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bstract

A well-relaxed atomistic configuration of a 32-chain C128 cis-1,4-polybutadiene (cis-1,4-PB) system has been subjected to long (on the order
f a few microseconds) molecular dynamics (MD) simulations in the NPT ensemble using the united-atom forcefield introduced by Smith et
l. [G. Smith, D. Bedrov, W. Paul, A molecular dynamics simulation study of the alpha-relaxation in a 1,4-polybutadiene melt as probed by the
oherent dynamic structure factor, J. Chem. Phys. 121 (2004) 4961–4967] on the basis of quantum chemistry calculations. This allowed us to
tudy the temperature and pressure dependences of the Rouse-mode relaxation spectrum of cis-1,4-PB over a wide range of temperature (ranging
rom T = 430 K down to 165 K) and pressure (from P = 1 atm up to 3.5 kbar) conditions. Results are presented for: (a) the time decay of the
utocorrelation function of the normal coordinates (Rouse modes), (b) the single chain intermediate coherent dynamic structure factor, Scoh(q, t),
nd (c) the intermediate incoherent dynamic structure factor, Sinc(q, t), for different values of the wavevector q. By mapping our MD simulation
esults onto the Rouse model, we have been able to extract a prediction for the zero shear rate viscosity of the simulated cis-1,4-PB system as a
unction of temperature and analyze its fragile character. In agreement with our previous MD simulation studies on the same system [G. Tsolou,
.A. Harmandaris, V.G. Mavrantzas, Atomistic molecular dynamics simulation of the temperature and pressure dependences of local and terminal

elaxations in cis-1,4-polybutadiene, J. Chem. Phys. 124 (2006) 084906-1-11] and in contrast to what is experimentally observed [see, e.g., G.
loudas, T. Reisinger, Pressure dependence of the local and global dynamics of polyisoprene, J. Chem. Phys. 111 (1999) 5201–5204; C.M. Roland,
. Casalini, T. Psurek, S. Pawlus, M. Paluch, Segmental- and normal-mode dielectric relaxation of poly(propylene glycol) under pressure, J.
olym. Sci. Part B: Polym. Phys. 41 (2003) 3047–3052], we predict that pressure and temperature influence practically similarly all normal mode
elaxation times along the simulated C128 cis-1,4-PB chain. Furthermore, our MD simulation results predict a transition from a homogeneous to
heterogeneous dynamical behavior in the region of wavevectors near the first (intermolecular) peak in the static structure factor, consistently
ith recent neutron scattering (NS) measurements [see, e.g., B. Frick, G. Dosseh, A. Cailliaux, C. Alba-Simionesco, Pressure dependence of

he segmental relaxation of polybutadiene and polyisobutylene and influence of molecular weight, Chem. Phys. 292 (2003) 311–323; A. Arbe,

. Colmenero, B. Farago, M. Monkenbusch, U. Buchenau, D. Richter, Intermediate length scale dynamics in glass forming polymers: coherent
nd incoherent quasielastic neutron scattering results on polyisobutylene, Chem. Phys. 292 (2003) 295–309] and previous simulation studies [see,
.g., J. Colmenero, F. Alvarez, A. Arbe, Self-motion and the alpha relaxation in a simulated glass-forming polymer: Crossover from Gaussian to
on-Gaussian dynamic behavior, Phys. Rev. E 65 (2002) 041804-1-12].
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. Introduction
Temperature and pressure effects on the segmental and termi-
al relaxation properties of polymers such as polyisoprene (PI),
olybutadiene (PB), polyisobutylene (PIB) and poly(propylene
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lycol) (PPG) have been investigated in the last years through
number of state-of-the-art experimental techniques such as

eutron scattering (NS) [1–6], dielectric spectroscopy [7–13],
reep and recoverable compliance measurements [14,15] and
ime resolved optical spectroscopy[16,17]. Most of these mea-
urements indicate that temperature and pressure exert a stronger
nfluence on segmental relaxation than on terminal relaxation,
eading to a crossing of the characteristic curves describing the
ocal and chain relaxation times either at a low enough temper-
ture or at a high enough pressure.

Motivated by these experimental reports, we recently under-
ook a systematic study [18,19] of the effects of temperature
nd pressure on structural, thermodynamic and relaxation prop-
rties of model cis-1,4-polybutadiene (cis-1,4-PB) systems by
erforming long atomistic molecular dynamics (MD) simula-
ions over a wide range of conditions (temperatures ranging
rom 430 to 195 K, and pressures ranging from 1 atm up to
kbar). Segmental or local relaxation was investigated in terms
f the dipole moment time autocorrelation function along the
is-1,4-PB chain while chain or terminal relaxation was probed
y analyzing the time autocorrelation function of the chain end-
o-end unit vector. These studies allowed us to reproduce the
ielectric loss spectrum of cis-1,4-PB under isothermal and iso-
aric conditions, by Fourier transforming the computed dipole
oment time autocorrelation function with respect to time. It
as further verified that the temperature dependence of the

orrelation times characterizing segmental relaxation in cis-1,4-
B follows a Vogel–Fulcher–Tammann (VFT) behavior while
n Arrhenius-type of equation describes better their pressure
ependence [7–11], in accordance with other simulation stud-
es [20–21] and experimental measurements [8,10,15,22–28].
owever, and in contrast to what is experimentally observed

or other polymers such as PI [7,11,29–31], these MD studies
ndicated that segmental and chain relaxations in cis-1,4-PB are
nfluenced similarly by temperature and pressure variations in
he regime of temperature and pressure conditions accessed in
he MD simulations (temperatures as low as 195 K and pressures
s high as 3 kbar).

