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Well relaxed atomistic configurations of binary liquid mixturesmeélkanes, obtained via a new
Monte Carlo simulation algorithifZervopoulowet al, J. Chem. Physl15 2860(2001)], have been
subjected to detailed molecular dynamics simulations in the canonical ensemble. Four different
binary systems have been simulat€d—C,g at T=474 K, C—C;gat T=458 K, and G,—Cq, at
T=403.5 and 473.5 K Results are presented for the diffusion properties of these mixtures over a
range of concentrations of the solvetighter component The self-diffusion coefficients of the
n-alkanes, calculated directly from the simulations, are reported and compared with the predictions
of two theories: the detailed free volume theory proposed by Vrentas and Duda based on the
availability of free volume in the blends, and a combined Rouse diffusant and chain-end free volume
theory proposed by Bueche and von Meervedlhal. A direct comparison with recently obtained
experimental dathvon Meerwallet al,, J. Chem. Physl11, 750(1999] is also presented. @002
American Institute of Physics[DOI: 10.1063/1.1466472

I. INTRODUCTION free volume within the system controls molecular transport.

e : . . This model describes mass transfer in solutions consisting of
The diffusivity of small molecular species dissolved in . . . 9
long polymer chains mixed with small solvent molecules

rubbery polymers is an important dynamic property. The mo—b h ab 4 bel h h l e ¢
bility of small molecules in macromolecular materials dic- 20th above and belowy. Through a careful estimation o

tates the effectiveness of polymerization reactors operatinf'€ adiustable parameters, the theory can be applied to a
under conditions of partial or full diffusion control, as well Wide variety of systems of different concentrations, tempera-
as the physical and chemical characteristics of the polymdtres, and molecular weights.
produced. Molecular weight distribution and average mo-  The basic principles of the free volume theory have been
lecular Weight, for examp|e, are among the physica| properused extensively by many researchers in order to Stl.ldy dif-
ties influenced by the diffusion-controlled termination step offusion of oligomer probes or solvents in polymer matrices,
free radical polymerization reactions. In addition, molecularmelts, or solutions. Using nuclear magnetic resonance
transport affects the mixing of plasticizers with polymers, the(NMR), Waggoneret al® measured the self-diffusion coeffi-
removal of residual monomer or solvent from polymerscients of several solvents in different polymers at polymer
through devolatilization processes, and the formation ofoncentrations ranging from 0 to 50 wt% at 25°C, and re-
films, coatings, and foams from polymer—solvent mixtures. ported very good agreement with the free-volume approach,
From the point of view of theoretical developments, themainly at higher polymer concentrations.
most successful theory for describing molecular diffusion of Building on the ideas of free volume theory, von Meer-
penetrants in polymer-penetrant systems is the free volumgall et al1°~2proposed a combined theory for the diffusion
theory proposed by Vrentas and Dud&.This theory is  of n-alkanes and binary blends, based on the notions of mo-
based on the assumption of Cohen and Turritthit mo-  nomeric friction coefficient, intrinsic thermal activation, and
lecular transport relies on the continuous redistribution ofost free volume effects, with particular attention to the
free volume elements within the liquid. The availability of -hain-end contributio®® To test their theory, they employed
the pulsed-gradient spin-eciBGSB NMR method to mea-
¥Electronic mail: doros@sequoia.chemeng.upatras.gr sure the self-diffusion coefficied in a series of monodis-
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persen-alkane liquids andis-1,4 polyisopreng€Pl) melts, as o\12 [g\®

well as in binary alkane—polymer blends, over the full con- ~ Upi(r)=4e (?) - 7)

centration range of the-alkanes, at various temperatures. By

proper fitting of the densities and diffusivities of the mono-with ¢=0.091 kcal/mol andr=3.93 A for the CH—CH,

dispersen-alkanes, they extracted values for the parametershteraction, ande=0.207 kcal/mol ande=3.91 A for the

needed in the theory to predict the diffusion coefficients. TheCH,— CH,; interaction. The Ck—CH; interaction parameters

combined theory was seen to reproduce the experimentake determined by the Lorentz—Berthelot rules through

data for the diffusion coefficients of both components in the

binary blends at least semiquantitatively, in the entire con- och,toch,

centration range of the solvent componéht. €chy-chy= \E€cH,€cHy  Tchcn= 5+ (2
In an earlier article we studied the self-diffusion coeffi-

cients of chains in polydisperse polymer melts of mean chairhe LJ potential describes all intermolecular site—site inter-

length ranging from 6, to Cy5o with atomistic molecular  actions as well as intramolecular interactions between sites
dynamics(MD) simulations and compared our results with separated by more than three bonds.

the Rouse modéft The study has been extended into the A bond-bending potential of the form

regime of entangled polymer melts of length up tgdand

the results have been compared against the predictions of the kg )

