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Many physical phenomena and properties of soft matter systems are characterized by an interplay

of interactions and processes that span a wide range of length- and time scales. Computer

simulation approaches require models, which cover these scales. These are typically multiscale

models that combine and link different levels of resolution. In order to reach mesoscopic

time- and length scales, necessary to access material properties, coarse-grained models are

developed. They are based on microscopic, atomistic descriptions of systems and represent

these systems on a coarser, mesoscopic level. While the connection between length scales

can be established immediately, the link between the different time scales that takes into

account the faster dynamics of the coarser system cannot be obtained directly. In this perspective

paper we discuss methods that link the time scales in structure based multiscale models. Concepts

which try to rigorously map dynamics of related models are limited to simple model systems,

while the challenge in soft matter systems is the multitude of fluctuating energy barriers of

comparable height. More pragmatic methods to match time scales are applied successfully to

quantitatively understand and predict dynamics of one-component soft matter systems.

However, there are still open questions. We point out that the link between the dynamics on

different resolution levels can be affected by slight changes of the system, as for different

tacticities. Furthermore, in two-component systems the dynamics of the host polymer and of

additives are accelerated very differently.

1. Introduction

Properties of soft matter systems are determined by a variety

of processes and interactions originating from a wide range of

time and length scales. Though this holds for many physical

systems, it is of special importance for soft matter, where the

relevant energy scale is the thermal energy kBT. Processes

occurring on rather different scales often are governed by

rather similar energy scales. As a characteristic example let

us mention phase segregation effects in polymers or block

copolymers. While the local dynamics on the monomer level is

dominated by bond angle, torsion, and excluded volume

interactions, all typically of the order of a few kBT, the free

energy difference of the whole polymer in the homogeneous

mixture and the segregated state is typically also of the order

of a few kBT. Whereas the former processes occur on a ps or at

most ns time scale (if far enough away from the glass

transition temperature, which we will not discuss here), the latter

can take up to seconds or more if only the chains are long

enough. Consequently molecular simulation approaches to soft

matter phenomena require a wide range of simulation methods,

which appropriately deal with different levels of resolution.

Coming back to the above example, generic aspects of polymer

dynamics as well as certain aspects of conformational properties

like chain stiffness can be studied by highly simplified and

idealized models, while specific amplitudes and prefactors, which

easily can vary by orders of magnitude, or local arrangements of

groups usually require detailed microscopic input. Thus a variety

of different models and simulation schemes has been developed,

where microscopic structure information is employed to

parameterize higher level more coarse models.1–9 While this

defines length scaling factors rigorously by the very construction,

it is not at all clear how to do that for dynamical quantities in a

rigorous way. Actually for most molecular systems this might be

even impossible. In the following we will focus on these

problems. In this context we also will discuss a more pragmatic

ansatz, which allows us to deduce dynamical information from

coarse-grained models without any adjustable parameter not

coming from the simulations themselves.
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2. Scale bridging approaches

In soft matter multiscale modeling the aim is not only to

describe material properties but rather to understand the

structural organization and physical mechanisms, which lead

to morphologies, static and dynamic properties and eventually

function. That often requires multiscale models that intimately

couple different levels of description, in order to span a wide

range of time- and length scales. This close coupling of

descriptions of different levels can be rationalized by different

theoretical concepts. One way is to resort to the renormalization

group theory, where the systems are also iteratively

‘‘coarse-grained’’. In each renormalization step a microscopic

system is mapped onto a coarser system by averaging out a

number of microscopic degrees of freedom. Since the resulting

coarse Hamiltonian usually cannot be determined exactly, this

procedure automatically includes certain approximations.

From this analogy two important aspects of common

multiscale procedures emerge:

� A mapping step is always performed at a specific state

point and the result might change for other state points.

Thus the transferability of a given parametrization of a

coarse-grained model towards different, e.g., temperatures or

system composition has to be checked carefully.10,11

� In all practical cases the coarse-graining procedure will

include unavoidable approximations. Thus the resulting

coarse system usually does not follow exactly the same

equation of state as the underlying microscopic system. This

typically leads to pressure deviations, while correcting them

then modifies the compressibility.12

Because of that, even though during coarse-graining only

very few steps are performed, coarse-grained systems also have

to be studied carefully by themselves. Structural properties are

typically very well reproduced, but phase transitions or thermo-

dynamic properties in general pose special difficulties.