The present work complements these studies by extending
he MD simulations for a model C128 cis-1,4-PB system to
omewhat lower temperatures (down to 165 K) and by analyzing
lso: (a) the time autocorrelation function of each Rouse mode
32] Xp along the simulated C128 cis-1,4-PB chain, and (b) the
oherent [33–35] and incoherent [36,37] dynamic structure fac-
ors for different values of the magnitude q of the wavevector.
ur results for the incoherent dynamic structure factor are then
irectly compared with available data obtained from NS mea-
urements for the dependence of the incoherent relaxation times
n q. These data [1,4,38–41] support that for values of q corre-
ponding to intermediate length scale dynamics, the relaxation
imes scale as τ ∼ q−2/β where β is the stretching exponent of
he Kohlrausch–Williams–Watts (or KWW) function describ-
ng the dependence (for a given value of q) of the incoherent

ynamic structure factor on time. However, as the magnitude q
f the wavevector increases, the scaling of the relaxation times
hanges to τ ∼ q−2. The different scaling of the relaxation times
n the low and high q regimes is explained in the literature in

t
[
a
p

luid Mech. 152 (2008) 184–194 185

erms of the idea of heterogeneous and homogeneous dynam-
cs [42–44]: the existence of distinguishable spatial regions in
he system gives rise to the appearance of different relaxation
ehaviors whose superposition is believed to be responsi-
le for the KWW character of the corresponding structural
elaxation.

The heterogeneous dynamical behavior is usually linked with
he Gaussian or non-Gaussian character of the Van Hove corre-
ation function [37,39] describing the self-motion of hydrogen
toms in the polymer under study. For example, recent simula-
ion studies and incoherent NS experimental data for PI [39,40]
upport the transition from a homogenous (i.e., Gaussian in
haracter) dynamical behavior to a heterogeneous (i.e., non-
aussian in character) one in the region of q values where the

tatic structure factor presents its first peak. NS measurements
ave also been carried out on PB and PIB samples by Frick
t al. [4] under different pressure conditions, and the transition
rom a homogeneous to a heterogeneous dynamical region was
gain observed. The experimental measurements of Frick et al.
4] also indicated that the heterogeneous region becomes wider
s the pressure increases.

Since details of our MD simulation methodology have been
lready presented in Refs. [18,19], they will not be repeated here.
e only mention that in the present paper, our MD simulations
ith the C128 cis-1,4-PB system have been extended to temper-

tures down to 165 K and, in some cases, to somewhat higher
ressures (3.5 kbar). Also, in the case of the lower temperatures
tudied, we allowed our simulations to run for very long times
up to 2.5 �s in some cases), which helped us get reliable pre-
ictions for the relaxation of the normal modes as a function
f temperature. The rest of the paper is organized as follows:
ection 2 reports our MD results on the Rouse time relaxation
pectrum along different isobaric and isothermal conditions. In
ection 3, we present results from the analysis of the single
hain intermediate coherent dynamic structure factor, Scoh(q, t),
ver the entire range of the simulated temperature and pressure
onditions. Additional results for the incoherent intermediate
ynamic structure factor, Sinc(q, t), are presented in Section 4,
upporting the existence of a transition from a homogeneous to
heterogeneous dynamic behavior. Section 5 presents our MD
redictions for the characteristic relaxation times of the Rouse
odes of the simulated system as a function of temperature and

ow they can be exploited in the framework of the Rouse model
n order to estimate the zero shear rate viscosity of cis-1,4-PB
also to verify its fragile character). The paper concludes with
ection 6 presenting a summary of the major findings of the
resent simulation study.

. The Rouse-mode relaxation spectrum

Parts a and b of Fig. 1 present typical plots of the time
utocorrelation function 〈Xp(t)·Xp(0)〉/〈Xp(0)2〉 corresponding

o the 4th and 8th normal coordinate Xp of the Rouse model
32] (p = 4 and 8), respectively, as obtained from the present
tomistic MD simulations along different isothermal or isobaric
aths, in a linear-log plot. According to the Rouse model, the
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Fig. 1. Time autocorrelation function of: (a) normal mode p = 4 at different
temperatures along an isobar, and (b) normal mode p = 8 at different pressures
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Fig. 2. Temperature dependence of the relaxation time τ
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c for different Rouse
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long an isotherm, as obtained from the present MD simulations with the C128

is-1,4-PB system. The lines represent the best fits to the simulation data with a
WW function, Eq. (3) in the main text.

ormal coordinates Xp, p = 0, 1, 2, . . ., N − 1, are defined as

p =
N∑

n=1

ΩnpRn−1 (1)

here Ωnp are the elements of the orthogonal matrix � given
y

np =
√

2 − δp0

N
cos

(
((n − 1)/2)pπ

N

)
(2)

nd Rn(t), n = 1, 2, . . ., N, the position vector of the n-th chain
ead along the chain. Each Xp represents the dynamics of the
hain which includes N/p segments. As shown in Fig. 1, the
btained simulation curves are accurately fit with stretched expo-

ential (or KWW) functions of the form:

Xp(t) · Xp(0)〉/〈X2
p(0)〉 = A(p) exp

(
−
(

t

τ
p
KWW

)βp
)

(3)

τ

H
t

odes, as obtained from the present MD simulations (symbols) with the C128

is-1,4-PB system. The lines denote the best fits to the simulation data with a
FT function, Eq. (5) in the main text.

ith τ
p
KWW and βp being the characteristic relaxation time

nd stretching exponent parameters, respectively, and A(p) the
mplitude; the latter is introduced in order to account for the fast
elaxation of the normal modes at subpicosecond time scales
t < 1–2 ps), and its best-fit value was found to be a number
etween 0.8 and 1. The stretching parameter βp was observed
o vary not only with T and P but also with p: in agreement with
revious MD simulations [18,34,45], its value increases with
ncreasing temperature or decreasing pressure, and decreases
ith increasing p (corresponding to more localized motions).
or example, at T = 310 K and P = 1 atm, βp decreases from 0.85

o 0.54 as p increases from 1 to 64.
From the fitted τ

p
KWW and βp values, one can calculate the

otal correlation time, τ
p
c , characterizing the relaxation of the

-th normal mode through:

p
c = Γ (1/βp)

βp
τ
p
KWW (4)

hose variation with temperature (at P = 1 atm) for a number of
values is shown in Fig. 2. As p increases, the normal mode

escribes the dynamics of a shorter part along the C128 cis-1,4-
B chain; thus, the relaxation times presented in Fig. 2 cover the
ntire range of length scales: the terminal relaxation (obtained
or p = 1), the relaxation at intermediate length scales (corre-
ponding to p values equal to 4, 8, and 16), and the segmental
elaxation (obtained for p = 32 or 64). The dashed lines shown
n the same figure indicate that, for all normal modes p, the tem-
erature dependence of τ

p
c is captured quite well by a modified

FT function [46]:

p p

(
DpT

)

c = τ0 exp

T − T
p
0

(5)

ere, Dp is a dimensionless parameter and T
p
0 a characteristic

emperature also known as the “ideal” glass transition or Vogel
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Table 1
Values of the VFT equation parameters that best fit the simulation results for the
normal mode relaxation, Eq. (5) in the main text

Normal mode, p log(τp

0 ) (ns) Dp T
p

0 (K)

1 5.25 ± 0.20 −4.4 ± 0.4 106 ± 8
4 5.05 ± 0.05 −3.1 ± 0.1 114 ± 2
8 6.02 ± 0.05 −3.4 ± 0.1 114 ± 2

16 6.75 ± 0.05 −3.5 ± 0.1 114 ± 2
24 7.22 ± 0.05 −3.7 ± 0.1 110 ± 2
3
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Fig. 3. Pressure dependence of the relaxation time τ
p
c for different Rouse modes,

a
s
e

t
3.5 kbar], pressure exerts almost the same influence on the entire
normal mode relaxation spectrum. On the other hand, �Vp is
seen to increase with decreasing temperature, which agrees with

Table 2
Computed values of the activation volume �Vp for different Rouse modes, at
two different temperatures

�Vp (cm3 mol−1) Normal mode, p

T = 310 K T = 413 K

– 19.5 ± 1.5 1
20.0 ± 0.5 18.5 ± 0.5 2
20.5 ± 0.5 17.5 ± 0.5 4
18.5 ± 0.5 17.0 ± 0.5 8
19.0 ± 0.5 17.5 ± 0.5 12
2 7.44 ± 0.05 −3.8 ± 0.1 109 ± 2
4 7.83 ± 0.05 −3.9 ± 0.1 109 ± 2

emperature. Table 1 lists the best-fit numerical values of τ
p
0 , Dp

nd T
p
0 as a function of normal mode number p.

According to several experimental studies with different
olymer systems, the temperature dependencies of their seg-
ental and terminal relaxation are indeed described by a VFT

unction [14,15,27]. However, the experimental data also indi-
ate that the two relaxation times should “freeze” at different
ogel temperatures, so their curves should cross at a tempera-

ure somewhat higher than the glass transition temperature (Tg).
onsistently with our previous simulation studies [18], but in
ontrast to these observations for other polymers, the curves
hown in Fig. 2 and the reported data in Table 1 support that (in
he temperature range covered by the present MD simulations)
emperature exerts almost the same influence on all relaxation
imes (terminal, intermediate and segmental) along a cis-1,4-PB
hain. On the other hand, the estimated T

p
0 values in Table 1

mply that the normal coordinates characterizing intermediate
ength scales (p = 4, 8, 16) should “freeze” at Tp

0 = (114 ± 2) K,
value which decreases somewhat (it drops to (109 ± 2) K)

s p increases. This does indicate a somewhat lower “freez-
ng” temperature for the segmental relaxation as compared to
ess localized motions but the difference is too small to sup-
ort that the curves of the corresponding relaxation times will
ertainly cross at a temperature higher than the glass transition
emperature (Tg) of the simulated cis-1,4-PB system.