Rouse and reptation theori&sMore recently, we have ex- Ub:E(a_ 0o) )
tended the study of self-diffusion to strictly monodisperse

n-alkane anctis-1,4 Pl liquids, where we compared the re-is also used for every skeletal bond anghe with k,
sults of atomistic MD simulations with the predictions of the =124.1875 kcal mol* rad 2 and 6,=114°.

combined Rouse diffusion and chain end free volume theory  Associated with each dihedral angeis a torsional po-
proposed by von Meerwalt al® In the present work we tential of the form

extend the latter study to binary liquidalkane blends. The

main objective of this paper is to compare the results of our  Ut=Co(1+C0S¢)+C1(1—c0os2p) +Cy(1+cos 3p)

MD simulations for the self-diffusion in the binary systems (4)

with the predictions of the free yolume t_heory proposed byWith Co=0.7054,c,= —0.1355, anct,=1.5724 in kcal/mol.
Vrentas and Dudaand the combined chain end free volume Adjacent methyl and methylene groups along each chain

0
tﬂgory propose_d by ButTci'f'eand von Meerwalri:. dsz tol backbone are maintained at a fixed distahed..54 A from
this approach is a novel Monte Canl®C) method devel- each other using theHAKE method®:2°

oped lately’ for the prediction of sorption equilibria of oli- The equations of motion are integrated with a velocity
gomers in polymer melts, which allows collecting well- Vi

ilibrated p i f b it t the desired erlet method. As explained in detail in a recent artiC&o
equitibrated contigurations ot binary mixtures of tne desire speed-up the MD simulations a multiple time step algorithm
composition. The binaryn-alkane configurations obtained

i ; . . is employed in our simulations, the reversible reference sys-
from this MC method are subjected to MD simulations for oy, propagator algorithtrRESPA, first proposed by Tuck-
the subsequent study of their diffusion properties.

. . _ ) ermanet al?>?? In all simulations reported in the present
The paper is organized as follows: Section Il presents th%tudy, the smaller time stegt has been taken equal to 1 fs

molecular model used in the present work, outlines the basig[nd the larger time stePt equal to Gt, i.e., 5 fs. To control
characteristics of the MD algorithm employed in the simula- he temperature a variation of thé fR.I,ESPA.\ scheme. the
tion, and gives a complete account of the mixtures studie I-RESPA algorithm that incorporates the Ned¢ ove;
Section Ill reviews the basic assumptions and the most im :
ant i f the f | i | b'Ehermostat, is uset.

{)/or etn eqLéa[l)onds ° d fh ree vg'umdeR eory prgpohsg Y " The initial well-equilibrated configurations are obtained

rentas and buda an € combined Rouse and chain € a recently introduced novel MC algorithm capable of
free volume theory presented by Bueche and von Meerwal

: . ) ampling liquid polymer—oligomer mixture configurations of
Results from the MD simulations conducted in the course o; variety of compositions, thoroughly relaxed at all length

this work and a detalled_compa_nson with the predictions Ofscaled? With the implementation of two new MC moves
the two theories and with available experimental data arz

@

presented in Sec. IV. Finally, Sec. V summarizes the majo
conclusions and presents plans for future work.

scission and fusion this algorithm leads to extremely fast
quilibration of the concentration of alkane molecules in the
polymer melt and allows predicting the solubility of long
oligomers in a polymer matrix over a wide range of fugaci-
Il. MOLECULAR MODEL: METHODOLOGY ties of the oligomers. In the present MD simulations, the
AND SYSTEMS STUDIED yolume has always b_een kept constant at_a value correspond—
ing to the mean density of the corresponding system obtained
A united-atom description is used in the present work,from the MC runs.
with each methylene and methyl group modeled as a single In the following discussion, we will denote as 1 and 2
Lennard-Jones$LJ) interacting site. Site—site intra- and in- the lighter and the heavier components of the alkane mixture,
termolecular interactions are defined according to the NERDespectively. Four different liquidh-alkane mixtures have
model!® Nonbonded interactions are described by abeen simulated at various values of the weight fractigrof
Lennard-Jones potential of the form the lighter component. These are as follows.
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System 1: A G—Cyg liquid at T=474K and w; \“/FH Ky K1
=0.025, 0.07, 0.16, 0.32, 0.42, 0.52, 0.64, and 0.74, witha ——=W;—— (K= Tg1+T) +Wo—— (K= Tgo+ T).
polydispersity index of the polymeric & componentl Y Y 4 @)
=1.08.

