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Binary blends of polystyrene with oligostyrene are perfectly miscible (� ¼ 0) yet dynamically

heterogeneous. This is evidenced by independent probing of the dipole relaxation perpendicular to the

backbone by dielectric spectroscopy and molecular dynamics. The self-concentration model with a single

intramolecular length scale qualitatively describes the slower segmental dynamics. A quantitative

comparison based on MD, however, requires a composition-dependent length scale. The pertinent

dynamic length scale that best describes the slow segmental dynamics in miscible blends relates to

both intra- and intermolecular contributions.
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Thermodynamically miscible polymer blends display a
broadening of the relaxation spectra with respect to
homopolymers and two separate relaxation processes
that reflect the component’s segmental dynamics. Both
are considered as signatures of dynamic heterogeneities
[1–6]. Theoretical models [7–17] have been considered
in explaining these experimental features. In all cases,
increasing the dynamic asymmetry, i.e., by increasing the
difference in the glass temperatures (�Tg) of the parent

homopolymers, enhances the dynamic heterogeneity.
However, polymer mixtures with large disparity in their
mobility are usually composed from monomers of differ-
ent polarity and/or rigidity that tend to phase separately.
In addition, even the known miscible blends show a
miscibility window only for certain molecular weights,
compositions, temperatures, and pressures. In the quest
for the truly miscible blend with a large dynamic asym-
metry an obvious choice is mixtures of a homopolymer
with its oligomers.

Dielectric spectroscopy (DS) [4,6,8,11,12,14,15,18–24]
and molecular dynamics (MD) simulations [16,17,25–32]
represent versatile and complementary tools in studying
segmental dynamics in polymer blends. In this Letter we
report on the local dynamics in perfectly miscible blends of
polystyrene with oligostyrene possessing a large dynamic
asymmetry (�Tg ¼ 123 K) by MD and DS spanning about

12 decades in time. The blends display clear signatures of a
dynamic heterogeneity as evidenced by the bimodal re-
laxation in both MD and DS. This allowed (i) testing the
validity of the self-concentration model [9] and (ii) an
independent and quantitative account for the slower dy-
namics through MD. The relation of the corresponding
dynamic length scale with the static length scale corre-
sponding to the static structure factor for the polymer
chains is explored.

The studied homopolymer PS68 had Mw ¼ 7150 g=mol
and Mn ¼ 6800 g=mol (about 65 monomers). The

oligomer PS3 had Mw ¼ Mn ¼ 370 g=mol. The tacticity
of PS68 was obtained from

13C NMR, giving 18% iso, 46%
atactic, and 36% syndiotactic sequences. The blend dy-
namics was investigated by probing the dipole perpendicu-
lar to the backbone by DS and MD. The dielectric loss
curves in the blend, shown in Fig. 1, are clearly bimodal
with ‘‘slow’’ and ‘‘fast’’ processes reflecting the PS68 and
PS3 relaxations in the blends. Two Havriliak-Negami func-
tions together with the conductivity contributions at lower
frequencies or high temperatures are necessary to decon-
volute the spectra (see the Supplemental Material [33]
for the analysis of the DS and MD dynamics). Details
about the all atom MD simulations employed in this study
and the equilibration procedure are given elsewhere [30].
In MD simulations, the segmental dynamics of polymer

melts can be studied by calculating time-autocorrelation
functions of a vector, vb, along the monomer. Here we
choose a vector that connects the carbon of the backbone
CH group with the center of mass (CM) of the phenyl ring
[30]. In more detail, segmental dynamics is quantified, in
both MD and DS, through the first Legendre polynomial,
P1ðtÞ ¼ hcos½�ðtÞ�i, where � is the angle of vb vector at
time t relative to its original position.
Figure 2 depicts the P1ðtÞ autocorrelation curves of the