Fig. 3 presents the pressure dependence of the relaxation
imes along two different isothermal paths (corresponding to
= 310 K in Part a, and to T = 413 K in Part b of the figure), in
log-linear plot. Results are again presented for a number of p
alues covering all characteristic length scales (from the end-
o-end to the monomer scale). The calculated relaxation times
p
c are observed to increase exponentially with increasing pres-
ure. Such a dependence, which is in excellent agreement with
xperimental observations [7–10,16,30], allows us to extract a
rediction for the corresponding activation volume �Vp through

Vp = 2.303RT

(
∂ log(τp

c )

∂P

)
T

(6)

nd analyze its dependence on normal mode number p under
ifferent isothermal conditions. The results obtained (see also

able 2) show that, for a given temperature, the value of �Vp

s practically insensitive to the p value, except perhaps for the
ighest (p = 64) mode, suggesting a somewhat smaller pressure
ffect on the segmental relaxation. So, overall, we can say that in
s obtained from the present MD simulations (symbols) with the C128 cis-1,4-PB
ystem at: (a) T = 310 K and (b) T = 413 K. The dashed lines represent the best
xponential fits to the simulation data.

he range of pressures covered in these MD simulations [1 atm,
16.7 ± 0.5 14.8 ± 0.5 16
15.3 ± 0.5 15.0 ± 0.5 24
15.0 ± 0.5 14.8 ± 0.5 32

9.2 ± 0.5 9.6 ± 0.5 64
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Fig. 4. Plots of the normalized single-chain intermediate coherent dynamic
structure factor, Scoh(q, t), as obtained from the present MD simulations (sym-
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above) with pressure, at T = 413 K. Results are shown in the
figure for: q = 0.2 Å−1 (corresponding to terminal relaxation),
q = 0.3–1.0 Å−1 (corresponding to the relaxation of intermedi-
ate length scales), and q > 1.0 Å−1 (corresponding to segmental
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eported literature data [7]. Furthermore, the values extracted
rom our MD simulations here are noticeably larger than those
eported in Ref. [18] but in very good agreement with the values
f �Vp [35–19 cm3 mol−1] reported by Kirpatch and Adolf [16]
or cis-1,4-PB samples in the temperature range [303–323 K].

. Single-chain intermediate coherent dynamic
tructure factor, Scoh(q, t)

Neutron scattering experimental techniques probe the relax-
tion of chain-like systems through measurements of the
ynamic structure factor S(q, t) of the system [32,37] defined
ccording to

(q, t) ≡ 1

N

∑
n,m

〈exp[iq · (Rn(t) − Rm(0))]〉 (7)

here q denotes the scattering vector whose magnitude is equal
o q = (4π/λ) sin(θ/2) where λ is the wavelength of the radiation
nd θ the scattering angle, and Rn(t) the position vector of chain
egment n along the chain at time t. From Eq. (7) it is obvious
hat one can explore the entire spectrum of relaxation times for
given polymer by changing the magnitude q of the scattering
ector q: small q values (usually 0.01 ≤ q ≤ 0.1 Å−1) probe the
verall chain (or terminal) relaxation, while larger q values (usu-
lly 1 ≤ q ≤ 5 Å−1) probe the dynamics at shorter length scales
segmental or local relaxation).

MD simulation results are directly comparable to available
S data since the vector Rn(t)–Rm(0) that appears in Eq. (7)

s readily available from the atomistic MD runs. Following the
ethodology described in Refs. [33,34], the normalized single-

hain coherent dynamic structure factor Scoh(q, t) is obtained
hrough:

coh(q, t) = S(q, t)

S(q, 0)
=

∑
n,m

sin[qRnm(t)]/qRnm(t)

∑
n,m

sin[qRnm(0)]/qRnm(0)
(8)

here Rnm denotes the magnitude of the vector Rn(t)–Rm(0)
ith n �= m. Scoh(q, t) has been calculated for a wide range of q
alues ranging from 0.1 to 3.5 Å−1, corresponding to cis-1,4-PB
elaxation over all possible length scales (terminal, intermediate
nd local). Fig. 4 presents the obtained Scoh(q, t) curves for
= 0.4 at T = 413 K, and for two different pressures (P = 1 atm
nd 3 kbar). The dashed lines in the same figure denote the best
ts to the Scoh(q, t) data with a KWW function:

coh(q, t) = Acoh(q) exp

⎛
⎝−

(
t

τ
q
KWW,coh

)β
q

coh

⎞
⎠ (9)

here again Acoh(q), τq
KWW,coh and β

q
coh denote the correspond-

ng characteristic amplitude, relaxation time and stretching
xponent parameters, respectively. Consistently with the values

f βp extracted in Section 2 from the KWW fits to the time decay
f the autocorrelation functions for the normal modes, the val-
es of β

q
coh are found to change smoothly with pressure, showing

lso a tendency to decrease with increasing q. For example, for

F
T
t

ols) for q = 0.4 Å−1 at two different pressures (1 atm and 3 kbar) along an
sotherm (T = 413 K). The dashed lines represent the best fits to the simulation
ata with a KWW function, Eq. (9) in the main text.

