (2.16) can 
be effectively checked. If it is found that (2.16) is false, then, by Theorem 2, 
the pair c,, c2 can be replaced by a new, explicitly calculated pair, which 
satisfies condition (2.16). 

(ii) As will be obvious from the proof (see Section 4 below), the 
algorithm mentioned in the theorem may involve a considerable amount of 
calculations, especially if p is large (p > 100, say). Therefore, it is recom- 
mended to first try the elementary method described in the proof of 
Lemma 2. There is a very good chance that this method will work in case 
D proves to be prime to p. The authors have worked out several numerical 
examples, not published here; see also various examples in [7]. However, if 
D E 0 (mod p), then for every choice of the rational prime z = 1 (mod p), 
this elementary method obviously must fail. In practice this means that, if 
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arguments analogous to those of Lemma 2 will not work for several choices 
of n E 1 (mod p), there is reason to suspect that D is divisible by p. One 
then may proceed to try the algorithm described in the proof of Theorem 2. 
This is exactly what happened with the initial value of t2 we discovered 
when considering integral elements of M of small norm (see Section 4 of 
[27]). Indeed, we found the following (,-value: 

449677 - 917900~ + 183580~~ + 42264~ - 77646~~ - 21132~jp* + 258821~~. 

(4.16) 

For p = 2, our attempts for various choices of 7t = 1 (mod p) failed, 
which made us suspect that the unit (4.16) is a perfect square of a unit of 0. 
Indeed, running the algorithm alluded to in Theorem 2 with p = 2 on a 
computer, we established the fact that the unit (4.16) is the square of the 
unit l2 mentioned in the first few lines of Section 11.3. Subsequently, the 
program, run with this new c,-value, showed that this iz is not a perfect 
square of any unit of 0, a fact which is also proved in Lemma 2. 

(iii) In view of Lemma 1, DE 0 (mod p) if either [,[S or 4’;i2 is a 
perfect pth power in 0 for some SE (0, 1, . . . . p - 1 }. In general, it seems 
very unlikely that Cl [; or [ii2 is a pth power with p relatively large, say 
p > 10. This means that the values of p for which the method of Lemma 2 
fails, i.e., the values of p dividing D, most likely are small, so that the 
algorithm described in the proof of Theorem 2 will not involve too many 
computations and hence may be applied without particular difficulties. 

4. We now proceed to prove Theorem 2. 
As already noted in Remark (iii) above, it suffices to describe an 

algorithm which does the following: 

(1) Given any unit 5 E 0, it decides whether 5 is a perfect pth power 
in 0, and 

(2) if, using (l), it finds some [,[; or j;i2 with SE (0, 1, . . . . p- 1) to 
be a pth power in 0, it replaces the pair (Cl, cz) with a new pair (CT, CT) as 
in the statement of Theorem 2. 

In the sequel we shall describe such an algorithm. 
Suppose r = IP for some il E 0 and put 

Using the notation of Lemma 6 (see also Lemma 4 of [27]), we recall that 



192 STROEKER AND TZANAKIS 

cl, . . . . (r8 are the isomorphic embeddings of Ml, where c3, g4, o7 g8 are real 
and or, cr2, u5, c6 are non-real with 

02(a) = al(a) and for every tl E Ml, 

the bar denoting complex-conjugation. 
Thus, the relation 5 = Ap implies 

for i= 1, . . . . 8. (4.18) 

In particular, ai = ai(<)“P, i = 3,4, 7, 8 and since the left-hand side is a 
real number, it follows that the right-hand side can only have one possible 
value if p > 2 and two possible values if p = 2, for each iE { 3,4,7,8}. On 
the other hand, from (4.18) it follows that ~~(A)=cr~(<)“~ for i= 1,2, and 
for these values of i the right-hand side represents p possible complex 
values. Further, since o,(A)= o,(A), also oJ<)“P must be the complex- 
conjugate of o,(t) l/J’. Similarly, ai = a,(<)“P for i= 5, 6 and o~(<)“~, 
M3”p are complex conjugates. Consequently, 

and the number of possible values for the right-hand side column is p2 if 
p > 2 and 64 if p = 2. These values can be explicitly calculated; the third, 
fourth, seventh, and eight elements are real numbers while the first and 
second, as well as the fifth and sixth, are complex conjugates. On the other 
hand, in view of (4.17) and the definition of the als, the left-hand side 
column of (4.19) has the form 

x0 
9 x3 

0 
Yo ’ 

Y3 

where 9 is an invertible 8 x 8 matrix. Then (4.19) implies 
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(4.20) 

The matrix ZS -I is given explicitly on page 24 of [27] in the case of 
Eq. (1.1). 

Now, in view of (4.20), the matrix multiplication on the right-hand side 
of (4.20) must result in a rational integral column vector. Thus, once the 
(complex valued) elements of the right-hand side of (4.20) have been com- 
puted to a good precision (in our case double precision, i.e., 16 decimal 
digits, proved very satifactory), it is easy to check whether a particular 
choice of the complex column vector on the right-hand side of (4.19) gives 
rise to a rational integral column vector after being multiplied by 9-l. If it 
does, then r = 1”, with I as in (4.17), where x0, . . . . x3, y,, . . . . y, are the 
elements of the rational integral column vector. If, however, for every 
possible choice of the complex vector on the right-hand side of (4.19) the 
product on the right-hand side of (4.20) is not a rational integral column, 
then 5 is not a perfect pth power in 0. 

Thus, the algorithm described above satisfies condition (1). Moreover, if 
4 is in fact a pth power of an element of 0, it finds this element. 

Next we check condition (2). Suppose, without loss of generality, that 

i1G=i<. (4.21) 

Then 

Note that c34G,, because in view of (4.21), a relation [3 = cy[; implies 
that mp = 1, which is absurd. Hence G, # Gz. 

If the determinant D corresponding to the pair c2, i3 satisfies D f 0 
(mod p) then we put cj+ := cz, [; := c3 and we are done. Otherwise we 
repeat the process with c2, c3 instead of cl, cz, obtaining thus a new group 
of units G,, whose two generators are explicitly known. Moreover, G, is a 
proper subgroup of G,. Continuing in this way we obtain a chain (Gi) of 
distinct groups: G,cGz~G3c= ..+ cG,~ ... cG:=(A,,&). As the 
factor group G/G, is finite (in fact #(G/G,)= IDI), this chain has to be 
finite, which means that from some n onwards Gi (i 2 n) remains constant. 
As a result, if G, = (c:, [: ), then the determinant corresponding to [:, c: 
does not vanish modulo p, as required. 
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