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ABSTRACT: We present a molecular coarse-graining approach applied to polystyrene which obtains both
the bonded and nonbonded interactions of the coarse-grained model from the sampling of isolated atomistic
chains and pairs of oligomers. Atomistic melt properties are not used in the parametrization. We show
that the coarse-grained polystyrene model not only predicts melt properties, including the melt packing and
the density between 400 and 520 K, in satisfactory agreement with the atomistic model, but also reproduces
the local chain conformations of atactic as well as stereoregular polystyrene. The model takes into account
and reproduces correlations between neighboring bonded degrees of freedom and therefore reproduces the
conformations of detailed atomistic chains in the melt on all length scales.

1. Introduction

Coarse-grained (CG) polymer models for specific systems
significantly extend the scope and applicability of molecular
simulations in polymer science. Systematic coarse-graining
approaches have received significant attention in recent years
and usually obtain the parameters of the simplified CG model
from simulations of a more detailed (all-atom or united-atom)
model.1-19 In combination with mapping procedures that link
the different models, hierarchical simulations offer new oppor-
tunities to studying structure-property relations of chemically
specific systems.

The development of CG particle models is an active field of
research in different communities.7 The common approach to
obtain CG molecular models is to merge groups of chemically
connected atoms into “superatoms” or CG beads (see Figure 1)
and to derive effective CG interaction potentials by averaging
over the atomistic degrees of freedom. The number of real atoms
that are represented by one CG bead, the degree of coarse
graining, can vary from a few atoms per bead up to models
wheremanymonomers are represented as a big blob8,9 or awhole
chain is modeled by an ellipsoid.10 The choice of the appropriate
model depends on the problem considered. If the degree of coarse
graining is too high, the CG model may not be capable of
describing properties linked to local details, for example, the
conformation and packing of chain segments in themelt. Here we
shall be concerned with CGmodels as the one shown in Figure 1.
Although previously developed coarse-graining procedures yield
CG models that are perfectly suited to equilibrate large length
and time scales in molecular dynamics (MD) simulations, the
models have limited predictive power (they cannot easily be
transferred to conditions other than those for which they were
developed). Limited transferability, apart from being inherent to
any atomistic or CG model, is also owing to the coarse-graining
method employed. More specifically, nonbonded bead-bead
interactions of the CG model can be developed to reproduce
target properties of a detailed-atomistic system (e.g., the

bead-bead radial distribution function in the amorphous melt).
With these potentials, however, it remains unclear if other pro-
perties can be reproduced which have not been used in the design
of the potential. It also remains unclear if the coarse-graining
procedures reported so far are sufficiently accurate to reproduce
the chain conformations at each scale ranging between the local
scale of a few repeat units and the global scale of the entire
polymer. In this respect another unresolved issue is whether
changes in conformation due to variations in stereoregularity
can be realistically described on each of these scales with a single
CG “mapping scheme”. This question remains unresolved also in
biomolecular simulations where only until very recently preli-
minary attempts have been made to derive CG potentials from
atomisticmodelswhich are capable of predictivelymodeling local
conformations (secondary structure) and changes thereof.4,5 In
this paper we describe a coarse-graining procedure for stereo-
regular polystyrenes yielding a CG model with greater predict-
ability than the models reported so far.

Polystyrene (PS) is one of the most common commercial
polymers. It is widely studied and an example of the large family
of vinyl polymers. Different CG models for PS have previously
been reported.11-16 Several models use a 1:1 mapping scheme in
which one CG bead represents one monomer.11-14 Even though
some of these models keep information about the chain stereo-
sequences, they are only used to describe atactic polystyrene.
All these models use iterative Boltzmann inversion (IBI)17 to
obtain the nonbonded interaction potentials. In the IBI method
an initially guessed potential is iteratively refined until radial
distribution functions (RDF) from CG simulations reproduce
the target RDFs from atomistic melt simulations. In addition
to theRDFs from atomistic simulations, the pressure can be used
as a target quantity to be reproduced by the IBI potentials.
Our previous polystyrene models15,16 instead used repulsive
(shifted) Lennard-Jones-type potentials which were tuned to
fit RDFs obtained from atomistic melt simulations. These
potentials turned out to be well-suited for the problems studied
in these works and offered the computational advantage of
(among others) being combined with short interaction cutoffs.
Obviously, they cannot be used to study systems under ambient*Corresponding author. E-mail: vandervegt@csi.tu-darmstadt.de.
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pressure conditions or be applied to study interfacial phenomena
and formation of ordered structures driven by enthalpic interac-
tions.

In the following section we describe a coarse-graining proce-
dure that is based on detailed all-atom simulations of stereoreg-
ular PS sequences in vacuum. One advantage of this approach is
that it is computationally inexpensive. More importantly, how-
ever, we do not use information on properties of the melt state
(that we wish to describe with the model) as input in the
development of the effective potentials. The bonded as well as
nonbonded CG potentials are obtained from independent simu-
lations and as such are strictly separated. With this approach we
aim at developing CG polymer models that exhibit greater
transferability. In the results and discussion section we report
conformational properties of atactic, syndiotactic, and isotactic
PS at the level of several repeat units up to the level of the overall
chain dimension.Wealso report properties ofmolten polystyrene
as predicted by the CGmodel. The results are compared with the
available experimental data.