System 2: A Go—Cyg liquid at T=458K and w; In Egs.(7) and (8), V} is the specific hole free volume of
=0.025, 0.21, 0.25, 0.44, 0.53, 0.63, 0.74, and 0.8, with £omponenti required for a jump]y; is the glass transition
polydispersity index of the g component =1.08. temperature of componentandé is the ratio of the critical

System 3: A G,—Cgo liquid at T=403.5K for w; molar volume of the solvent to that of the polymer jumping
=0.0, 0.024, 0.14, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.ounit. In addition,E is the energy per mole that a molecule
with a polydispersity index of the & componenit =1.0. needs in order to overcome the attractive forces which hold it

System 4: A G,—Cq liquid at T=473.5K for w; to its neighbors, whereas; andK,, are free volume pa-
=0.0, 0.024, 0.14, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0;ameters for the solverilighter componentandK ;, andK,
with a polydispersity index of the ¢ component =1.0. are free volume parameters for the polyntieeavier compo-

The overall simulation time ranged from 5 to 20 ns, neny.

depending on the composition and size of the system studied. The concentration dependencetoan be described ap-
proximately by considering two energi€s andEg, for the

polymer and the solvent, respectively. For solvent mass frac-
tions roughly in the range of 0—0.8,is essentially constant
. THEORY and equal tde, . As the pure solvent limit is approached, the
A. Free volume theory of Vrentas and Duda  (Ref. 1) surroundings of a solvent molecule change Brapproaches
the value ofEg. In order to avoid unacceptable parameter

The free volume theory of transpbrt provides a con- interaction effects present in applying nonlinear regression
venient and useful method for predicting and correlating sol- P PRyIng g

. L analysis, it is necessary to replace the terms contaibBipg
vent self-diffusion coefficients for polymer—solvent systems. :
. . andEg by an average value over the temperature interval of
The idea that molecular transport is regulated by free volume

was first introduced by Cohen and Turnbulthe diffusion nterest:

process depends on the probabilities that a molecule will — Eg
obtain sufficient energy to overcome attractive forces and Do~Doexp — RT/ ©
that a fluctuation in the local density will produce a hole ofI hi Ea(7) b
sufficient size so that the diffusing molecule can jump. Ac-" this case, q(7) becomes
cording to this picture, the solvent diffusion coefficiebt, _ E* Y(Wl\A/’{ +w2§\75)
in a binary mixture may be written as D,=Dy exr{ - —) exp — Y , (10
S FH
D1: DO eX[X - ’)/V;_c /VFH)r (5) where
whereDy is a constant preexponential factgl’lj is the criti- E*=E,—Es (11

cal molar free volume required for a jumping unit of com-

ponent 1(solveny, Vg is the free volume per mole of all .
s . . 0 . . one should first calculate the values of all the parameters
individual jumping units in the solution, andis an overlap o )

S appearing in Eqs(7)—(11). To this end, one can follow the
factor, which is introduced because the same free volume is" " 2
available to more than one iumping unit Semipredictive method proposed by Vrentas and Vrehtas,

- jumping ' which consists of the following steps.
In the original Cohen and Turnbull representatioa, h ific hole f | v q U

jumping unit was envisioned as a single hard-sphere mol- (a)d N Spﬁ% Ic cl)_e .dreelvo ume 6 Kan hi 2h are b
ecule undergoing diffusion. Vrentas and Duda generalize(ﬁ’quate to equilibrium liquid volumes at » WHiCh can be

the theory of Cohen and Turnbull to describe motion in bi_dete(:)r?i;\_icé L;:?fmrgfet?gds/ Sua:rrlnrgirizeqrbycgiﬁtiddeter
liquids b ing the relationshi 121y 22 192 )
nary iquics by using the relationship mined using data for Williams—Landel-FerfWLF) con-

To evaluate the solvent self-diffusion coefficieDt, ,

v. \A/,:H ©) stants and the glass transition temperaftigethrough the
FH™ (W, /M 1)+ (Wl My’ following:
Where\A/,:H is the specific hole free volume of a liquid with K_12: 4 (12)
weight fractionw; of speciesi and with jumping unit mo- Y  2.303CY),(CY),’

lecular weightsM;; . Combining Eqs(5) and (6) and intro- g
ducing an activation energy associated with the fact that a Ko~ Tgo=(C2)2— Tg2, (13
jumping unit must overcome the attractive forces with ad-where (C9), and (C9), are the WLF constants for the poly-
joining molecules prior to a diffusive step, the solvent self-mer. o
diffusion coefficienDl in a rubbery polymer-penetrant mix- (c) The quantitieD, K1/, andK,;— Ty, can be de-
ture can be determined usihg termined from viscosity—temperature and  density—
E ) p( V(Wl\’\/; +w2§\A/’2*) temperature data for the solvent, by performing a nonlinear
exp —

D,=D, exp( — =7 , (7)  regression analysis on the expression for the temperature de-

VEH pendence of the viscosity; of the pure solvent:
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0.124X 10~ 15T/§’3RT _ on the diffusant molecular length or mass. And the third term