There is a priori no reason that a coarse-grained model,

derived on the basis of a given scheme and some approxima-

tions, displays phase transitions at the very same temperature,

pressure, etc. as the underlying atomistic model. In addition,

the power of generic properties and scaling relations relies on

the proximity to ‘‘asymptotics’’, i.e., chain length in the case of

polymers. This often is reasonable for long chain polymer

melts or chains in solution; however, many of the current

systems of interest are certainly not close to the asymptotic

scaling regimes.

Alternatively one can view coarse-graining procedures as a

special application of projector operator formalisms.13 Again,

the challenge is to define the optimal subspace of parameters,

which allow for a most efficient treatment of the systems and,

at the same time, do not exclude any aspect, which is crucial

for the question under study.

Many different approaches have been followed, both from

the quantum mechanical to the classical level and from the

classical all-atom level to a coarse-grained description.

The derivation of interaction potentials between the coarse-

grained particles based on an underlying more microscopic

model may be targeted at reproducing thermodynamic

properties14–17 rather than structural properties. Such an

approach, however, might cause problems, when one wants

to reproduce structural properties and especially when one

wants to link local microscopic dynamics to dynamics of

the more coarse-grained models. Recently Rutledge and

Allen10,18,19 developed an alternative approach for implicit

solvent models for solutions, where the excess chemical

potential of the degrees of freedom, which are averaged out

by coarse-graining, is properly accounted for, while

simultaneously structural aspects are not neglected. Both

aspects also have been considered in recent work on aggrega-

tion of amino acids and of hydrophobic solutes.11,20,21 In our

group we predominantly employ what is called structure based

coarse-graining with the aim to reproduce as close as possible

on the coarse-grained level structural aspects of the underlying

chemical system.7,9,22 Once the coarse-graining scheme is

defined, the interactions are usually parameterized using the

VOTCA software package developed in Mainz.23

For the purpose of the present perspective let us assume that

we have a coarse-grained model at hand, which reproduces

structural properties of a polymer melt rather well and

allows for a detailed comparison to experiment. Also we

would like to stay that close to the all-atom description that

we easily can reintroduce chemical details along the coarse-

grained simulation trajectories. Such models have been

developed for a number of polymers with different levels of

resolutions by a number of groups.1,24–35 In all cases melt

morphologies compare very well to, e.g., scattering or

NMR experiments. Fig. 1 shows two typical examples of

mapping schemes for BPA-PC (polycarbonate) and PS

(polystyrene). Equilibrated coarse-grained systems, for

instance, then serve as a source to reintroduce atomistic

details. This allows us to generate huge, well equilibrated

all-atom systems, which might be used as a polymer matrix

to study, e.g., the tracer diffusion constant of small amounts of

low molecular weight additives, a quantity very difficult to

obtain from experiment.36–38

Fig. 1 Mapping schemes for PS33,34 (upper) and BPA-PC39 (lower).
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3. Scale bridging and dynamics

Coarse-grained models provide a significant simulation speedup

compared to more microscopic models, which is a main reason

for their application. Two possible construction schemes of

coarse-grained models are illustrated in Fig. 1 for polystyrene

and a polycarbonate. The representation of several micro-

scopical particles by one coarser bead automatically

determines the length scaling between the linked models,

allowing for a straightforward analysis of structural

properties. For dynamics, however, the link between time

scales of the microscopic reference system and of the coarse

system cannot be derived directly from the mapping scheme.

In general, the speedup, which is not to be confused with the

dynamics of the two models, results from combined effects

due to the

� reduced number of degrees of freedom and simpler inter-

action potentials, reducing the overall computational effort

� larger integration time steps due to smoother interaction

potentials

� reduced effective bead friction due to smaller energy

barriers and/or a smoother energy landscape.

The first point only affects the overall computational costs,

but not the dynamics itself. The second would not need further

consideration, if the proper definition of the time step on the

coarse-grained level with respect to the underlying microscopic

model would be known. This relates to the third point, where

all the problems are hidden.

� Are all barriers lowered in a way that the ratios of

transition times remain the same?

� Is there a characteristic length and time scale, where an

average friction coefficient describes motion/diffusion?

� Does one recover the same motion patterns for a coarse-

grained simulation compared to a coarse-grained analysis of a

microscopic simulation?

These are just a few questions in the context of dynamics

and multiscale modeling.