2. Hierarchical Modeling

2.1. General Coarse-Graining Procedure. The assumption
we start from is that the total potential energy,UCG, for aCG
chain can be separated in a bonded part, Ubonded

CG , and in a
nonbonded part, Unonbonded

CG

UCG ¼
X

UCG
bondedþ

X
UCG

nonbonded ð1Þ

After choosing a mapping scheme, we derive the bonded and
nonbonded interaction potentials separately. For the bonded
interactions the approach is based on sampling distribution
functions from atomistic simulations of isolated random
walks; for the nonbonded interactions the approach is based
on sampling potentials of mean force between two short
oligomers in vacuum. We do not use atomistic simulations
of the condensed, melt state to develop our CG force field.
Hence, our approach is principally different from CG meth-
ods that use condensed phase structures as a prerequisite input
for the parametrization of the model. The typical methodol-
ogy used here can be summarized in the following steps:

1. Atomistic MD or Monte Carlo (MC) simulations of
isolated random walks are performed. At this point only
local interactions are taken into account. For MD a Lange-
vin thermostat is used to ensure proper equilibration.

2. After sampling a large number of independent confor-
mations for the PS random walks at a given temperature T,

probability distribution functions PCG(r,θ,φ,T) are ob-
tained, which are, in general, unknown functions of the
CG bond length r, bending angles θ, and dihedral angles φ.
The standard way to proceed in order to calculate the CG
force field parameters is to assume that PCG(r,θ,φ,T) fac-
torizes as

PCGðr, θ,φ,TÞ ¼ PCGðr,TÞPCGðθ,TÞPCGðφ,TÞ ð2Þ
This assumption is only valid if the internal CG degrees of
freedom are uncorrelated. In this respect, the choice of the
CG mapping scheme is crucial. We will discuss in the
following that we find correlations in our model, but by
carefully choosing beyond which distance to cut off local
interactions along the backbone in the atomistic sampling
(step 1) and choosing a suitable set of bonded interactions,
our CG model is able to preserve the correlations that the
atomistic model shows. This enables us to proceed with this
methodology.

3. Having the probability distribution functions, the CG
bonded potentials are given from the inverse Boltzmann
relations

UCGðr,TÞ ¼ -kBT ln PCGðr,TÞ ð3Þ

UCGðθ,TÞ ¼ -kBT ln PCGðθ,TÞ ð4Þ

UCGðφ,TÞ ¼ -kBT ln PCGðφ,TÞ ð5Þ
In the above expressions the probability distribution func-
tions for bond length and bending angle are normalized by
taking into account the corresponding volume elements r2

and sin θ.
4. Finally, the CG force field is completed by adding a

nonbonded interaction potential. We previously used Len-
nard-Jones-type potentials with heuristically modified ex-
ponents.16 In this work we develop effective nonbonded
potentials in a tabulated form, based on calculations of
potentials of mean force between two short oligomers.

2.2. Mapping Scheme. The mapping scheme was already
used for the previous model for polystyrene.16 It maps each
monomer onto two coarse-grained, spherical beads of dif-
ferent types (see Figure 1):

• Bead A contains carbon atoms in the backbone con-
necting two subsequent phenyl rings and hydrogen
atoms attached to these carbon atoms. TheCHgroups
in the backbone to which the phenyl rings are at-
tached, belong to two neighboringAbeads. The center
of bead A is the center of mass of the CH2 group and
the two CH groups, which are taken with half of their
masses.

• Bead B contains the atoms of the phenyl group. The
center of bead B is mapped onto the center of mass.
The beads are connected by CG bonds A-B between
the alternating types of beads. This leads to a chain
without side groups. There are no bondsA-AorB-B
between neighboring beads of the same type.

In the development of the CG model we distinguish
between the different tacticities of polystyrene. Pairs of two
subsequent monomers in PS can have two different orienta-
tions (see Figure 2). In a meso diad both phenyl rings are
pointing to the same side (assuming all-trans configuration
of the backbone). A chain consisting only of meso diads is
isotactic. In racemic diads the phenyl rings point to opposite
sides. A chain consisting only of racemic diads is syndiotac-

Figure 1. Mapping scheme: eachmonomer ismapped onto two coarse-
grained beads. Bead A is the center of mass of the CH2 group and the
two CH groups, weighted with half of their masses. Bead B is the center
of mass of the phenyl group. Figure created with VMD.20
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tic, having the phenyl rings along the chain pointing to
alternating sides. In atactic chains the types of diads are
randomly distributed.

The choice of a mapping scheme is not unique, and in the
case of the 1:1 mapping scheme different choices were taken:
Milano and M€uller-Plathe11,12 center the superatoms on
methylene carbons and distinguish between two types of
beads according to the diad they belong to. Thismodel is able
to keep information about the chain stereosequences while
reducing the description of local conformations to angular
potentials. The model of Qian and co-workers13 places the
superatoms on the center of mass of the monomers. Two
different bead types represent the orientations of the side
groups and keep information about the chain stereose-
quences. It is also used to study mixtures of PS and ethyl-
benzene.13 Sun and Faller14 center the superatoms on the
backbone carbons towhich the phenyl rings are attached and
use a single type of bead to describe atactic polystyrene.