= 413 K and P = 3 kbar, the value of β
q
coh decreases from 0.70

o 0.45 as q increases from 0.2 to 2.0. These values are similar to
hose calculated by Smith et al. [21] for a random 1,4-PB copoly-
er sample by fitting MD simulation results for Scoh(q, t) also
ith a KWW function. More precisely, the value 0.617 ± 0.012

t q = 1.44 Å−1 is very close to the value 0.65 ± 0.01 obtained
ere for q = 1.4 Å−1, at T = 413 K and P = 1 atm.

Fig. 5, on the other hand, shows the variation of the
otal (correlation) time, τcoh

c (q), corresponding to a particu-
ar q value (as extracted from an equation similar to Eq. (4)
ig. 5. Pressure dependence of the relaxation time τcoh
c for different q values, at

= 413 K (symbols). The dashed lines correspond to the best exponential fits to
he simulation data.
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Table 3
Computed values of the activation volume �Vq for different wavevectors q, at
T = 413 K

q (Å−1) �Vq (cm3 mol−1)

0.2 23.0 ± 0.5
0.3 19.5 ± 0.5
0.4 20.5 ± 0.5
1.0 21.0 ± 0.5
1
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Fig. 6. Plots of the normalized intermediate incoherent dynamic structure factor,
Sinc(q, t), as obtained from the present MD simulations (symbols) for different
q
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H
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i
d
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T
t

.2 18.5 ± 0.5

.8 16.5 ± 0.5

.6 9.0 ± 0.5

elaxation). The computed relaxation times τcoh
c (q) are found

o increase exponentially with increasing pressure, with charac-
eristic activation volume �Vq values (obtained though a direct
pplication of Eq. (6)) as listed in Table 3 (at T = 413 K). A
irect comparison with the data of Table 2 for the relaxation
pectrum of the Rouse times confirms again that pressure exerts
ractically the same influence on all characteristic relaxation
imes. We also observe that in the temperature range between
10 and 430 K, and independently of the magnitude of the
avevector q considered, �Vq increases with decreasing T. For

xample, for q = 0.4 Å−1, its value increases from (17 ± 1) to
24 ± 1) cm3 mol−1 as the temperature is decreased from 430 K
own to 310 K, in excellent agreement with reported experimen-
al data in the literature [16].

. Single-chain intermediate incoherent dynamic
tructure factor, Sinc(q, t)

As already mentioned above, recent NS measurements
38–41] have indicated that when the self-motion of the protons
n a polymer chain is studied over an extended range of q values, a
rossover from a Gaussian to a non-Gaussian dynamic behavior
s observed. Indeed, for q values approximately less than 1 Å−1,

he relaxation times are measured to scale as τinc
c (q) ∝ q−2/β

q

inc

where β
q
inc is the stretching exponent of the corresponding

WW function) in accordance with the Gaussian picture of
hain relaxation. However, as the range of wavevectors q is
xtended to larger values (>1.5 Å−1) probing more localized
otions, a change in the slope is observed with the relax-

tion times following a different scaling law: τinc
c (q) ∝ q−2.

he crossover is located in the region of wavevectors where
he static structure factor S(q) presents its first or intermolecular
eak (for most polymers, this is at about 1–1.5 Å−1) and it is
ttributed to a dynamical heterogeneity, according to which, the
resence of spatially localized fast and slow regions gives rise
o different, dynamically distinguishable behaviors[43,44,47].
eviations from the Gaussian form of the self-part of the van
ove correlation function are often used as evidence for such a
ynamical heterogeneity.

Theoretically, incoherent NS data are analyzed in terms of the
ntermediate single chain incoherent scattering function, Sinc(q,

), obtained by taking n = m in Eq. (7):

inc(q, t) ≡ 1

N

∑
n

〈exp[iq · (Rn(t) − Rn(0))]〉 (10)
d
P
t

values, at P = 1 atm and T = 310 K. The dashed lines represent the best fits to
he simulation data with a KWW function, Eq. (9) in the main text.

Due to the different scattering cross sections of hydrogen and
arbon atoms present in the system, what is actually measured
n incoherent NS experiments is the self-motion of the protons.
his means that a direct comparison of MD simulation results
nd incoherent NS experiments is possible only if hydrogen
toms are explicitly present in the MD trajectories. Since our
tomistic model is a united-atom one, to make such a compar-
son possible hydrogen atoms should be explicitly considered;
his can be done by a posteriori placing them at their correct
ositions along the chain backbone following (for example) the
ethodology outlined in Ref. [34]. Typical plots of the Sinc(q, t)

unctions extracted by such a methodology are reported in Fig. 6.
he results have been obtained for three values of the wavevector
(= 0.4, 0.8 and 1.2 Å−1) at T = 310 K and P = 1 atm, by means
f Eq. (10) for each hydrogen in the simulated system. Simi-
arly to the Scoh(q, t) curves, the decay of the Sinc(q, t) curves is
escribed quite accurately by a KWW function of the form of
q. (9); Eq. (4) can then be used to compute the corresponding
orrelation times τinc

c (q). Here, it is important to note that, in
ost experimental studies, the value of the stretching exponent
q
inc used to fit the obtained spectra is taken to remain constant for
ll q values explored; for example, Frick et al. [4] fitted NS data
ith a KWW function by considering β

q
inc to be fixed, equal

o 0.45 (a value also close to other NS and DS experiments).
ere, we allowed β

q
inc to vary with q in order to optimize the

WW fits of our MD data; the results obtained are discussed
n Fig. 7 where the parameter β

q
inc is plotted against q for two

ifferent pressures (P = 1 atm and 1.5 kbar) along an isotherm
T = 430 K). Clearly, β

q
inc varies significantly with q [36,48,49].

he data presented in Fig. 7 also indicate that upon increasing
he pressure, the value of β

q
inc decreases slightly.