C-CM ring for the blends and the respective homopoly-
mers at 463 K obtained from MD. P1ðtÞ exhibits a small
rapid decay at short times (t < 10–100 ps) followed by a
rather slow decorrelation at later times. This short-time
regime (not shown here) corresponds to a primitive (bond
vibrations and angle librations) relaxation (Debye-Waller
factor), whereas the long-time regime corresponds to the
segmental relaxation. In agreement with DS, bimodality is
evident in MD simulations as well. The P1ðtÞ data
were fitted (for times t > 10 ps) by a Kohlrausch-
Williams-Watts (KWW) stretched-exponential function
PðtÞ ¼ A exp½�ðt=�KWWÞ�� where, �KWW, is a character-
istic relaxation time, � the stretch exponent, and A a
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preexponential factor that takes into account relaxation
processes at very short time scales. The segmental corre-
lation time �s, defined as the integral of the above equation,
can be calculated numerically and is presented below
in Fig. 3. Fits of the simulation data for times above about
5–10 ps are included in Fig. 2 with lines. Note that a
modified KWW expression, that describes fast relaxation
modes with an additional exponential term, gives very
similar values for both �KWW and �; see Supplemental
Material [33]. The comparison of the stretch exponent,
obtained independently from MD [Eq. (1)] and DS
(Supplemental Material [33]) suggests the broadening of
the slow component in the blend. This is explained by the
increasing concentration fluctuations [8] on approaching
the glass temperature of the slower component.
Understanding the complete T dependence of the distribu-
tion requires knowledge of the separate contribution from
temporal and spatial heterogeneities [34].

The segmental dynamics from MD and DS comprising
13 orders ofmagnitude (for the 3mer) are directly compared
in Fig. 3. The �ðTÞ conform to the Vogel-Fulcher-Tammann
equation, � ¼ �0 exp½B=ðT � T0Þ�, with parameters sum-
marized in Table I of the Supplemental Material [33] (these
lines are not shown in Fig. 3 for clarity).
According to the ‘‘self-concentration’’ model of Lodge

and McLeish (LM) [9], the average composition of the
local environment around any chosen segment is enriched
by the same species because of chain connectivity effects.
Each species will experience a different average local
environment and to the extent that the glass temperature
is sensitive to composition, each polymer will sense its
own composition-dependent glass temperature. The rele-
vant length scale in evaluating the self-concentration is the
Kuhn length (lK). The self-concentration of component i is
determined from the volume fraction occupied by mono-
mers in one Kuhn length inside a volume VK ¼ lK

3 as
’self;i ¼ C1Mo=k�NAVk where C1 is the characteristic

ratio,Mo is the repeat unit molar mass, and k is the number
of backbone bonds per repeat unit of the component i, and
NA is the Avogadro number. The model associates the
average local concentration of each component with a local
glass temperature,Tg;eff ¼ Tgð’Þj’¼’eff

. The effective glass

temperature Tg;eff is determined from the macroscopic

Tgð’Þ but now evaluated at’eff , which for two components

A and B is defined as

’eff;A ¼ ’self;A þ ð1� ’self;AÞ’A;

’eff;B ¼ ’self;B þ ð1� ’self;BÞ’B;
(1)

where ’A and ’A are the bulk volume fractions of A and B,
respectively. Lipson and Milner [32] proposed a modifica-
tion of the above expression that resulted in a self-
consistent definition (i.e., self-consistent Lipson Milner,
SCLM):

100 101 102 103 104 105 106
0,0

0,2

0,4

0,6

0,8

1,0

 3mer (pure)
 3mer (25/75)
 3mer (50/50)
 3mer (75/25)
 65mer (pure)
 65mer (25/75)
 65mer (50/50)
 65mer (75/25)

P
1(t

)

time (ps)

FIG. 2 (color). Time correlation function P1ðtÞ for the PS 3mer
and PS 65mer (PS68) studied here from MD. The lines are KWW
fits (T ¼ 463 K).
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FIG. 1 (color online). Dielectric loss
plotted as a function of frequency for
the PS3 oligomer (upper left, tempera-
tures in the range from 237.15 to
283.15 K), the 75=25 blend (upper right,
temperatures in the range from 319.15 to
336.15 K), the 50=50 blend (lower left,
temperatures in the range from 281.15 to
303.15 K), and the 25=75 blend (lower
right, temperatures in the range from
265.15 to 291.15 K). Lines are the result
of fits to a summation of two Havriliak-
Negami functions.
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’eff;A ¼ ’self;A þ ð1� ’self;AÞp;
’eff;B ¼ ’self;B þ ð1� ’self;BÞð1� pÞ: (2)

In the above relation, p, the probability that an inter-
molecular neighbor within a volume VK is of type A
regardless of the type of the central atom is given by

p ¼ ’Að1� ’self;AÞ
’Að1� ’self;AÞ þ ’Bð1� ’self;BÞ : (3)

For the macroscopic composition dependence of the
glass temperature the model suggests the Fox equation
[23]. However, the Fox equation cannot describe the
‘‘effective’’ Tg values in blends, the latter measured by