2.3. Bonded Potentials. Potentials for bonded degrees of
freedom of the CG model are obtained by direct Boltzman
inversion (see eqs 3-5) of distributions obtained from all-
atom simulations of single chains in vacuum using stochastic
dynamics. All single chain sampling runs were performed
with 25-mers at a temperature of 503 K using the all-atom
force field of M€uller-Plathe.21 The bonded potentials are
developed for isotactic and syndiotactic polystyrene sepa-
rately. Our aim is to still use the ansatz of factorizing the
distribution functions.

Since the distribution functions of the bonded degrees of
freedom are determined by interactions along the chain at a
short-range only, we exclude long-range interactions and
effectively sample random walks. The range of the atomistic
potential used in this sampling procedure critically deter-
mines our ability to reproduce “local conformations” at the
level of a few neighboring repeat units and is further dis-
cussed below.

2.3.1. Interaction Range along the Chain. In the previous
CG model16 bonded interactions up to 1-4 torsions were
taken into account. All longer ranged CG interactions start-
ing from 1 to 5 upward were modeled by repulsive non-
bonded interactions, which were chosen the same as those
used to describe interchain nonbonded interactions between
CG beads in the melt. To develop the bonded potentials of

theCGmodel, an all-atommodel of the chainwas sampled in
vacuum with an atomistic force field that excludes all
atom-atom nonbonded pair interactions along the chain
falling outside the “1-4 range” of the CG chain description.
We investigated the influence of the “interaction range”
applied in the sampling of the single chains closer.

The influence of the interactions that we include in the
sampling on the local distributions is shown in Figure 3 for
the example of the BAB angle in fully isotactic and syndio-
tactic chains. We see that in both cases the form of the
distribution changes for interaction ranges up to 1-5 and
stays the same if we add atomistic interactions corresponding
to the 1-6 CG level or beyond. By including the interaction
range 1-5 we take into account the pentane effect between
the backbone atoms in the A beads, and we avoid an overlap
of the phenyl groups of the B beads in the 1-5 range.

We tested whether a CG model of an isolated chain with
bonded potentials sampled with an “1-4 interaction range”
andCGnonbonded interactions for the 1-5 neighbors could
reproduce the distributions from a sampling with an “1-5
interaction range”. We found that the distributions do not
agree but stay the same as in the atomistic sampling with the
“1-4 interaction range”.

2.3.2. Correlations in Single Chains. The reason why the
distributions ofCGangles and dihedral angles do not change
their general form when the “interaction range” is extended
beyond 1-5 becomes clear if we look at dihedral-dihedral
correlation plots in Figure 4. These plots show the prob-
ability distribution of two subsequent CG dihedral angles,
whichwe find by sampling a single atomistic chain in vacuum
and analyzing it in the CG description.

The longer we choose the range of interactions to include,
the more combinations of dihedral angles are suppressed in
the sampling of the local distributions. But as soon as the
1-5 interactions are included, we sample always the same
combinations even if we include additional longer ranged
interactions. This means that the interactions up to 1-5
determine correlations of the single chains as well as local
conformations, as described before. Interactions between
1-6 neighbors and above might slightly influence the peak
heights but not the peak positions. Beyond 1-5, the addi-
tional interactions only contribute to excluded volume ef-
fects. Since we describe the excluded volume interaction
separately with nonbonded potentials (section 2.4), it seems
reasonable to include interactions at least up to 1-5 in our
sampling of the single chains from which the CG bonded
potentials are obtained. We performed the atomistic sam-
pling of single chains with all interactions included up the
1-6 CG level in the derivation of the CG bond, angle, and
torsion potentials. By that we extend the path, that was
followed before,15,16 to include only interactions up to 1-4 in
the atomistic single-chain sampling. Graphs of the bonded
potentials can be found in the Supporting Information.

2.3.3. Bonded Interactions beyond 1-4.After extending the
range of interactions in the sampling of the atomistic chains,
we describe in the following our method to obtain bonded
potentials in a range beyond 1-4. The introduction of CG
bonded potentials beyond 1-4 improves the model to re-
produce local conformations, in case these potentials are
different from the CG nonbonded pair potentials, which
would be used otherwise. This difference can be expected,
since neighboring beads belonging to the same chain will
have a different average orientation toward each other than
two close beads belonging to different chains, which is the
case for which the CG nonbonded potentials are developed.
The second aim of the longer ranged bonded potentials is to
induce a stiffness of the chain, which compares to the

Figure 2. Diads in polystyrene: in racemic diads (upper) the phenyl
rings point to different sides, and inmeso diads (lower) they point to the
same side (assuming an all-trans configuration of the backbone).
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stiffness of the atomistic chain. These potentials are devel-
oped starting with 1-5 potentials and can be extended
stepwise to 1-6 or even 1-7 interactions.