The dependence of the total correlation time τinc on q under
c
ifferent isothermal and isobaric conditions is shown is Fig. 8.
art a of the figure depicts the variation of τinc

c with tempera-
ure along an isobar, while Part b presents the variation of τinc

c
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Fig. 7. Variation of the fitting parameter β
q

inc with the wavevector q as obtained
from the best fits of the simulated Sinc(q, t) curves with a KWW function.

Fig. 8. q dependence of the relaxation time τinc
c as obtained from the present

MD simulations (symbols) at: (a) two different temperatures along an isobar,
and (b) two different pressures along an isotherm. The dashed lines serve as

guides for the eye to depict the regions were τinc
c (q) ∝ q

−2/β
q

inc and τinc
c (q) ∝

q−2, respectively.
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ith pressure along an isotherm, in a log–log plot. The dashed
ines in the figure correspond to the power laws τinc

c (q) ∝ q−2

high q region) and τinc
c (q) ∝ q−γ (low q region) and have been

dded as guides for the eye. The parameter γ shown in the
atter scaling corresponds to γ = 2/〈βinc〉, with 〈βinc〉 denoting
he average value of β

q
inc in the low and intermediate length

cales (〈βinc〉 ≈ 0.55 ± 0.60, depending on the temperature and
ressure conditions).

Our simulation results are clearly in support of the transition
bserved in NS experimental measurements from a dynamically
omogeneous region in the low q to a dynamically hetero-
eneous one in the high q region. In all cases, the transition
s located near 1.2–1.4 Å−1, which is exactly the regime of
avevectors where the first peak shows up in the S(q) versus
plot for the simulated cis-1,4-PB system and the given tem-

erature and pressure conditions (see, e.g., Figs. 12 and 16 of
ef. [19]).

In a recent experimental study, Frick et al. [4] observed that
he region of the heterogeneous dynamical behavior is becoming
ider as the pressure is increased. This is not entirely obvi-
us in Fig. 8b here, but clearly additional MD simulations at
onsiderably higher pressures are needed to elucidate this point
urther.

. Chain relaxation and zero shear rate viscosity

According to the prediction of the Rouse theory [32], the
elaxation times corresponding to each normal mode p should
cale with p as τp = τ1/p2 where τ1(=τR) is the Rouse or longest
hain relaxation time. Fig. 9 depicts how the ratio of p2·τp/τ1
cales with p. The relaxation times τp have been calculated
hrough the procedure explained in Section 2; i.e., they cor-

p
espond to correlation times τc defined through Eqs. (3) and
4). If the Rouse scaling is true then all curves shown in Fig. 9
hould fall on the same line corresponding to p2·τp/τ1 = 1. The
ituation is a little different: our MD-based computed relaxation

ig. 9. Scaling of p2·τp/τ1 with mode number p as extracted from our MD
imulations at different temperatures. The lines correspond to the cases where
2·τp/τ1 = 1 (based on the formal Rouse theory), and p2·τp/τ1 = 0.7.
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Fig. 11. Temperature dependence of the longest (Rouse) relaxation mode, τ1,
as obtained from the present MD simulations with the C128 cis-1,4-PB sys-
tem. For temperatures T > 225 K, the values τ1 have been obtained directly from
the decay of the time autocorrelation function for the 1st mode. For tempera-
tures T < 225 K, the values of τ1 have been obtained indirectly from the decay
of the time autocorrelation function of the intermediate modes using also that
p2·τp/τ1 = 0.7 (closed symbols). The two open symbols are the estimates for τ1
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ig. 10. Decay of the time autocorrelation function 〈Xp(t)·Xp(0)〉/〈Xp(0)2〉 for
he modes with p = 1, 2, 4 and 6, at T = 195 K and P = 1 atm.

imes are found to deviate from the Rouse scaling in the sense
hat the value of the dimensionless quantity p2·τp/τ1 depends
lightly on mode number p and it is always less than 1. It is
nteresting, however, to note that overall, p2·τp/τ1 attains a con-
tant value equal to 0.7 for all modes (except perhaps for the
nd or the 3rd), over the entire space of temperatures (above
nd below the melting point, Tm = 270 K) examined. That is, to
very good approximation, the Rouse mode relaxation times