In 71=In 5 —InDg represents the contribution to the self-diffusion coefficient
M1Vy due to the excess free volume of chain erilg.is the vol-

\A/’f ume overlap term; it is a measure of the open volume re-

+ ) (14) quired for motion of a penetrant molecule or segment rela-

(Kua/ ) (K # T=Tg1) tive to the volume of a polymer segment involved in a unit
In Eq. (14), M, is the molecular weight of the solvent, is  jump process. It is considered to be not far from unity but
the molar volume of the solvent at its critical temperature,may depend on the size, shape, and flexibility of the pen-

andV? is the specific volume of the pure solventTat etrant. Finallyf(T,M,M;,v,) plays the role of a fractional
(d) Finally E* and¢ are calculated through solvent dif- free volume which is highly dependent ahM,, M;, and
fusion data atv; =0, where Eq(10) takes the form vy, the latter being the volume fraction of the lighter com-
- ponent. The value ob, is easily related to the measured
D+ (W, =0)=In D.— E* YéV3 (15) weight fractionw,, given the known component densitigs
iWa=2) =M™ gt Kia( Kot T—Tgo) available in literature, through
which can be rearranged to Wy
Y=E* +¢X o= oy (18
! Wyt (1—wy) —
where P2
y\“/* In the absence of entanglements, the familiar Rouse
RT( K_z) M ~ 1 scaling law should apply to each component separately,
12

— _ (16) and thus the two diffusion coefficients in binanyalkane
T+Kyp—Tg blends should differ across the whole concentration range by
With as few as two diffusivity data points, it is possible to & constant factor, the inverse ratio of their molecular weights.

constructY vs X plots using Egs(15) and (16). The slope The reason for this expected “ideal” solution behavior is the
and the intercept of this straight line yielef and &, respec- universally postulated equ_al availability of all acce_ssible
tively. In our work, these two diffusivity data points are ob- (hole) free volume to both diffusing components or their mo-

tained directly from the MD simulations for a weight fraction tional segments, combined with the absence of any signifi-
of the solvent component;=0. cant volume change of mixing. With these assumptions and

by including the dependence of the free volume fracfion
vy, as proposed by Buech&we obtain

Y=-RT(InD,—InDy), X

B. Chain end free volume theory proposed by
Bueche and von Meerwall (Refs. 10 and 13) f(T,M1,My,01)=f(T)+2Ve(T)p[T,M*(v1) [/M*(vy).

The chain end free volume theory, first proposed by (19
Bueche'® describes how the free volume effects due to mo-Equation(19) describes that the dependence of the free vol-
lecular chain ends modify the classical Rouse behavior byme fractionf should be entirely confined to the chain-end
enhancingD at low M. A combined theory of Rouse diffu- term driven byVg, the free volume of one mole of chain
sant and chain end free volume host eff¢&@M theory) for ends.f.(T) denotes the fractional free volume of the melt at
monodisperse polymer liquids has been proposed by voinfinite molecular weight, and M* represents a volume-
Meerwall et al’® In a more recent work, von Meerwall weighted average of the inverse molecular weights of the
et al!! extended the expression used for diffusion in monotwo components:
disperse melts to describe the two self-diffusion coefficients
D; (i=1 or 2 in binary blends of monodisperse polymer IM* (01) =v1/M1+(1=v1)/M,. (20
liquids as a function of temperatute the molecular weights  The densityp can be calculated directly from the specific
M; and M, of the two components, the volume fraction of yolume through

the lighter component;¢, and its fractional free volumé, .
as follows: pLT,M1,M3,01]=[Lp..(T)+2Ve(T)/IM*(vy)] 7, (21

Di(T,M{,M,,v;)=Aexp — Ea/RT)Mi_l wherep..(T) is the melt density at infinite molecular weight.
Equations(17)—(21) are expected to apply in binary un-
Xexd —Bg/f(T.M1,Mz,v1)].  (17)  entanglech-alkane mixtures. All the parameters neeieel,
Here, the prefactoh is a constant characterizing the particu- 1/p-(T), Ve(T), f..(T), A andE,] exhibit linear tempera-
lar polymer, but which is otherwise independent of chainture dependencies to a good approximation. von Meerwall
length and/or temperature. As discussed in a recent atficle,et al. extracted the above-mentional parameters from fittings
according to this equation, the diffusion coefficient is theto density and self-diffusion of a series of liqurdalkanes
product of three terms. The first exponential term describe§0m Cs to Cgo, and found”
thermal activation effects witk, being the thermodynamic 1/p..(T)=[1.142+0.000 76 (°C) +0.005 cm?/g,

activation energy required for the chain end to perform (22)
jumps between accessible neighboring sites. The second term
(M; 1) recognizes the Rouse dependence of the diffusivity ~ Vg(T)=[13.93+0.060T(°C)+0.3] cm®/mol, (23
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TABLE |. Predicted values of the chain mean square end-to-end distance T T T I : T . T