These bonded potentials potentials are distance dependent
pair potentials, contrary to angular and torsional potentials,
which act on groups of three or four CG beads. The
difference between the 1-5 interactions and the shorter
bonded interactions is that by construction they are not
completely decoupled, which was one of the basic assump-
tions before. Given a certain set of values for intermediate
bonds, angles, and dihedral angles, the distance between two

1-5 neighbors in the chain is completely determined. On the
other hand, a certain 1-5 distance can be realized with
several combinations of intermediate bonds, angles, and
dihedrals. The fact that 1-5 distances and shorter bonded
interactions are not decoupled can be seen as well, if we look
at a single CG chain in vacuum, which has only bonded
potentials for CG bonds, angles, and dihedral angles and no
bonded or nonbonded interactions with a longer range. If for
one degree of freedom, say, an angle, we switch off the
potential, the sampling of the CG chain will show a uniform
distribution for this degree of freedom (after normalizing

Figure 3. Distributions of BAB angles in fully isotactic (left) and fully syndiotactic (right) single chains in vacuum; the interaction range in these all-
atom runs was varied to correspond with CG interactions in a range from 1-2 to 1-8; for 1-5 and above the peak positions stay the same. All
distributions in this figure as well as all following distributions for CG degrees of freedom in this work are normalized.

Figure 4. Combinations of two subsequent CG dihedral angles in a single, isotactic chain. The two dihedrals share three beads, which form an angle
BAB, and include as fourth bead the A beads next to this BAB angle. Shown are the combinations of dihedral angles with varied range of interactions
along the chain. 1-3 interactions (upper panel, left), 1-4 interactions (upper panel, right), 1-5 interactions (lower panel, left), 1-6 interactions (lower
panel, right). By including the interactions 1-4 and 1-5 several combinations are suppressed. For better visibility the dihedral values in the range from
-180� to 0� are shifted to the range from 180� to 360�.
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with sin θ). The sampled distribution of 1-5 distances,
however, will not be uniform, although there is no direct
interaction present between the two beads. This influence of
the intermediate interactions up to 1-4 has to be taken into
account,whenwedevelop the 1-5CGpotentials. InFigure 5
these distributions are shown for A-A and B-B 1-5
distances in a isotactic CG chain, having only bonded
interactions up to 1-4 (dashed-dotted line), denoted by
Pcorrecting
1-5,A-A(r,T) for the A-A case. If we only Boltzmann-

invert the 1-5 distributions (dashed lines) from the sampling
of an atomistic chain including the 1-5 range, denoted by
Ptarget
1-5,A-A(r,T), we would double count the contribution of

the CG bonded interactions up to 1-4 (dashed-dotted line).
Therefore, we Boltzmann-invert the 1-5 distance distribu-
tion from a single all-atom chain, which is our target
distribution, and subtract the Boltzmann-inverted 1-5 dis-
tribution of a CG chain having only bonded interactions up
to 1-4:

UCGðr,TÞ ¼ -kBT ½ln P
1-5,A-A
target ðr,TÞ-ln P

1-5,A-A
correcting ðr,TÞ�

ð6Þ
With these corrected potentials we can sample 1-5 distribu-
tions in CG chains, which are in very good agreement with
the distributions of the all-atom chain (continuous line in
Figure 5). The effect of the 1-5 bonded interactions on the
intermediate bonded distributions of angles and dihedral
angles is shown in Figure 6.We can see that the distributions
do not deviate strongly.

Since we have to types of 1-5 interactions, A-A and
B-B, they also may influence each other. For the isotactic
case presented here, this is a minor effect. For the syndio-
tactic case the correcting potential Pcorrecting

1-5,B-B(r,T) has to be
sampled from a CG chain including bonded potentials up to

1-4 and the 1-5 A-Apotential and vice versa. This process
of correcting the potentials can be done iteratively. For the
syndiotactic case it was sufficient to do three steps. Details
and the distributions for syndiotactic chains can be found in
the Supporting Information.

Extending this scheme to 1-6 interactions or above is
straightforward. The Boltzmann-inverted distribution for
the 1-6 distance from a single all-atom chain is corrected
by the Boltzmann-inverted distribution of aCGchain, which
includes only interactions up to 1-5, and so on. For fully
isotactic and syndiotactic chains we used bonded interac-
tions up to 1-7, which is necessary to impose the right
stiffness of the chains. For atactic chains it is sufficient to
use bonded 1-5 potentials.

Figure 7 shows the probability distributions of two sub-
sequent dihedral angles in an isolated, isotactic 25-mer
simulated with the all-atom model and with the correspond-
ing CG model. The all-atom chain includes all interactions
along the chain; the CG chains includes CG bonded poten-
tials up to 1-5 and CG nonbonded potentials (section 2.4)
for 1-6 interactions and beyond. The agreement is very
good; all regions sampled by the atomistic chain are repro-
duced by the CG chain, except for the region around (160�,
200�). More important, however, the CG chain does not
sample the region (270�, 90�), indicating that our final CG
model reproduces the local correlations between adjacent
torsional degrees of freedom in polystyrene.