s obtained from the KWW fittings of the time autocorrelation
unctions 〈Xp(t)·Xp(0)〉/〈Xp(0)2〉 obey a scaling law of the form
2·τp/τ1 ∼= 0.7. This is a very significant result because it can be
sed to extract the Rouse (or longest relaxation) time of the sim-
lated cis-1,4-PB system even at temperatures close to the glass
ransition regime (where τ1 attains values which are almost three
o four orders of magnitude larger than those that can be accessed
y MD simulations—a few microseconds in the best case) by
bserving the relaxation of the higher modes which relax much
aster (on time scales that can be tracked by a brute force appli-
ation of the MD method for a few microseconds, as is the case
ere). For example, Fig. 10 presents the time decay of the auto-
orrelation function 〈Xp(t)·Xp(0)〉/〈Xp(0)2〉 for p = 1, 2, 4 and 6
t T = 195 K and P = 1 atm. Clearly, in the time span of the MD
imulation (2.5 �s), the relaxation of coordinates with p = 1 and
is incomplete; however, that of the coordinates with p = 4 and 6

s complete (the corresponding values of 〈Xp(t)·Xp(0)〉/〈Xp(0)2〉
or these modes indeed fall to zero after 2.5 �s). Then, by using,
2·τp/τ1 ∼= 0.7, one can get a reliable prediction for τ1. Such a
ethodology is more accurate to follow compared to the usual

ractice in the literature (where one tries to get a prediction for
1 by extrapolating directly the function 〈Xp(t)·Xp(0)〉/〈Xp(0)2〉
or p = 1 to zero, which can lead to totally erroneous estimates
or τ1) and should be preferred.

Following the above methodology, in Fig. 11 we present the

redictions (closed symbols) for the longest relaxation time τ1 of
he cis-1,4-PB system, also for temperatures less than 225 K (for
emperatures above 225 K, the relaxation times have been calcu-
ated directly from our simulation data following the procedure

c

η

ased on the scaling of the formal Rouse theory (namely that p2·τp/τ1 = 1 for
ll mode numbers p). The line denotes the best fit to the simulation data with a
FT function, Eq. (5) in the main text.

escribed in Section 2). The two open symbols in the same figure
re the estimates that one would have obtained for τ1 at T = 195
nd 180 K if the Rouse scaling had been assumed (i.e., if, instead
f p2·τp/τ1 ∼= 0.7, we had assumed that p2·τp/τ1 = 1). The corre-
ponding best-fit parameter values of the modified VFT function
hat the Rouse relaxation times τ1 should obey (dashed line
n Fig. 11) are then obtained to be: log(τ0) = 5.98 ± 0.05 (ns),

= −4.9 ± 0.1, T0 = (98 ± 2) K. These should be compared to
hose obtained by directly analyzing the time decay of the cor-
esponding autocorrelation function at higher temperatures (see
able 1): τ1 is now predicted to “freeze” at T0 = (98 ± 2) K, i.e.,
t a temperature which is only 6 K lower than what had been pre-
icted before. This is a very interesting result, indicative of the
nternal consistency of the analysis of our simulation data (with
he modified VFT function) on the basis of a reliable procedure
or extracting τ1 at low enough temperatures from the relax-
tion of the intermediate normal coordinates, which overcomes
he inaccuracies of previous approaches (involving dangerous
xtrapolations of the time autocorrelation function for the first
ode itself by several orders of magnitude in time).
The reliable estimation of the Rouse relaxation time at low

nough temperatures offers us the opportunity to make also a
eliable estimate of a very important rheological parameter, that
f the zero shear rate viscosity,η0, of the simulated polymer.
ndeed, according to the Rouse theory, the value of τ1, controls
he value of η0 for an unentangled polymer (such as the C128

is-1,4-PB simulated here) through the following relation [32]:

0 = π2

12

ρRT

M
τ1 (11)
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Fig. 12. Temperature dependence of the system density as obtained from our
MD simulations with the C128 cis-1,4-PB system at P = 1 atm. The dashed lines
represent the best linear fits to simulation data before and after the break in the
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Fig. 13. Temperature dependence of the zero shear rate viscosity η0 of the sim-
ulated C128 cis-1,4-PB system, as calculated through Eq. (11). Closed symbols
represent the values of η0 extracted by estimating the Rouse relaxation time
through p2·τp/τ1 = 0.7. The two open symbols, on the other hand, represent the
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and other simulation results, the temperature dependence for all
lope at the lowest temperatures. From the crossing of the two lines the glass
ransition temperature is estimated to be equal to Tg = 166 K.

here ρ denotes the system density and M the molecular weight
f the unentangled system. The temperature dependence of the
ensity of the simulated system at P = 1 atm is shown in Fig. 12.
n this plot, we have also included density predictions from addi-
ional MD simulation runs at temperatures as low as 125 K. The
imulation data depicted in Fig. 12 demonstrate a change in the
lope of the line describing the temperature dependence of ρ for
temperature which is around at 166 K; this is the temperature
here the glass transition for the simulated cis-1,4-PB system

hould therefore be assigned on the basis of the present MD
redictions for the temperature variation of its density.

