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ABSTRACT: Well-relaxed atomistic configurations of polydisperse, linear polyethylene (PE) melts,
obtained with the end-bridging Monte Carlo algorithm, have been subjected to detailed molecular dynamics
simulations in both the canonical (NVE) and microcanonical (NVT) ensembles. Three different systems
have been investigated, characterized by mean molecular lengths C24, C78, and C156, and by the same
polydispersity index I of about 1.09. Results are presented for the static and (mainly) dynamic properties
of these melts at P ) 1 atm and T ) 450 K. The diffusion coefficient D, determined for various chain
lengths, N, is in very good agreement with experimentally measured values. The friction coefficient úD

is extracted from D by invoking the Rouse model; it is seen to increase from a relatively small value
characteristic of short alkanes to a chain-length-independent plateau, reached in a region of N ) 60-80.
The friction coefficient úτ is also obtained by analyzing the decay of the time autocorrelation function for
the normal modes Xp at various chain lengths; the values thus extracted are consistent with those obtained
from D for N above 40. Although the decay of the autocorrelation function of the end-to-end vector is
very well described by the Rouse model, individual Rouse modes show some deviation from theoretical
predictions. Even for chains sufficiently long to be in the asymptotic ú regime, only the first two normal
modes fully conform to Rouse theory in terms of their squared amplitudes and correlation times. Zero-
shear viscosities computed from úD values by means of the Rouse model are in excellent agreement with
available experimental data for N ) 90.

1. Introduction

The design of efficient and reliable molecular model-
ing techniques for predicting the physical properties of
polymers from chain chemical constitution is a chal-
lenging but worthwile objective. In particular, modeling
dynamic properties in the molten state is of great
significance in all polymer-processing industries, since
these properties govern the processability of the melts.
This explains the recent increased interest in dynamic
simulations of chain liquids, particularly of systems
composed of longer chain molecules or molecules with
a more complex than linear architecture.

The molecular dynamics (MD) technique, despite its
inherent limitations in vigorously sampling the config-
uration space of highly connected, dense systems, has
continued to be the dominant method in the area and
has enjoyed extensive use in the last few years. This
is not only because of the simplicity of the method, but
also because of its unique capability to provide direct
information on the temporal evolution of the system, a
feature that the other large class of molecular simula-
tions, Monte Carlo (MC), lacks.1,2 Recently, MD has
been used to study the dynamics of a number of systems,
ranging from simple fluids and alkanes to polymer
chains and networks.3

The most serious problem faced by MD of long chain
systems is that the time span tracked in the course of
the simulation is very short in comparison to the
spectrum of times characterizing molecular motions in
these systems. The longest relaxation time of even
relatively short chain melts (e.g., C100 to C200), increases

strongly with chain length and can well exceed the time
intervals that can be simulated with today’s supercom-
puters. To overcome this serious limitation, either
simulations are limited to shorter chains, or coarse-
grained models are invoked to scale-up the time.3 A
widely used coarse-grained model is the bead-spring
chain model.4 Simulations with this model have been
reported for systems with chains up to 200 beads long.5

The first atomistic MD simulations of chain molecules
considered small alkanes,6 such as C4 and C8, and
mainly focused on static properties. With the new
generations of powerful computers, both the model
systems considered and the constituent molecules in-
creased substantially in size and length. The limit of
10 ns, which was very difficult to track a few years ago,
even for systems consisting of a small number of short
chain molecules, is now easily accesible, and simulations
on the order of 90 ns have been reported for very large
systems as, for example, a system containing 640 chains
with N ) 100 carbon atoms per chain.7,8 In parallel,
the technique of nonequilibrium molecular dynamics
(NEMD) has gained ground, mainly because of its
advantage in calculating viscosity by imposing a shear
flow (usually the Couette flow) on the system.9-12

However, as with equilibrium MD, the long relaxation
time problem is also encountered with NEMD when the
simulation is pushed to rather long chains. Huge shear
rates are usually applied, and the zero shear-rate
viscosity is only calculable by extrapolation to the low
shear-rate regime.10

Recently, Mondello and Grest13 have calculated the
zero-shear rate viscosity η0 through both the Green-
Kubo relation and the Rouse model for small alkanes
(Cn, n < 16 ). In a systematic study over the last few
years, Yoon and collaborators14-17 have also reported
results from long MD simulations on three different
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chain systems (C13, C44, and C100). Their results refer
to conformational characteristics, and segmental and
terminal relaxation. An important outcome of this work
involved comparisons of simulation findings for the
dynamics of chains with the predictions of the Rouse
model. An analysis of the normal modes of the chains
indicated that the Rouse behavior is not followed by the
shorter C13 and C44 chain systems; only the longer C100
chain system seemed to conform to Rouse model predic-
tions. Even for this system, however, the behavior was
not exactly Rouse. Although the first three modes (p )
1-3) did follow the exponential decay predicted by the
Rouse model, all higher modes showed clear, systematic
deviations from that.14-17 This is especially interesting
in view of neutron spin-echo spectroscopy experiments,
which seem to be in very good agreement with the Rouse
model.18,19