2.3.4. Extension and Transfer: 1-5 Potentials in Atactic
Chains. In the next step we checked how the different sets of
bonded potentials for purely iso- and syndiotactic chains can
be combined to simulate chains which include meso diads
and racemic diads. In atactic chains these diads are randomly
distributed. We therefore checked whether the local distri-
butions for bonds, angles, and dihedrals only depend on
the type of diad which is involved in these sequences of 2, 3,

Figure 5. Distributions of 1-5 distances in isotactic chains for A-A (left) and B-B (right) beads: the target distribution from an all-atom single chain
(dashed), the correcting distribution from a CG chain with bonded interactions up to 1-4 (dashed-dotted), and final CG distribution of a CG chain
with the additional corrected 1-5 potentials (continuous).

Figure 6. Distributions for angles (left) and dihedral angles (right) in isotactic chains in comparison for all-atom single chains (dashed) and CG chains
(continuous) with bonded 1-5 interactions. This comparison shows that angles and dihedral angles are not deviating significantly when we introduce
bonded 1-5 interactions in the CG model.
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or 4 CG beads or if the neighboring diads have a strong
influence, too.

We investigated a chain consisting of a sequence of diads
of alternating meso and racemic type. In this chain, the
phenyl rings are pointing pairwise to alternating sides. Each
diad has two neighboring diads of the opposite type. It
turned out that the neighboring diads do not influence local
distributions of CGbonded degrees of freedom significantly.
These distributions and details are shown in the Supporting
Information.

Since the local distributions mainly depend on the local
tacticity and not on the tacticity of the neighboring diads, we
can describe atactic chains by combining the previously
described potentials for isotactic and syndiotactic chains.

2.4. Nonbonded Potentials. As discussed in the Introduc-
tion, one of the goals of the present work is to develop a CG
model that can be used under ambient pressure conditions.
For this reason we develop nonbonded interactions includ-
ing an attractive tail as opposed to the purely repulsive
potentials that were used for the previous model.16 These
effective potentials are obtained from constraint dynamics
runs with the all-atom model of two trimers (or fourmers)
in vacuum, between which we calculated the pair potential
of mean force (PMF) along a distance coordinate r con-
necting the CG mapping points of selected central A or B
beads. The PMF, VPMF, between the two oligomers was cal-
culated from n distance constraint simulations, using the
following equation:

VPMFðrÞ ¼
Z r

rm

½Æ fcæs� ds þ 2kBT ln r ð7Þ

where kB is the Boltzmann constant, T is the temperature, fc
is the constraint force between the two selected central bead
CG mapping points, and rm is the maximum distance
between the two mapping points (r varies from 0.2 to 1.2
nm in steps of 0.02 nm). Because only the distance between
the two mapping points is constrained, free rotation of the
oligomer-oligomer connecting vector remains possible and
larger volume elements are sampled at larger distances. This
leads to an entropy contribution to the averaged constraint
force that must be subtracted out. The second term on the
right-hand side of eq 7 takes care of this contribution.

The obtained PMF is denoted VPMF
AA (r) (for the case we

constrain the A-A distance). To obtain an effective A-A
interaction potential Veff

AA(r), we calculate a second PMF

along the same coordinate r but exclude all direct A-A
atomistic interactions while maintaining all other interac-
tions with and between neighboring parts of the oligomers.
This PMF we denote VPMF

excl,AA. The effective, nonbonded
bead-bead interaction potential is next obtained from

VAA
eff ðrÞ ¼ VAA

PMFðrÞ-V
excl,AA
PMF ðrÞ ð8Þ

The so-obtained potential Veff
AA(r) may be viewed as the free

energy of introducing intermolecular interactions between
the twogroups of atoms representing theAbeads at distance r.
Because bead A is part of an oligomer (trimer, fourmer),
steric effects due to chain connectivity limit the set of relative
orientations in which these beads can approach, which is
realistically captured byVeff. AlthoughVeff is a pair potential
obtained from PMF calculations between PS fragments in
vacuum, its use in simulations of the condensed melt state
can be justified. Multibody contributions to the effective
potential applicable in themelt are to a large extent similar to
those present in vacuum and are determined by the relative
orientations chain segments can sample relative to one an-
other. As a final technical note we point out that VPMF

excl,AA(r)
was obtained by using the simulation trajectories of the
first run (used to determine VPMF

AA ) and recalculating
the forces for the given conformations but excluding the
direct interactions between the two beads at fixed dis-
tances.22 Figure 8 shows the two potentials of mean force,
VPMF
BB and VPMF

excl,BB, and the resulting effective potential Veff
BB

Figure 7. In comparison to Figure 4: combinations of dihedral angles for an isotactic single chain including all intrachain interactions of the all-atom
model (left) and for a CG chain with bonded potentials up to 1-5 (taken from a sampling including the 1-5 range) and nonbonded CG potentials
beyond (right).