The corresponding predictions for the zero shear rate vis-
osity of the simulated C128 cis-1,4-PB system are illustrated
n Fig. 13. The results are shown as a function of the inverse
emperature (1/T) in a log-linear plot. Also shown in the fig-
re with the open symbols are the estimates that one would have
btained for η0 at T = 180 and 195 K if, instead of p2·τp/τ1 ∼= 0.7,
e had assumed that p2·τp/τ1 = 1. The temperature depen-
ence of η0 is captured quite well by a modified VFT function
dashed line in Fig. 13) with best-fit parameter values equal to
og(η0) = (7.2 ± 0.01) (Pa s), D = (−3.6 ± 0.1), T0 = (110 ± 1) K,
ndicative of the fragile [50,51] character of the cis-1,4-PB poly-

er. On the basis of rheological experiments, Tg is defined as
he temperature where η0 ≈ 1012 Pa s. According to the data pre-
ented in Fig. 13 and the best-fit VFT function parameters, this
alue for the simulated C128 cis-1,4-PB system is obtained for
temperature close to 135 K. Based on this result as well as

n our prediction for the break in the slope of the temperature
ariation of the density of the simulated system discussed in
he previous paragraph, we conclude that our estimation for the
lass transition temperature Tg of the simulated C128 cis-1,4-PB

ystem is that it lies between 135 and 166 K. This is in excellent
greement with reported literature data for the glass transition
emperature of 1,4-PB systems [52,53].

m
b
t

stimates for η0 if τ1 had been calculated according to the Rouse theory scaling,
amely that p2·τp/τ1 = 1 for all coordinates p. The dashed line denotes the best
t to the simulation data with a VFT function, Eq. (5) in the main text.

In the literature, a measure of the fragile character of a sub-
tance is provided by the fragility index m [54] defined through:

= d log(τ1)

d(Tg/T )

∣∣∣∣
T=Tg

or m = d log(η0)

d(Tg/T )

∣∣∣∣
T=Tg

(12)

A direct calculation of the fragility index for the C128 cis-1,4-
B system based on the data presented in Figs. 11 and 13 and the
stimate for the glass transition temperature obtained from the
emperature dependence of the zero shear rate viscosity (i.e.,
g ≈ 135 K) gives a value of m equal to 130. In the literature
54,55], typical values for the index m of a number of random
opolymer systems of 1,2-PB and 1,4-PB range between 84 and
33 (depending on their composition, i.e., on the relative fraction
f cis and trans content).

. Summary and conclusions

We have investigated the relaxation behavior of a C128 cis-
,4-PB system over its complete spectrum of characteristic
ength scales (terminal, intermediate and segmental) through
ong, atomistic MD simulations in an extended range of tem-
erature (from 430 K down to 165 K) and pressure (from 1 atm
p to 3.5 kbar) conditions. By denoting each CH2 and CH unit
resent in the cis-1,4-PB system as a different Rouse bead and
nalyzing the long atomistic MD trajectories at different ther-
odynamic conditions, we first explored the temperature and

ressure dependence of the relaxation times assigned to differ-
nt Rouse modes. In agreement with experimental observations
odes was seen to follow a VFT behavior while an Arrhenius
ehavior was seen to describe their pressure dependence. From
he slope of the lines representing the pressure dependence of
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he Rouse relaxation times, the activation volume �Vp was cal-
ulated and found to be in remarkable agreement with reported
xperimental measurements [16].

In a second step, we calculated the single chain intermediate
oherent structure factor Scoh(q, t) along different isothermal
nd isobaric conditions. By fitting the simulated curves with a
WW function, a relaxation time was assigned to a number
f values of the wavevector q analyzed. From the slope of the
urves describing the pressure dependences of this relaxation
ime, the activation volume �Vq was calculated and analyzed
s a function of q; �Vq was found to be almost identical to the
orresponding �Vp value from the normal mode analysis.

Our MD simulation results were next compared to available
ncoherent NS experimental data. To this end, hydrogen atoms
ere introduced along the chain in the atomistic trajectories

nd their self-motion was explored through calculations of the
ingle chain incoherent structure factor Sinc(q, t) for different
values, and also as a function of temperature and pressure.
y fitting the simulated Sinc(q, t) curves with a KWW func-

ion, the relaxation times corresponding to different q values
ere computed. By plotting them as a function of q, a transi-

ion from a homogeneous to a heterogeneous dynamic behavior
as revealed. Consistently with previous studies and experimen-

al measurements, this transition was seen to be located at the
egion where the static structure factor, S(q), presents its first
eak (around 1.2–1.4 Å−1) [6,40,56]. The q dependence of the
ncoherent relaxation times along different isobaric conditions,
p to P = 3.5 kbar, did not confirm the experimental observa-
ion [4] that heterogeneous region is expanded towards lower q
alues as the pressure is increased.

In the last stage of this work, a methodology was presented
hich allowed us to extract reliable predictions for the longest
r Rouse relaxation time and the zero shear rate viscosity of
he simulated system at temperatures around its glass transition
egion. Our MD simulation results support that the characteristic
ormal mode spectrum of relaxation times deviates slightly from
he scaling formally suggested by the Rouse theory in the sense
hat the dimensionless ratio p2·τp/τ1 is not equal to 1 for all mode
umbers p but depends slightly on p attaining values close to 0.7
or most of the modes. By assuming that the same scaling is also
ollowed at the lowest temperatures, we managed to calculate
rst the Rouse time and then the zero shear rate viscosity near

he glass transition temperature. Both τR and η0 were observed
o follow a VFT behavior revealing the fragile character of the
is-1,4-PB polymer. An estimation for the fragility index m of
he simulated cis-1,4-PB system was also reported.
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