For simple polymer models it is known that simulations

reproduce the essential generic features of polymer dynamics,

that is, the crossover from the Rouse to the entangled

reptation regime for melts, qualitatively and to a certain extent

quantitatively.40 For short chains the longest relaxation time

tR p N2 and for long chains in a polymer melt we observe a

N3.4 power law, N being the number of beads of the polymer.

From a theoretical point of view, simple bead spring polymers

are just another polymer species, for which universality holds

as it does, for example, for polystyrene or polyethylene. Thus

that the power laws are the same only is an indication that the

simulations were performed properly. However, a rigorous

link between the atomistic representation of a system and the

corresponding structurally coarse-grained system could

provide absolute dynamical information without the need to

resort to generic scaling laws. Actually, eventually one should

recover them as well. Thus one aims at a predictive quantitative

modeling of dynamical quantities, such as diffusion, viscosity,

rates, or correlation times. This also automatically generates

the question, whether all dynamic quantities scale the same

with respect to the underlying atomistic model and whether

there are dependencies on molecular weight, i.e., whether the

time scaling factor for an additive is the same as for the host

matrix polymers.

In the case of coarse-grained models developed from

chemically detailed models, as the ones discussed here, one

can deduce an intrinsic simulation time scale. Taking the

strength of the interaction parameter in the nonbonded

excluded volume interaction (if this is described by a

Lennard-Jones interaction) eCG (measured in units of the

temperature), the average mass mCG of the CG beads and

the known length scales sCG one can determine a time scale

1tCG = 1(mCGs
2
CG/e)

1/2. This results for instance in 1tCG =

1.6 ps for BPA-PC at 570 K and 1tCG = 1.71 ps for atactic

polystyrene at 463 K.39,41 Already here we have some

arbitrariness in the choice of, e.g., e. However, since the CG

interaction potentials are much smoother, barriers are lower,

etc. the dynamics of CG systems are significantly accelerated,

which eventually lead to an effective average time scaling in

melts of long polymer chains of 1teff = 26 ps for BPA-PC at

570 K and 1teff = 700 ps for PS at 463 K, respectively,

based on a comparison of mean square displacements. This

discrepancy we want to focus on in the present contribution.

3.1 Basic concepts

There are several concepts, which try to rigorously map

dynamics of different but related models onto each other. A

typical model system is a particle moving in a cosine potential,

serving as coarse-grained interaction, in comparison to a

particle moving in the very same potential plus a small

high-frequency modulation, representing the underlying

microscopic counterpart. The aim is to find a way to predict

the same diffusive dynamics. The difference in dynamics

caused by the difference in potentials would therefore require

to be compensated by an adjustment of the time scale. Starting

with a Kramers rate picture, any crossing of barriers is related

to the barrier height and the attempt frequency in the potential

well. For simple systems this can be used to compare the

dynamics related to rather similar potential energy landscapes.

For simulations of infrequent events Voter introduced a

method for accelerating molecular dynamics simulations,

called hyper-MD, already in 1997.42,43 The idea is based on

the transition state theory, TST, which uses rates in analogy to

the Kramers rate picture. The transition rate between states

equals the flux through a barrier separating these states and is

an equilibrium property of the system. Voter used hyper-MD

to accelerate dynamics in a simulation by modifying the

original potential and reestablishing the connection to the

original system, in particular, to the original time scale. In

this respect the idea is close to what is intended in many more

recent coarse-graining methods.

TST assumes that each crossing of the dividing energy

barrier is independent; therefore, all memory is lost afterwards

and the next event can occur. Such a rate approach often is a

good approximation to the true rates for strongly coupled

systems. In hyper-MD the potential energy surface (PES) is

modified in such a way that the correct relative probabilities

for escapes are conserved. The potential modifications are

derived from local properties of the Hessian matrix only. In

more detail we will look at this method for a one dimensional
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potential V(x). Adding to V(x) a continous, non-negative bias

boost potential DVb(x), with DVb(x) = 0 at the dividing barrier,

so that the potential is not affected close to the transition state

region, leads to an effective single boosted time step

Dtbi = DMD
t exp[bDVb(x(ti))] (1)