Figure 8. Coarse-grained B-B nonbonded interaction: the two poten-
tials of mean force for runs with all interactions (dashed) and for reruns
with exclusions between all atoms of theB beads (dashed-dotted) aswell
as the effective potential, obtained by taking the difference of the two
potentials of mean force (continuous).
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for the interaction between the phenyl beads. In principle, the
above procedure can be iterated to reproduce the all-atom
AA, AB, and BB PMFs of trimers (or fourmers) in vacuum
with the effective AA, AB, and BB potentials. Such an
approach has been used before by McCoy and Curro23 to
derive united-atom models for small molecules and resem-
bles the IBI approach which is often used in the melt.17

Similar approaches have been used in the past to develop
CG nonbonded interactions for polyethylene24 and lattice
systems.25

We note that the effective potential may change if, instead
of the distance between the exact mapping points, the
distance between the centers of mass of the two beads
(neglecting that the CH groups are only weighted with half
of their mass) is used as distance coordinate. For our model,
this is of course only an issue if the center of mass of the A
bead is used, calculated with the full masses of the two CH
groups instead of their half masses. Test calculations showed
that this difference is indeed significant, leading to very
different effective A-A and A-B nonbonded interaction
potentials. Another important question is, which all-atom
interactions need to be excluded in the calculation ofVeff

excl,AA

andVeff
excl,AB? Because each of the two CH groups in a A-type

bead is shared with another A bead, we have two choices.We
can exclude the all-atom interactions involving only the CH2

group or exclude the all-atom interactions involving the CH2

and the CH groups. If we consider the A-ACG interaction,
the first choice leads to an effective potential in which the
contributions of the CH groups are not accounted for and
the second choice leads to an effective A-A potential in
which the contributions of the CH groups are counted twice.
We calculated the effective potentials with both choices for
treating the CH groups and took their linear average as the
effective potential in further simulations. In our simulations
of CG PS melts we get the best agreement with detailed
atomistic structures of themelt (A-A,A-B, andB-B radial
distribution functions) if we take the linear average of the
two effective potentials.

The potentials obtained by this method combine a short-
range repulsive and longer-ranged attractive part and are
used for the melt simulations discussed below. The B-B
nonbonded potential was obtained from PMF calculations
of two trimers in which the coordinate rwas chosen between
the central B beads. The A-A nonbonded potential was
calculated from PMF calculations of two fourmers in which
the coordinate rwas chosen between the central A beads. To
determine the A-A nonbonded interaction potential, tri-
mers are too small and exhibit a nonsymmetric environment
around the central A bead. The A-B nonbonded potential
was obtained based on PMF calculations with a fourmer
(A bead) and a trimer (B bead). In all calculations the
stereoregular sequence was isotactic. The potentials were
also calculated with syndiotactic sequences, which yielded
nonbonded potentials that were identical within the error
bars. In Figure 9 the effective potentials are plotted for the
three interaction pairs A-A, A-B, and B-B for isotactic
oligomers. The short-range repulsion for the B-B interac-
tion is “softer” than for the A-A interaction because the
level of coarse graining of theB bead (11 atoms) is larger than
that of the A bead (5 atoms).

3. Atomistic and Coarse-Grained Simulations

3.1. Atomistic MD Simulations. All simulations reported
in this study were performed using the molecular dynamics
package GROMACS.26 For the atomistic modeling of poly-
styrene the all-atom model of M€uller-Plathe was used.21

Every PSmonomer is described by 16 atoms. For nonbonded
interactions a cutoff distance of 1 nm was used. Cutoff
corrections were applied to energy and pressure using stan-
dard analytical expressions that assume a uniform density
beyond the cutoff.27 Coulombic interactions beyond the
cutoff were treated by reaction-field correction with a di-
electric constant εRF of 2.5. All bond lengths were con-
strained using the LINCS method.28 All atomistic MD
melts were simulated under isothermal-isobaric (NpT) con-
ditions at 503 K and 1 atm using the Berendsen thermostat
(coupling time 0.2 ps) and barostat (coupling time 2.0 ps).29

The integration time step was 1 fs. We simulated PS melts of
isotactic, syndiotactic, and atactic tacticity. Each system
consisted of 56 chains of 10 monomers. All systems are listed
in Table 1. The initial configurations for the iso- and
syndiotactic systems have been obtained by randomly pla-
cing 56 single chains in a box and slowly switching on the
nonbonded interactions. For the atactic system we used an
existing configuration of Milano and M€uller-Plathe. After
the first equilibration of the systems production runs of
400 ns were performed.

3.2. Coarse-Grained MD Simulations. For the coarse-
grained simulations in this work bonded and nonbonded
potentials were used in a tabulated form, which is imple-
mented in GROMACS 4.26 For nonbonded interactions a
cutoff distance of 1 nm was used. CG melts were simulated
under isothermal-isobaric (NpT) conditions at 503 K and
1 atm using the Berendsen thermostat (coupling time 0.4 ps)
and barostat (coupling time 4.0 ps).29 Here we use the same
pressure as in the atomistic case. This is not necessarily the
best way to go on since especially for nonbonded interac-
tions it is difficult to adjust compressibility and pressure at
the same time.30 Systems of long chains (192 monomers)
were simulated under NpT conditions for 80 ns and then

Figure 9. Nonbonded potentials: comparison of tabulated potentials
used in this work: A-A (continuous), A-B (dotted), B-B (dashed).