(R? and of the radius of gyratior(le) for the two components of the 124
C,,—Cyo blend atT=403 K, for various weight fractions of G.
ClZ C60 1.0
w,  (ROAY) (RHAY  (RYA)  (RH(AY s
0.2 135+20 16 =1 1480+100 200:50 o 98
0.4 13615 15.5-1 1450+100 19040 ‘s
0.7 136-10 155:05 1460-100 190-35 O os-
3
0.4
f..(T)=[0.100+0.0007(°C)*=0.002, (29
0.2
(E,)=[0.81=0.25 kcal/mol, (25
A=[0.306+0.009 cn’mol/gs. (26) N
With these values of the parameters one can predict the (a) radial distance (A)
diffusion coefficientD; of componenti for a binary blend of
n-alkane mixtures over the entire range of concentrations 12 ' ' ' '
IV. RESULTS 1.0
Results will be presented concerning the structure anc _
self-diffusion coefficient of liquid binary blends for the four ¢° 987
systems simulated as a function of the concentratiegight N
fraction of the lighter(solveni component. The results will ¢ 06+
be analyzed and compared with the two free volume theories®
described in Sec. lll: the detailed molecular free volume 0.4
theory proposed by Vrentas and Dddmd the theory pro-
posed by Bueche and von Meerw8lthat combines Rouse 0.2
diffusion and chain end free volume effects. For the-(qq
systems, the results are also directly compared to the recentl s
published experimental data of von Meerwetlal! 0 5 10 15 20 25
(b) radial distance (A)
A. Structure
At first we check the structural properties of the simu- ' ' i o ' '
1.2+

lated blends and the dependence of these properties on tr
concentration of the solvent componew,. Table | shows

results for the mean square chain end-to-end distdRép 107
and the mean square chain radius of gyra(iﬁé) of the G T

and G, alkanes, respectively, in the;& Cg system atT o 08
=403.5K for various values of the weight fractiom, of ('):'
Cy,. It is clear that any effect ofv; on the dimensions of ~ 0.6
both G, and G is below the detection threshold of the

simulation. Similarly,w; seems to have no effect on the 0.4
dihedral angle distribution of both;gand Gy when G5 is
dissolved in Gy. The same behavior is seen in the other

systems simulated and is in agreement with the detailed MC o
studies of these binary systefffs. 0.0

Direct information about some structural features of the T s " 10 15 20 25
simulated systems can be obtained by inspecting the inter o) radial distance (A)

molecular mer—mer pair distribution functiogér). Figures

1(a)—1(c) show the intermolecular pair distribution functions FIQ. 1. Inte_rmolecular mer—mer pair distribution function at di_ffer_e@; C
for the pairs Go—Ceo, Ceo=Ciz, and Go—Cy, in Ci~Ceo ‘(’:Vi'g*gﬁ;fgg'ﬂjsaﬁf(:a)4gseg%o, (b) Cso—Ci, and(c) Cy~C, pairs, in a
mixtures of various compositions at=403 K. The intermo-

lecular g(r) for Cg—C,» seems to exhibit higher values

compared to the g— Cq, distribution function, especially as be surrounded by atoms of the lighter component rather than
regards the first peak. This phenomenon, also seen in the My atoms of other polymer chains, proving that & a good
study of a G—C,g systemt’ leads to the conclusion that solvent for G,. As the weight fraction of ¢ increases, the
polymer atomgor atoms of the heavier compongptefer to  intermolecular pair distribution function for ¢ Cgo pairs
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FIG. 3. Mean square displacement of the center of mass;pad G,
FIG. 2. Autocorrelation function of the end-to-end vector of, @ the molecules as a function of time in a&£Cy blend at T=403.5K

binary G,—Cq blend atT=403.5K as a function of the weight fraction of (w;=0.5).
Cip.

s . . that the solventlighter componentcontributes to the mix-
falls, indicating that polymer atoms on different chains are o .
more separated from one another, as they are surrounded ure. Consequently, the relaxation time of each component in
more and more oligomer molecules. e binary systgm (.jecreases... o
Also of interest are the higher values of(r) for The self-diffusion coefficientD; of componenti(i
C1~Cy, pairs compared to G-C,, pairs, which betray a =1,2) of the binary liquid blends simulated here is calcu-
1212 P P 2 pairs, Y @ |ated from the linear part of the mean square displacement of
tendency of G, to cluster together, mainly at lower concen- . . i
. o the center of mass of components a function of time,
trations of G,. This is expected from the form of the i i P : : . o
2 . . . .~ ((Rem(t) —R; 1 (0))%), using the Einstein relation:
Lennard-Jones potential employed in our MD simulations,'* ™ cm. ’

i.e., the NERD model. In this model, the interaction param- ~ (R, ()—RL,.(0))?