DSC. Here we employed the Gordon-Taylor equation
instead (with the value of the adjustable parameter
K ¼ 3:08).
In Fig. 3 we test the SCLM model predictions for the

slow and fast component dynamics against the full �ðTÞ
dependence. The three Arrhenius relaxation maps display
the relaxation times of the PS68, PS3 homopolymers and
three PS68=PS3 blends together with the SCLM model
predictions [Eq. (2)] for the slower component (dash-dotted
lines).’self for component A (PS68) was calculated through
the model using C1 ¼ 9:61, M0 ¼ 0:104 kg=mol, k ¼ 2,
� ¼ 986 kg=m3, lK ¼ 1:48 nm resulting in ’self;A ¼ 0:26.
It can be seen that the SCLM model predictions are in
qualitative agreement with the slow PS68 segmental dy-
namics in the blends but not in quantitative agreement.
Evidently, a single length scale cannot describe the full
�ðTÞ dependence for all blend compositions. As for the
relevant length scale for the oligomer (PS3), we can employ
the end-to-end distance of l ¼ 0:65 nm (r ¼ 0:4 nm; see
below for the definition) from simulations. However,
Eq. (3) gives an unphysical value of ’self;B (>1) for such
a length scale. For both segmental dynamics in the blends
we have further assumed the Vogel-Fulcher-Tammann
equation for �ið’eff ; TÞ, with identical Bi and �0;i parame-

ters as for bulk PS68 and PS3 (B ¼ 1140 K and �0 ¼
3:02� 10�11 s for PS68 and B ¼ 1680 K and �0 ¼ 3:63�
10�14 s for PS3) where only the ‘‘ideal’’ glass temperature,
T0;ið’effÞ ¼ T0;i þ ½Tg;ið’effÞ � Tg;i�, varies with composi-

tion. T0;i is the ideal glass temperature for homopolymers A
or B and T0;ið’effÞ is the ideal glass temperature for each

component in the blends. In addition, one can notice a
peculiar T dependence (nearly Arrhenius) of the fast re-
laxation times in the more asymmetric PS68=PS3 75=25
blend [Fig. 3(a)]. This has been discussed in the literature as
reflecting the dynamics of the faster component that is now
confined within the frozen domains of the slower compo-
nent [35]. Cleary, the model does not take into account such
confinement effects that can lead to a Arrhenius tempera-
ture dependence.
In view of these deficiencies associated with the SCLM

model, we employ MD simulations as a guide in predicting
the effective composition for each component in the blends
that best fit the combined DS/MD �ðTÞ dependence. In
more detail, from the MD simulations we directly calculate
apparent distance dependent self- and effective concentra-
tions defined as

’self;iðrÞ ¼ hMintra
i ðrÞi

hMAðrÞ þMBðrÞi ;

’eff;iðrÞ ¼ hMiðrÞi
hMAðrÞ þMBðrÞi ;

(4)
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FIG. 3 (color). Arrhenius relaxation map of the segmental
dynamics in the homopolymer PS68 (open squares) and PS3
(open circles) and the PS68=PS3 blends (triangles) with compo-
sition: 75=25= (top), 50=50 (middle), and 25=75 (bottom)
obtained from MD (higher frequencies) and DS (lower frequen-
cies). The slow and fast segmental dynamics in the blends are
shown with filled and open symbols, respectively. In the blends
the solid and dashed lines are fits based solely on MD predictions
for self- and effective compositions Eq. (4) of the slow and fast
dynamics using ’self ;A ¼ 0:48 and ’self ;B ¼ 0:74. The dash-
dotted black line is the comparison to the SCLM model
Eq. (2) with ’self ;A ¼ 0:26. Notice the Arrhenius T dependence
for the fast segmental dynamics in the 75=25 blend (confinement
effects).
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where MiðrÞ and Mintra
i ðrÞ are the total and the intramolec-

ular atom mass of neighbors of type i (A or B) within a
sphere with radius r around a central atom of type i.
Brackets denote statistical average. Furthermore, we
can also calculate effective concentrations by employing
Eq. (1) (LM model) and Eq. (2) (SCLM model) using the
values for ’self;i and p calculated directly from the MD

simulations.
In Figs. 4(a)–4(d) we present the MD result for self- and

effective composition denoted as’eff;i MD,LM. and SCLM,

calculated, respectively using Eqs. (4) and (1), or (2).
Self-concentration, as expected, is much larger for 65mer
than for 3mer for a given length scale and does not depend on
the concentration. Notice that ’eff;i obtained through MD

differs substantially from theLMmodel. This is in agreement
with earlierMD simulations that emphasized the importance
of distributions of intramolecular concentrations on the dy-
namics especially in dilute blends [17]. A direct comparison
of the simulation with the LM model can be made by
calculating the composition within a sphere with the same

volume as an lK
3 cube, i.e., within a radius of r ¼ lK=2 �

ð6=�Þ1=3 ¼ 0:9 nm, resulting in ’self;A � 0:48 [Fig. 4(a)].