Table 1. All-Atomistic PS Systems Studied in This Work
a

Nmonomers Nchains tacticity T (K) CN F (kg/m3)

10 56 atactic 503 6.09 959
10 56 isotactic 503 6.12 956
10 56 syndiotactic 503 7.70 959
10 56 atactic 403 1004
10 56 atactic 423 1000
10 56 atactic 443 989
10 56 atactic 463 980
10 56 atactic 483 969
10 56 atactic 503 960
10 56 atactic 523 947

aReported are the number of repeat units per chain Nmonomers, the
number of chains in the simulationboxNchains, the tacticity of the chains,
and the temperature T as well as the resulting characteristic ratio
between the two end beads of the chain CN (where N = 2Nmonomers - 1)
and the density F.
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simulated under NVT conditions at the average density of
the first 80 ns. The integration time step was 3 fs. Here we
have to note that the dynamics and therefore also the time
scale of the CG system are systematically different andmuch
faster than the dynamics in atomistic simulations.16 We
simulated CG melts of chains of 10 and 192 monomers with
isotactic, syndiotactic, and atactic tacticity. All CG systems
modeled in this study are presented in Table 2. As an initial
configuration for the melts of long chains we used an atactic
system, which was equilibrated with our previous model
using the setup as described there.16,31 The setup of the CG
melts of shorter chains is not critical because the chainsmove
their own size during a first equilibration run of a few
nanoseconds.

4. Melt Simulations

4.1. Conformations in Melts. To compare the chain con-
formations inCGand atomisticmelts, we look at the internal
distances within the chains. They are described by the
characteristic ratio Cn = ÆR2(n)æ/(nl2), where ÆR2(n)æ is the
mean-square distance between twomonomers separated by n
carbon-carbon bonds (two per monomer) of length l along
the backbone. For the CG systems we use the atomistic bond
length l = 0.153 nm and have as well two CG bonds per
monomer; therefore, we can compare the internal distances
for atomistic and CG systems directly and with experimental
values for C¥. For atomistic systems we apply the mapping
scheme and evaluate the internal distances between the
mapping points.

In Figure 10 the internal distances in atactic, isotactic, and
syndiotactic melts of 10-mers are shown. Each melt consists
of 56 chainswith a lengthof 10monomers simulated at 503K.
We used the bonded potentials which were described
before. The atactic melt includes bonded 1-5 interactions;
the stereoregular melts include bonded interactions up to
1-7 (1-7 A-A for isotactic and 1-7 A-A and B-B for
syndiotactic systems). For intrachain interactions 1-6 and
higher, as well as for interchain interactions, the effective

nonbonded potentials were employed. We see that our CG
model reproduces the internal distances for the melts of
different tacticities. The agreement already in the short
internal distances indicates that the local conformations in
the CG systems are correct. The increase of the distances
along the chain, especially the differences for different
tacticities, suggests that the stiffness of the atactic, isotactic,
and syndiotactic chains is modeled properly. This is impor-
tant for melts of longer chains, where the characteristic ratio
reaches a limit ofC¥, which canbe compared to experimental
results.

Figure 11 shows internal distances of CG melts of chains
of 192 monomers. The influence of the different tacticities
can be seen clearly. The internal distances reach a plateau for
about half the number of monomers in the chain already.
Therefore, we can compare the internal distances there
with experimental results for the characteristic ratio C¥.
We get 7.8 for the C¥ of atactic PS, 8.9 for isotactic PS,
and 12.3 for syndiotactic PS. Experimental values are around

Figure 10. Simulations of 10-mer melts: internal distances for atactic (upper left), isotactic (upper right), and syndiotactic (lower left) PS melts
comparing CG (continuous line) and all-atom simulations (dashed) and comparison between the CG systems with different tacticities (lower right).
Plotted are the averages of the squared distances between beads, separated by nbonds, dividedby the number ofCGbonds and the squaredbond length
l2. Since the number of CG bonds is equal to the number of carbon-carbon bonds in the backbone of the atomistic model, we normalize the CG
distances also with the atomistic carbon-carbon bond length l of 0.153 nm.

Table 2. Coarse-Grained PS Systems Studied in This Worka

Nmonomers Nchains tacticity T (K) CN F (kg/m3)

192 50 atactic 503 7.80( 0.38 1035
192 50 isotactic 503 8.91( 0.30 1040
192 50 syndiotactic 503 12.27( 0.30 1031
10 56 atactic 503 6.21 964
10 56 isotactic 503 6.30 968
10 56 syndiotactic 503 7.59 962
10 56 atactic 403 6.97 1010
10 56 atactic 423 6.73 1001
10 56 atactic 443 6.55 992
10 56 atactic 463 6.48 983
10 56 atactic 483 6.25 973
10 56 atactic 503 6.23 964
10 56 atactic 523 6.06 954
aReported are the number of repeat units per chain Nmonomers, the

number of chains in the simulationboxNchains, the tacticity of the chains,
and the temperatureT as well as the resulting characteristic ratio between
the two end beads of the chain CN (where N = 2Nmonomers - 1) and the
density F.
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9.1 ( 0.4 for atactic PS,32 9.3 for isotactic PS,33 and 14.4 (
2.8 for syndiotactic PS.34,35 The simulated C¥ for syndiotac-
tic PS is higher than the value of 9 reported by Milano and
M€uller-Plathe in ref 11. Their model is developed from
stereoregular sequences in an atactic polymer, which might
explain the difference in the syndiotactic case, whereas their
atactic value of 8 is in agreementwith ourmodel. The relative
differences between the characteristic ratios of the different
tacticities agree also with the rotational isomeric state (RIS)
model, which predicts values of 9 for atactic PS, 12 for
isotactic PS, and 18 for syndiotactic PS.36 Even though our
simulations, as well as experiments, show lower values forC¥
than the RIS model for the stereoregular cases, we also
observe that the atactic C¥ is lower than the stereoregular
cases, and we find almost the same ratio between the C¥ for
isotactic and syndiotactic PS.