eter € is higher for the CH atoms(end segmenjsthan for i~ [im 6t (27)

the CH, atoms(middle segmenjsthis end effect is stronger i

for C;, than for Gy, where end segments are scarce. Figure 3 shows a typical plot of the mean square dis-

The intermolecular pair distribution functions for the placement of the center of mass for the, @nd Gy compo-
other binary system$Cs;—C,g at T=474K, Co—C,gat T nents in the &—Cqo binary system afT=403.5K for a
=458K, and G,—Cy at T=473.5K) display the same be- weight fraction of G,, w;=0.5. From the long-time, linear
havior as described previously. In particular, the end effecpart of the two curves one can calculate the diffusion coef-
phenomenon is stronger in thg C;, pairs and even stron- ficients for G, and G liquids.
ger in the G—C; pairs, where chain ends play a more promi- Results for the diffusion coefficient of the lighter com-
nent role. ponent(solven) D,, for all binary n-alkane blends simu-

A more detailed report on the structural and conformadated, as a function of the alkane weight fraction, are
tional properties of the binany-alkane—polymer systems can shown in Figs. 4—7. Also presented in Figs. 4—7 are the
be found in the previous MC study of the solubility of long predictions from the free volume theory of Vrentas and

alkanes in linear polyethylerfg. Duda™® and from the combined theory of Bueche and von
Meerwall 1013
B. Terminal relaxation: Diffusion To calculateD; according to the molecular free volume

theory of Vrentas and Duda, we followed the scheme de-
Figure 2 shows the orientational autocorrelation functionscribed in stepga)—(d) of Sec. lll A. The viscosity data of

of the chain end-to-end vectdR(t)-R(0))/(R?) for the G, the solvent for every system were obtained from the
alkane molecules in the ;6-Cy, binary system atT literature?*~2°A preferable strategy would be to use viscosi-
=403.5K, as a function of the weight fractiom of C;. ties computed through MD based on the molecular model
The rate at which(R(t)-R(0))/(R?) approaches the zero invoked in this work. However, the direct MD estimation of
value is a measure of how fast the chain “forgets” its initial viscosity through the Green—Kubo equation, involving the
configuration. Obviously, asv; increases, the autocorrela- time integral of the autocorrelation function of the instanta-
tion function of the G, chain end-to-end vector neous shear stress, or through the equivalent Einstein expres-
(R(t)-R(0))/(R?) decays faster, i.e., the overall relaxation sion, is fraught with large numerical error, especially at low
time of C,, decreases. This is expected because gsisC temperature$? This is why experimental viscosities were
dissolved in the heavierggcomponent, the total free volume used here for the purpose of comparing against free volume
within the system increases due to the additional free voluméheory. For G,, the experimental viscosity data as a function
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FIG. 4. Self-diffusion coefficient of the Lalkane in a G-Cg system at  FIG. 6. Self-diffusion coefficient of the G alkane in a ¢~ Cg, System at

T=474K and comparison with the predictions of the free volume theory of T=403.5 K (circles and comparison with the predictions ¢f) the free

Vrentas—Dudddashed ling volume theory of Vrentas—Dudélashed ling and (b) the Bueche—von
Meerwall theory(dotted line.

of temperature are shown in Fig. 8 together with the fits of , " . . .
Eq. (14). The two diffusivity data points for the solvent at eters oibtalned from fitting the experimental density and dif-
w;=0, needed in steft), were calculated directly from MD fusion in n-alkane melts, Eq5(22)—(26).' ) .
simulations with model binary systems containing just a few = For all binary systems, the self-diffusion coefficieni

(up to 3 solvent moleculesv;=0.01) at two different tem- of component increases as the concentratwrlj of the sol-
peratures for every system, and are shown in Table II. Tabl¥€Nt molecules increases. This can be explained in the same
Il shows in detail the values of all the parameters needed folV@Y as the decrease in the relaxation time of each component
the evaluation oD, for every system simulated. discussed in conjunction with Fig. 2, i.e., the total free vol-

With the values of the parameters listed in Table Iil angume increase within the system due to the additional free

by using Eqs(7)—(10), one can predict the solvent diffusion yolume contributed by the solvent component to the mixture

coefficient D, for every system studied, as a function of n Wh_iCh itis dissolved. e s -
concentrationv, . Predicted values are shown in Figs. 4—7 Figure 4 shows how the diffusion coefficieDt of Cs

as dashed lines. The correspondihgvalues predicted from compares with the predictions of the free volume theory for

the chain end free volume theory of Bueche and von Meert€ Pinary system £ Cyg at T=474K over a range of

wall are shown in Figs. 6 and 7 as dotted lines. The gvWeight fractionsw; of Cs. The free volume theory provides

values are calculated from Ed4.7) to (21), with the param- a good qualitative description of the simulation results for
' D, up to a concentration ofv;=0.6. It is of interest, how-
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FIG. 5. Same as in Fig. 4 but for the,Lalkane in a G—C;g blend at