and results in a total boosted time

tb ¼
Xntot
i

DtMD exp½bDVbðxðtiÞÞ�; ð2Þ

where ntot is the total number of MD steps, ti the time at the ith

MD step and b ¼ 1
kBT

the inverse of the temperature times the

Boltzmann constant. The average boost factor is then given by

tb

tMD
¼ 1

ntot

Xntot
i¼1

exp½bDVbðxðtiÞÞ�; ð3Þ

with tMD = ntotDt
MD. Applying this argument to the above

example of a particle moving in a cosine potential directly

leads to the correct prediction of the diffusion constants. This

original approach was successfully applied to the diffusion of

clusters of Ag-atoms on an Ag(111) surface43 and numerous

variations with approximations have been developed.44,45

Though for typical soft matter simulations the barriers are

usually of the order of a few kBT, the potential energy

landscape is quite complicated. Nevertheless, the guidelines

to construct optimal boost potentials for hyper-MD could also

serve as guidelines for other applications. The ideal bias

potential should give a large boost factor, vanish at all

dividing surfaces, cause a low computational overhead, avoid

utilizing any prior knowledge of the dividing surfaces or the

available escape paths and contain uncorrelated events only.

These requirements, however, are anything but easy to fulfil.

The derivation (or rather modeling) of the bias potential is the

key task of hyper-MD. If successful, the simulation time can

be extended by a few orders of magnitude without an increase

in computer time.

A somewhat related more general approach, metadynamics,

was presented by Laio and Parrinello.46 It has been applied in a

number of studies to systems with rather complicated reaction

or transition pathways, especially in biophysics,47 and has been

developed further into well-tempered metadynamics.48 In

metadynamics, potential energy basins are systematically

‘‘filled up’’ in order to efficiently sample transition pathways.

In all these cases the aim is to identify the optimal reaction

or transition pathway, which governs the time development of

the systems. Both, hyper-MD and metadynamics make use of

the potential and its modifications to accelerate dynamics.

With increasing number of degrees of freedom, this potential

becomes very complicated and (sometimes) rough. Therefore,

it is questionable, whether such methods in general can be

applied to systems with many rather similar and/or

permanently fluctuating energy barriers. Though conceptually

rather simple, a melt of identical polymers already represents

such a system. Rotations of groups around a torsion axis, for

example, are not only governed by the torsion potential itself,

but also by the conformation along the chain and the packing

and conformations of the surrounding chains. Because of that,

the bias potential DVb or similar properties in other methods

cannot be determined in advance and would have to be

introduced on the fly.

A first rather simple polymer model, where the above ideas

to a certain extent can be applied, however, is a melt of

polyethylene (PE) chains. Depa and Maranas49,50 consider

the escape of an atom from one local cage of nearest neighbors

to another as an event, to which they apply the argument of

the hyper-MD method. The potential energy basins on both

ends of this transition arise from Lennard-Jones interactions

within the spacial extent of the first shell of neighbors. The

differences between the CG and the united-atom (UA)

Lennard-Jones potential within this shell are forming the bias

potential that causes the observed acceleration in CG

dynamics. The ensemble-averaged bias potential per particle,

hDVi, is obtained by integrating over the difference between

the atomistic and the CG potential (the difference between the

two is only significant throughout the first neighbor shell),

hDVi ¼
Z1

0

hNCGðrÞiUCGðrÞdr�
Z1

0

hNUAðrÞiUUAðrÞdr;

ð4Þ

Fig. 2 Potential energy surface: potential energies for combinations of dihedral angles c1 and c2 in PS dimers (see left) for the atomistic (middle)

and the CG model (right). In both cases one would expect a symmetric surface, but in the atomistic case the roughness of the surface illustrates the

difficulties to find the atomistic conformation that realizes certain dihedral combinations with the lowest potential energy. The direction of the

dihedral rotation during the extraction of the plot can still be seen.
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where the CG and atomistic potentials, UXX, are weighted

with the ensemble-averaged number density of neighbors for

each bead, hNXX(r)i (XX stands for CG or UA results),

hNXXðrÞi ¼
hPXXðrÞi

nXX
: ð5Þ

nXX is the number of particles and hPXX(r)i is the averaged

number density of intermolecular Lennard-Jones pairs.

Similar to eqn (3), the speed-up s of the CG system is

estimated by

s ¼ tCG

tUA
¼ exp

hDVi
kBT

� �
ð6Þ

The predictions of this boost factor agree within 7% with

simulation results for polyethylene.

The CG polyethylene system studied in their work offers

certain advantages, which facilitate the application of this

method. In the CG model, as well as in the united-atom

model, the polymer is modeled by only one bead or atom

type, i.e., on both simulation levels only one type of non-

bonded interaction potential has to be considered. While

working for PE, already the extension to polystyrene (PS)

creates insurmountable difficulties, not only due to different

atom and bead types appearing on both levels, but also due to

more extended side groups, where the packing between

neighbors becomes more complicated. Therefore, one has to

resort to a more pragmatic but still quite powerful methodology.