For the oligomer (PS3), we can employ theMDpredictions at
the relevant length scale (r ¼ 0:4 nm) resulting in ’self ;B ¼
0:74 [Fig. 4(a)].

According to MD, a quantitative description of the full
�ðTÞ for the slower component, as shown in Fig. 3 with the
color solid lines, requires ’eff;A ¼ 0:82, 0.64, and 0.48,

respectively, for the 75=25, 50=50, and 25=75 blends.
The extracted (Fig. 4) dynamic length scale is plotted in
Fig. 5 as a function of blend composition. Evidently, the
dynamic length scale decreases with increasing polymer
concentration (PS68). In the same figure we plot (i) the

purely intramolecular length scale from the LMmodel (lK)
and (ii) the concentration dependence of the pair atom-
atom correlations in the intermolecular pair distribution
function, gðrÞ, representing solely polymer correlations
(PS68). The latter shows a d� ’�0:6 dependence that
corresponds to the good solvent scaling for the blob size
in concentrated solutions in a crossover regime to the melt

(�� ’�=1�3� with �eff � 4=5). The dynamic length scale,
has a composition dependence (’�0:26), intermediate to the
purely intermolecular (’�0:6) and intramolecular (’0)
length scales. This suggests that both interactions should
be taken into account in understanding the dynamics of the
slow segmental dynamics in miscible blends.
Despite the success in understanding the slow segmental

dynamics in the blends, the same cannot be said about the
oligomer dynamics. The extracted length scales that best
describe the �ðTÞ of the fast component (dashed lines in
Fig. 3) exceeds the oligomeric end-to-end distance (lengths
of 1.2, 0.9, and 2.2 nm are obtained for the 75=25, 50=50,
and 25=75 blends).
In conclusion, binary blends of polystyrene with oligos-

tyrene display dynamic heterogeneity at the segment level
as evidenced by independent probing of the dipolar relaxa-
tion by dielectric spectroscopy and MD simulations. The
self-concentration model with a single intramolecular
length scale describes the segmental dynamics of the
slow component in the blend with a ’self;A � 0:26, how-
ever, only qualitatively. A quantitative description requires
a composition-dependent length scale. MD simulations of
the effective composition coupled with the �ðTÞ depen-
dence provide the relevant dynamic length scale. The latter
exhibits a distinct concentration dependence, which is
weaker as that of atom-to-atom correlations in the

(a) (b)

(c) (d)

0 2 4 6 8 10 12 14 16 18 20 22 24
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

φ se
lf

r (Å)

φ self,A 50-50

φ self,B 50-50

φ self,A 75-25

φ self,B 75-25

φ self,A 25-75

φ self,B 25-75

0 2 4 6 8 10 12 14 16 18 20 22 24
0.4

0.5

0.6

0.7

0.8

0.9

1.0

φ ef
f 5

0/
50

r (Å)

φ eff,A MD

φ eff,B MD

φ eff,A LM

φ eff,B LM

φ eff,A SCLM

φ eff,B SCLM

0 2 4 6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

φ ef
f 7

5/
25

r (Å)

φ eff,A MD

φ eff,B MD

φ eff,A LM

φ eff,B LM

φ eff,A SCLM

φ eff,B SCLM

0 2 4 6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

φ ef
f 2

5/
75

r (Å)

φ eff,A MD

φ eff,B MD

φ eff,A LM

φ eff,B LM

φ eff,A SCLM

φ eff,B SCLM

FIG. 4 (color). (a) Self-concentration
for all binary blends and
(b)–(d) effective concentrations for the
different blends within a sphere as a
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through MD simulations Eq. (4), LM
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intermolecular pair correlation functions corresponding
solely to the polymer. These results suggest that the perti-
nent length scale that best describes the slow segmental
dynamics in miscible blends relates to both intra- and
intermolecular contributions.
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