T=458 K. FIG. 7. Same as in Fig. 6 but for &4 Cg, system aff=473.5 K.
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1.6 T r T " T - T r TABLE Ill. Values of the parameters used in the calculation of the self-
] diffusion coefficient of the solvent in binaryalkane mixtures according to
1.4 c A the free volume theory of Vrentas and Duda.
12
127 ] C—Cgz Cio-Cs  Ci1—Coo C12-Ceo
1.0_' _ (474K} (458 K) (4035K (4735K
1 V¥ (cnlg) 1.143 1.041 1.078 1.078
& 087 ] V% (cflg) 0.956  0.956 0.959 0.959
c 0'6_' i Ki/y (1073 emP/g K) 3.0 2.0 1.02 1.02
i | K21~ Tg1 (K) —80 —180 —-80 —-80
0.4 4 Ko/ vy (1074 cmP/g K) 461 4.61 4.61 4.61
] ; Koo~ Tgz (K) —-140.9 -1409 -140.9  -140.9
0.2 LI D, (10~ % cm/s) 1.9 2.0 9.45 8.85
] 1 Dy (104 cr?/s) (fit) 15 1.9 v
OO T T b a0 a0 seo  E* (ki/mol) -40  -30 0.8 0.1
T (K) 3 0.45 0.53 0.55 0.57

FIG. 8. Viscosity—temperature data for the purg Gsed in the calculation

of the self-diffusion coefficient of solvent in binarnyalkane blends, accord- . . L
ing to the free volume theory of Vrentas and Duda. theory for concentrationa/; <0.7, without any fitting of the

preexponential factorD,. In the high w; regime w;

>0.7), the free volume theory seems to underestimate the
ever, that with a small correction to the preexponential factogolvent diffusion coefficient. This is explained by the fact
Do from 1.9 to 1.5<10™ % cn?/s (the value ofD, that gives  that free volume theory has been developed to describe sol-
the best fit is reported in Table )]l excellent quantitative vent diffusion in concentrated and semidilute solutions, and
agreementnot shown in Fig. #can be established with the is inappropriate for solutions which are very rich in the sol-
simulation results, for concentratiomg <0.6. On the other vent componentdilute solution$. It is an interesting ques-
hand in the higlw, regime,w,>0.6, the free volume theory tion how a fully self-consistent application of the free vol-
seems to underestimate the solvent diffusion coefficient. Foume theory, employing computed, rather than experimental
the G—Cyg, as well as the ¢—C;g blend discussed in Fig. viscosity data, would affect the comparison with simulation
5, no predictions are shown from the Bueche—von Meerwaltesults, especially at higtv, values. This question will be
theory since the components of these systems are outside theplored in future work. On the other hand, the Bueche—von
range of lengths of the-alkanegbetween Gy and Gg from  Meerwall theory seems to predict the solvent diffusion coef-

which the values of the parameters of the theory, E2®~  ficient D, over the entire concentration range semiguantita-
(26), were obtained® tively.
Figure 5 shows results for the diffusion coefficient qf,C Values of the self-diffusion coefficient of the polymer

in the binary system (g—C,5 at T=458K, and for various component, &, for the G,—Cqy Systems at the two tem-
values of the weight fractiow, of C,y. Here again, the free peratures studied are shown in Fig. 9. Also presented in Fig.
volume theory describes the MD results very well. The9 are the results of experimental PGSE NMR measurements
agreement is exceptionally good, especially for the smaller
weight fractions. Aswv, increases, the predictions of the free

I v t i 1 i T 4 1 T T i I i I t I v T

volume theory diverge slightly from the results of the MD

simulations. This is more obvious for the higher values of the {1z “E"B,,Tiiﬁﬁis".(

weight fraction of Gy, w;>0.7. Again, with a very small | o o Thevasi 03K |

adjustment oD, in the expression foD,, Eq. (10) (from _?_E::"TI:‘J,E?Ln_sK °og _O____

2.0 to 1.9<10 “cn¥/s, results not shown the agreement i___‘?_——g “““

between the two sets of data becomes excellent. T 1077 JUEY 2t o3
Figures 6 and 7 show the self-diffusion coefficient g5 C ﬁ ]

o

in Cyo—Cgp mixtures atT=403.5 and 473.5 K, which have E
been simulated here in the entire range of concentrations 0™
the G, component. For both systems, the simulation results®
are seen to be very close to the predictions of the free volume