The more complex situation for PS already on the intra-

molecular level is exemplified in Fig. 2. It shows the potential

energies for a PS dimer in vacuum for its different combinations

of dihedral angles c1 and c2, comparing the atomistic and the

CG model. Even though the positions of the important

minima are well defined in both cases, the atomistic potential

energy surface is much more rough than the CG one. This

indicates the difficulties of the atomistic model to find the

energetically most favorable conformation belonging to certain

combinations of dihedral angles. To extract this plot, c2 was

rotated stepwise by 3601 for each value of c1 and at each step

an energy minimization from the previous conformation was

performed. This directionality of the rotation can result in

pathways, which only find local minima and lead to unfavorable

conformations, before the system flips to conformations of

lower energy. The fact that these problems occur already for

the simple case of a dimer in vacuum, where only intra-

molecular interaction plays a role and intermolecular packing

is not yet present at all, illustrates the need for a more

pragmatic method to evaluate differences in atomistic and

CG dynamics, which is discussed in the following.

3.2 Matching procedures relating CG and atomistic timescales

To obtain quantitative predictions of polymer dynamics from

CG simulations, the timescale of the CG data has to be scaled

in a suitable way to fit atomistic simulation data or

experimental results. This procedure has been discussed and

used in the literature before.1,14,24,32,33,37,38,41,49,50–52

A suitable effective time scale teff provides the quantitative

agreement between dynamics in atomistic and CG simulations.

It is obtained by comparing corresponding dynamical

quantities in atomistic and CG simulations. Typical quantities

that can be chosen are diffusion coefficients and mean square

displacements of beads (MSD), which are related: the self-

diffusion coefficient D in a system of identical particles is

calculated from the linear part of the mean square displace-

ment of the center of mass, h(Rcm(t) � Rcm(0))
2i, as a function

of time, using the Einstein relation:

D ¼ lim
t!1

hðRcmðtÞ � Rcmð0ÞÞ2i
6t

ð7Þ

The ratio between the diffusion coefficients from CG and

atomistic simulations delivers the time scaling factor s=DCG/DAA.

Time scaling factors based on diffusion coefficients compare

only the asymptotic long time regime and require long

atomistic trajectories that reach the diffusive regime. Using

this quantity the CG timescale can also be mapped to

experimental data.

If data from atomistic MD runs are used, the time scale teff
can be also obtained from shorter runs by matching the MSD of

CG and AA simulations. Calculating the mean square displace-

ment from CG data, MSD(tCG), and shifting it along the time axis

by a suitable time scaling factor s results in an agreement with

atomistic data, MSD(tCGs) = MSD(tCGteff/tCG) = MSD(tAA),

for times longer than tc, a characteristic model dependent time.

An example is shown in Fig. 3. This method has the advantage

that the shifted MSD agrees with the atomistic MSD not only

for long times, but also for times where the diffusive regime is

not yet reached. This can be seen more clearly later on in

Fig. 6, where the diffusion coefficient (obtained using eqn (7))

is plotted vs. inverse time. For long times D approaches

asymptotically to a constant value. The agreement between

CG and atomistic D or MSD is reached for times tc long

before the constant value for D is reached, in the example

given in Fig. 6 for times around tc = 2 � 103 ps and

displacements of around 0.3 nm. This provides a direct insight

Fig. 3 Time mapping between CG and atomistic (united-atom)

simulations, based on the mean square displacement of the chain

center of mass for two different molecular weights of PS (M = 1 and

2 kDa, T= 463 K). In ref. 41 the time mapping was done in two steps,

first relating all-atom and united-atom time scales and, secondly,

united-atom and CG time scales. Inset: self-diffusion coefficient of

PS melts as a function of the molecular weight from CG MD

simulations (squares) and experimental data (circles,53 diamonds,54

triangle)55 (T = 463 K).41,52

D
ow

nl
oa

de
d 

by
 M

ax
-P

la
nc

k 
In

st
itu

te
 f

ur
 P

ol
ym

er
fo

rs
ch

un
g 

on
 3

0 
M

ay
 2

01
1

Pu
bl

is
he

d 
on

 0
5 

A
pr

il 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1C

P2
02

47
B

View Online

http://dx.doi.org/10.1039/c1cp20247b


This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 10412–10420 10417

into the time- and length scales for which the particular CG

model, as illustrated in Fig. 1, can be used.