4.2. Packing and Density in Melts. Next we examine local
packing by calculating radial distribution functions (RDF).
In Figure 12 RDFs between A-A, A-B, and B-B pairs for
an atactic 10-mer melt are shown. In these RDFs only
intermolecular pairs were included; pairs of beads in the
same chain are left out, since the intrachain distributions are
already reflected by the internal distances in Figure 10. We
see very good agreement between all-atomistic and CG
RDFs for distances below 0.5 nm. For larger distances the
agreement is still good with some deviations. The strongest
deviation appears for the B-BRDF, where the position and
height of the first peak and the following minimum differ
from the atomistic RDF. The reason for this might be the
representation of the atomistic phenyl group by a spherical
CG bead. This has been also observed with our previous CG
PS model.16 The RDFs for isotactic and syndiotactic melts
show a very good agreement as well and can be found in the
Supporting Information. We note that the CG simulations
reproduce the small differences in the RDFs that atomistic
simulations exhibit for different tacticities.

The density of the atomistic melt of atactic 10-mers
(959 kg/m-3 at 503 K) is significantly above the reported
experimental density of 895 kg/m-3 for short polystyrene
chains (Mw = 910, Mw/Mn = 1.16).37 Taking into account
the Mw distribution and the slightly shorter chain length
(around 9-mers), the atomistic melt density is around 5% to
high. To be more close to experimental results one may have
to adjust the density. Especially the dynamics of atomistic
systems react sensitively to density changes.19

To test the temperature transferability of the CG model,
we performed a series of runs over a range of temperatures
from 403 up to 523 K. The densities predicted by the
atomistic and CG models are shown in Figure 13. The CG
model shows the same thermal expansion coefficient as the
atomistic model, while the density is slightly overestimated

compared to the prediction of the atomistic model. The
agreement is strikingly good. A recent investigation by Qian
and co-workers on the temperature transferability of an-
other coarse-grained polystyrene model developed based on
the iterative Boltzmann inversion method showed a similar
good agreement between the thermal expansion coefficients
of atomistic and coarse-grained melts.13 There, the authors
show that with another location of the CG mapping point
(on the methylene unit rather than the bead center of mass)
the temperature transferability is significantly worse.38

Coarse-grainedmodels usually have state-dependentpoten-
tials because left-out degrees of freedom are weighted
differently at different temperatures. The agreement we
observe between the atomistic and coarse-grained model
predictions over the wide range of temperatures shown in
Figure 13 is achieved with a CG model developed at 503 K.
This indicates that the temperature dependence of the CG

Figure 11. Melt simulations: internal distances for CG melts of chains
of 192 monomers with different tacticities: atactic (continuous line),
isotactic (dotted), and syndiotactic (dash-dotted).

Figure 12. Radial distribution functions in atactic melt in comparison
between CG (continuous lines) and all-atom simulation (dashed lines).

Figure 13. Densities obtained from constant pressure (1 atm) atomistic
(dashed line) andCG simulations (continuous line) of amelt of 10-mers
in a temperature range from 403 to 523 K.
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potentials must be quite weak, which we confirmed by
reparameterizing the model at 423 K.

5. Conclusion

We presented a coarse-graining methodology which has been
applied to the exemplary case of polystyrene and has the follow-
ing features:

• It bases on a new approach to introduce longer-ranged
intrachain potentials and to develop nonbonded po-
tentials.

• It models atactic as well as stereoregular (isotactic and
syndiotactic) polystyrene.

• Local chain conformations, chain stiffness, and over-
all chain dimensions are described in agreement with
the detailed atomistic model. Overall chain dimen-
sions, as the characteristic ratio C¥, agree as well with
experimental results for atactic and stereoregular
polystyrene.

• The CG model describes the melt packing and repro-
duces the density at ambient pressure between 400 and
520 K, in good agreement with the atomistic model.

• The development of the model is computationally
inexpensive because it is based on the sampling of
isolated atomistic chains or pairs of oligomers in
vacuum. No expensive atomistic melt simulations are
needed.

Our approach is not limited to the case of polystyrene but
can be also applied to other polymers. It is especially useful
for coarse-grained models in which the mapping scheme is close
to the chemical structure and the basic assumption of completely
uncorrelated coarse-grained degrees of freedom is not valid.
We showed that the previous method can still be used, if the
coarse-grained model is constructed in a way that takes into
account these correlations and reproduces them also in the
coarse-grained simulations. The approach extends the scope
and applicability of coarse-grained polymer models as it can
easily be extended to multicomponent systems (blends, polymer/
solvent mixtures).
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