TABLE Il. MD estimates of alkane self-diffusivities &at;—0 used for the 10° 3
: * : r 1 ‘1 't ‘1 1 1t 1717
evaluation of theE* and ¢ parameters in the Vrentas—Duda theory. 00 041 02 03 04 05 06 07 0.8 09 1.0
Cs—Crg Ci1o—Crs Ci1-Ceo W

T, (K) 450 420 403.5 FIG. 9. Predicted diffusion coefficient of thegCmolecules in G—Cqo
D,(T;) (105 cné/mol) 21 0.9 1517 blends of various compositions, dt=403.5K (closed squargsand T

T, (K) 474 458 473.5 =473.5K (closed circles and comparison with experimental datzpen
D4(T,)(107° cr?/mol) 2.8 2.2 2.28 symbols. The lines represent the predictions of the Bueche—von Meerwall

theory.
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1w vend componentw,. The self-diffusivities of the two com-

] 1 ponents have been calculated by applying the Einstein rela-
tion. For all systems studied, it was observed that both
diffusion coefficients increase when the weight fraction
of solvent increases. This can be attributed to the increase in
total free volume due to the additional free volume contrib-

E uted by the solvent component when it is dissolved in the
2 polymer.
g 1 . DG Simulation results have been compared to the predic-
o 10° __' o Exp. é"so - tions of two theories. The first is the free volume theory of
] ——BM Theory C, ] Vrentas and Dud&,whose parameters were estimated fol-
: “E"fpf:g ] lowing a semipredictive scheme proposed by Vrentas and
L --BMTheoryC,, | | Vrentas? This scheme requires experimental viscosity—
, temperature data for the solvent component, available in the
10" =7 7T T T T T T literature, and at least two solvent self-diffusivity data points
00 01 02 03 04 3\"5 06 07 08 0.9 1.0 at different temperatures; the latter were obtained from MD
! simulations in the limitw;=0.
FIG. 10. Diffusion coefficients of the G and Go molecules in a §—Cgo Predictions of the free volume theory for the diffusivity
blend atT=403.5K as function of compositiow,, displaying the “ideal”  were found to be in very good agreement with the MD simu-
solution behavior. lation results only for small and intermediate, values

(w,<0.7). In the dilute regimew;>0.7), however, the free

. 1 volume theory significantly underestimates the solvent diffu-
obtained recently by von _M_eerwaét al’ for the same sion coefficient. This should be expected, given that one of
blend, as well as the predictions of the Bueche-von IVleerfhe major assumptions of the free volume theory is the pres-
wall theory. As stated before, the free volume theory does no

. e %nce of a significant amount of polymer molecules in the
predict the diffusivity of the polymer component. The agree- it re g poly

ment between the MD_resuIts and the experimental data is The second theory is the combined Rouse diffusion and
excellent over the entire range of concentratwm. The_ chain-end free volume theory of Bueche and von
Bueche-von Meerwall theory seems to describe the diffugyqoe 41113 designed to describe the diffusion coefficient
sion coefficient of polymer compound very well, espemallyOf both components in a binary liquid system. The param-

in the regime of intermediate values wh. eters needed in applying the theory were taken from regres-

Th_e orl]iffusion coefficientirgf‘ll())%tgfand ﬁso COT”F’F‘?' sions of density and diffusion data of a series of monodis-
nents in the G—Ceo system all =403.5K are shown inFig. o oq liquidn-alkane systems performed by von Meerwall

10. Figure 10 also shows the corresponding experimentgl, 510 e theory was found to describe MD results for the
values, as well as the predictions of the Bueche—von Meeryitision of both components over the entire range of con-

wall theory. The ratidD, / DZ.'S observed to remain coT.stant” centrations semiquantitatively, particularly for the two
over the whole concentration range, exhibiting the “ideal C.—Cao blends

solution behavior which is predicted by the theory. The MD simulation results for the diffusion coefficient

From all systems S|mulgted, Figs. '5—10, it is obV|0usOf components G and Gy in the G- Cyo blends at the two
that the two theories examined here, i.e., the free volum ifferent temperatures were further compared with recently
theory and the Bu_eche—v_on_ Meerwall theory, approach €aC8ptained experimental data by von Meerwall and
other very much in the limit of low concentrations of the .- -0 dl The agreement was very satisfactory, espe-

solvent moleculew, . For sma}l and |ntermed_|ate values of cially for the range of intermediate concentrations where the
w;, the free volume theory is seen to be in much better

. . . experimental measurements are most reliable.
agreement with MD estimates db, than the combined
theory. At higherw, values, howevefi.e., in dilute solu-
tions), the free volume theory becomes unreliable, whichtACKNOWLEDGMENT
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