One of the simpler systems that can be studied with CG

models corresponds to homogeneous one-component macro-

molecular systems. In general for bulk polymer systems s

depends on molecular weight, M, and density, which also

depends on M (chain end free volume effect). This is not

surprising if we consider that the changes in the friction

coefficient, and thus in the dynamics, are both due to the local

polymer conformations and due to the change of the density.

In contrast, at high molecular weights the change in the

polymer dynamics is entirely due to the increase of the

molecular weight. Because the dependence of the friction

coefficient on density is not described accurately with the

CG model, a dependence of s on the density and on the

molecular length is resulting.

In more detail as we have seen for systems of low molecular

weight s is increasing with molecular weight, but for higher

molecular weights it reaches a constant value. Therefore, to

describe the dynamics of long polymer chains a single value of

s is appropriate (see inset of Fig. 3). It has been found that this

limit of a constant scaling factor is reached for approximately

the same molecular weight at which the change in density with

molecular weight saturates.41,52 Furthermore, we have also

seen that the dynamics of CG polymer melts under non-

equilibrium (flowing) conditions can be described quantitatively,

in a reasonable accuracy at low- to intermediate flow fields.

For strong fields the predictive capabilities of the CG models

would largely deteriorate.56

Very recently, the time scaling procedure has been applied in

a combined experimental and multiscale simulation approach.

We have investigated the segmental and terminal dynamics of

atactic PS as a function of temperature and pressure.57 The

obtained temperature dependence of relaxation times and the

associated glass transition temperatures at elevated pressures

investigated were found to be in good agreement with the

experimentally measured glass transition temperature.

Another very important aspect concerns the effect of

temperature on the dynamics of CG bulk single component

polymer systems. Already in 1998 it was shown that a

CG model for polycarbonates was reproducing differences in

the Vogel–Fulcher (VF) behavior, which is characteristic

for glass forming polymers, for different modifications of a

polycarbonate.1

Further aspects of the effective time scale are presented in

the following section.

4. Specific applications and discussion: tacticity,

additives

4.1 Simulation methodology

4.1.1 Atomistic simulations. For the atomistic simulations

performed in this work we used an all-atom (AA) model for

polystyrene (PS).58 Details on these simulations can be found

in our previous works on the influence of tacticity on static

properties in polymer melts34 and on the diffusion of additives

in a polymer matrix of long chains38 and in the ESI.w

All-atom PS 10-mer melts were simulated under isothermal–

isobaric (NpT) conditions at a temperature of 503 K and 1 atm

for atactic, isotactic, and syndiotactic tacticities. The mixed

system of ethylbenzene and polystyrene was simulated under

isothermal–isochoric (NVT) conditions at a temperature of

503 K and at a density of 910 kg m�3, close to the experimental

density. All simulated atomistic systems are listed in Table 1.

4.1.2 Coarse-grained simulations. For the coarse-grained

simulations presented in this work a recently developed

coarse-grained model for polystyrene was used.34 The intrinsic

CG time scale of this model is 1tCG = 1.69 ps at 503 K. CG

simulations of pure melts were performed under isothermal–

isochoric (NVT) conditions at a temperature of 503 K and at

the density of the corresponding all-atomistic systems. The CG

mixed system of EB and PS was simulated under isothermal–

isobaric (NpT) conditions at a temperature of 503 K and

1 atm. The EB molecules in the CG simulation were modeled

by the beads also used for PS and the same nonbonded

potentials. All simulated CG systems are presented in Table 2.

The simulations in this work were performed with the

GROMACS package59 and the CG tools of the VOTCA

package.23

4.2 Tacticity and effective time scale

The influence of tacticity on the connection between atomistic

and CG timescales is presented for PS melts with a chain

length of 10 monomers. These systems are compared for three

different tacticities of the PS chains. Atactic chains have

random orientations of the phenyl rings along the backbone

(assuming an extended all-trans backbone), whereas

stereoregular chains have their rings all oriented in the same

direction (isotactic) or in alternating directions (syndiotactic).

The tacticity influences the local stiffness of the chains and by

that also the overall chain dimensions in PS melts. Our CG

model for PS takes the differences in local conformations into

account, by using different bonded potentials for different

diads. The nonbonded interactions between the CG beads

are not distinguished for different tacticities.

In Fig. 4 the mean square displacement is shown for CG

simulations of melts of 10-mers. The differences are small for

the three different tacticities. As mentioned before, however,

the timescale in these simulations is not the timescale of the

underlying detailed model. To reach quantitative agreement

Table 1 Atomistic systems studied in this work

Nmonomers/chain Nchains Nadditives Tacticity rAA/kg m�3

10 56 Atactic 959 � 2
10 56 Isotactic 956 � 2
10 56 Syndiotactic 959 � 2
96 24 256 Atactic 910

Table 2 CG systems studied in this work

Nmonomers/chain Nchains Nadditives Tacticity rCG/kg m�3

10 384 Atactic 959
10 384 Isotactic 956
10 384 Syndiotactic 959
96 24 256 Atactic 946 � 2
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with the data of the atomistic simulations, the mean square

displacement curves are shifted by adjusting teff. This is shown
in Fig. 5. The agreement between atomistic and CG MSD can

be seen more clearly in Fig. 6, where the MSD is normalized

by the time. The CG simulations easily reach the completely

diffusive limit. Even though the atomistic data reach the

diffusive regime only with large errors, the time scaling can

be done in the subdiffusive regime for shorter times, where the

MSD of CG and atomistic systems already coincide for times

above tc = 2 � 103 ps.

Since the differences in the MSD are larger in the case of

atomistic simulations, the effective time scales for the three

tacticities are different. We obtain for the atactic system tatceff =

440 � 40 ps, for the isotactic system tisoeff = 320 � 35 ps, and

for the syndiotactic system tsyneff = 390 � 35 ps. There is no

obvious connection to the chain dimensions of the three

tacticities, where the syndiotactic melts show a significantly

higher characteristic ratio than isotactic and atactic melts.34

The possible reason for not having a unique teff are differences
in the local packing, which are reproduced by the CG model

correctly, and which lead to different local frictions.

4.3 Two-component systems and effective time scales

As previously reported for polycarbonates a Vogel–Fulcher

temperature dependence was found in CG simulations for the

diffusion of additives in a matrix of long polystyrene chains.38

Fig. 7 shows an example of the application of the time scaling

procedure for diffusion coefficients for the additive ethylbenzene.

In atomistic simulations at temperatures below 470 K, for

which experimental data are available, it is computationally

very expensive to reach the diffusive regime. CG simulations

can be performed at these temperatures as well as at higher

temperatures above 500 K, at which atomistic simulations are

affordable. For these higher temperatures the time scaling

Fig. 4 Mean square displacement of coarse-grained simulations of melts

of PS 10-mers of different tacticities. Results for atactic (continuous),

isotactic (dashed), and syndiotactic (dashed-dotted) systems are shown as

well as the slope of 1 (dotted) that indicates the diffusive regime.

Fig. 5 Mean square displacement of atomistic and time scaled CG

systems of 10-mer melts of different tacticities.

Fig. 6 MSD of atomistic and time scaled CG systems of 10-mer melts

normalized by 6t, indicating the diffusive regime reached by the CG

systems and the agreement between atomistic and CG simulations,

which is already reached for times above tc = 2 � 103 ps. The drop in

the atactic CG data illustrates the transition to the ballistic regime for

short times. The atomistic data have large errors for times above 104 ps.

These long times are only shown for illustration, whereas the time

scaling procedure has been done for times below 104 ps (see Fig. 5).

Fig. 7 Diffusion coefficients from experiments,37 all-atom simulations

and CG simulations. The CG data are scaled with a time scaling factor

following a Vogel–Fulcher functional form. Additionally the CG data

are shown with a shift, in order to coincide with the diffusion coefficient

from an atomistic NVT simulation at a density close to the experimental

one, because the atomistic NpT simulations predict the density 2–4% to

high and therefore underestimate the diffusion coefficients.38
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factor s(T), which is the ratio between the diffusion coefficients

from CG and atomistic simulations, DCG/DAA, is obtained

and extrapolated to lower temperatures. By that it is possible

to get quantitative predictions from the CG simulations at

lower temperatures. Even though the diffusion of additives is

studied and not the one of the long polymer chains, the

observed Vogel–Fulcher behavior reflects that the mobility

of additives is linked to the structural relaxation of the

polymer melt, which includes the formation and destruction

of larger cavities. This process happens on much larger

timescales than the local spacial fluctuations of EB in these

rather rugged cavities.36

Another aspect of the time scale teff can be observed on

these mixed systems of EB and PS as well: it is not only

changing with temperature, but is also different for the two

components EB and PS within the same system. In Fig. 8 the

mean square displacements for the EB molecules and for

CG beads as well as for the center of mass of the whole PS

chain are shown for the all-atom (AA) simulations. The CG

data are shifted to match the AA data. For EB the effective

time scale is tEBeff = 50 � 10 ps, whereas the scale for the PS

matrix is tPSeff Z 850 ps. The time scale has to be the same for

the motion of beads and for the center of mass motion,

because they have the same diffusive limit. Different scaling

factors for different components, even though to a smaller

extent, have been also reported for CG simulations of lipid

systems14,60 and of ionic liquids.61

It is surprising that in spite of this discrepancy the temperature

dependence of the dynamics of the additive is obtained in

perfect agreement with experimental results and clearly reflects

the influence of the motion of the matrix of long polymer

chains. An explanation might be found in the difference

between the timescales on which the two components reach

their diffusive regimes. To escape from a cavity formed by the

surrounding chains, a trapped additive molecule does not have

to wait for a diffusive motion of the chains, but it is sufficient if

beads within the surrounding chains are displaced by a

distance of their bead size or even below.

5. Conclusions

Despite significant success and huge efforts by many scientists,

multiscale simulations still pose many challenges. Most of the

effort over the years was devoted to properly reproduce

structural and in some cases thermodynamic properties. In

many areas of soft matter science, but especially for amorphous

polymers, this has led to a significantly improved understanding

of local arrangements of polymer strands and morphological

properties. Also when a very close link between the all-atom

description and the more coarse view is not required or generic

properties are more in the focus, simulations by now are an

indispensable tool to provide (semi-)quantitative information.

Here concepts of universality go in hand with the analysis of

numerical data. However, already for mixtures of different

species the situation is much more complicated and just now

such studies, which consider chemical details of the different

components, are underway. In this context the problem of

transferability of interactions, derived at one state point, to

another state point is of central relevance.

Even more so there are tremendous challenges when it

comes to quantitative predictions of dynamical properties of

materials through scale bridging simulations. For (very) long

polymers universally successful concepts of polymer dynamics

give important guidelines, however, provide only limited help.

Also concepts like hyper-MD or metadynamics, appropriately

adjusted to soft matter systems, do not really help in a system

with many somewhat different and fluctuating energy barriers.

The simple example of polystyrene torsion barriers illustrates

this. The alternative concept of employing projection operator

methodology to project out relevant dynamic degrees of free-

dom also requires an appropriate instantaneous knowledge

and analysis of the energy landscape. Because of that, a more

pragmatic approach of directly comparing short time all-atom

and coarse-grained simulations provides a way out in some

special situations. While this approach is quite successful for

homopolymers and able to properly predict various dynamic

properties including the peculiar temperature dependency of

the chain dynamics without any adjustable parameter, it

clearly displays its shortcomings as soon as the system

becomes inhomogeneous. Despite the fact that it was possible

to solidly predict additive diffusion constants in temperature

regimes, where experiments are very difficult, the general

scheme is unsatisfactory. The huge difference of the AA–CG

time scaling factors between the host polymer and the additive

clearly shows that different dynamical properties are affected

by coarse-graining in a very different way. This is the central

problem of time mapping during scale bridging simulations.

Especially when structure formation or similar aspects are

investigated a different time scaling factor for different

dynamical processes almost automatically will lead to the

wrong structures. As long as the different scales are very well

separated, one might be able to understand the outcome and

use the results of the simulations. If they are not well separated,

however, this will be hardly possible. Thus the ultimate aim

Fig. 8 Mean square displacements in mixed systems of ethylbenzene

and long polystyrene chains: for ethylbenzene atomistic (circles) and

CG (dashed) MSD coincide for a time scale tEBeff = 50 � 10 ps, for PS

chains the atomistic center of mass of the chains (squares) and of the

groups corresponding to CG beads (triangles) agree with CG data

(dashed-dotted and dashed-double dotted) for tPSeff = 850 ps or even

larger, because the atomistic data have not yet reached the diffusive

regime.
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would be a coarse-graining scheme, which would accelerate all

dynamical processes by the same factor, while simultaneously not

disturbing the general morphology. This is certainly something

almost impossible to achieve, but worth the effort. In the mean-

time approaches as pragmatic as the ones described here might

help a lot to progress our understanding of specific materials.
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