To the best of our knowledge, C100 is the longest
system that has been simulated so far with MD in full
atomistic representation. In addition, all MD simula-
tions seem to have been restricted to purely monodis-
perse melts. In the present work, new data are pre-
sented which have been collected from detailed atomistic
MD simulations on polydisperse polyethylene (PE)
melts. All systems studied are characterized by a
uniform distribution of chain lengths with polydispersity
index around 1.09. The data have been accumulated
from simulations on three different systems, covering
a wide range of chain lengths, up to the regime of
molecular weights corresponding to formation of en-
tanglements. The first system consists of 32 chains with
mean length C24 (chain lengths uniformly distributed
between C12 and C36), the second of 10 chains of mean
length C78 (chain lengths uniformly distributed between
C39 and C117), and the third of 20 chains of mean length
C156 (chain lengths uniformly distributed between C78
and C234).

An important aspect of the present work is that initial
configurations for the MD were generated with the very
efficient end-bridging Monte Carlo algorithm,20 which
has been shown to provide vigorous sampling of config-
uration space, particularly for the longer chains. At the
end of an end-bridging MC simulation, the system is
completely equilibrated at all length scales, from the
level of the bond to the level of the chain end-to-end
vector. Relaxed configurations thus obtained are sub-
jected to MD simulation to monitor their evolution in
time and extract dynamic properties. This combination
of MC and MD renders MD more effective in tracking
the evolution of the equilibrated system for a longer
time.

The end-bridging move, invoked in the equilibrating
MC runs, is a chain connectivity-altering move, which
continuously generates chains of different lengths,
subject to a prescribed distribution function set by a
profile of relative chemical potentials. The equilibrated
melts obtained from the end-bridging MC simulations
are therefore polydisperse, and, of course, they continue
to be so also during the MD. This is a very important
feature of the present work for two reasons: (a) it allows
testing the validity of the Rouse model picture that
chains in the unentangled polymer regime move as
strings of Brownian particles tethered by harmonic
springs in a viscous medium whose interaction with the
particle is characterized by a single parameter (the
friction coefficient ú); and (b) it allows studying the
dynamics of many, different-length chains simulta-

neously, and therefore extracting the dependence of the
dynamic properties on chain length without the need
for different runs at different chain lengths. Of course,
due to the presence of only a few chains with exactly
the same length in the simulation box, the statistics for
each chain length is worse than would be obtained from
a monodisperse melt simulation; as we shall see,
however, in the presentation of results, this does not
turn out to be a significant problem.

Particular emphasis is placed in this work on the
prediction of the zero-shear viscosity. As mentioned
above, this technologically very important property is
very difficult to predict directly for long-chain systems
from equilibrium (through the Green-Kubo relation
using the time integral of the shear-stress autocorrela-
tion function) or nonequilibrium (through the response
to an imposed steady shear field) dynamic simulations.
The possibility of predicting the viscosity from the
friction factor ú extracted from MD simulations is
explored here, and found to be very promising for
sufficiently long chains.

The paper is organized as follows. Section 2 presents
the molecular model used in the present work and
outlines the basic characteristics of the MD algorithm.
Section 3 reviews the basic assumptions and the most
important equations of the Rouse model. Results from
the MD simulations are presented and compared with
experiments and other simulations in section 4. Finally,
in section 5, the major conclusions are summarized and
plans for future work are presented.

2. Molecular Model and MD Algorithm
A united-atom description of the PE melt is used in

the present work, with methylene and methyl groups
being modeled as single Lennard-Jones (LJ) sites.

Nonbonded interactions are described by a Lennard-
Jones potential of the form

with ε ) 0.098 kcal/mol and σ ) 3.94 Å. These values
of ε and σ are the same for methyl and methylene groups
and equal to those used by Dodd and Theodorou.21

VLJ(r) describes all intermolecular site-site interactions
as well as intramolecular interactions between sites
separated by more than 4 bonds.

A bond-bending potential of the form22

is also used for every skeletal bond angle θ, with Kθ )
115.2 kcal/mol and θ0 ) 112°.

Associated with each dihedral angle φ is also a
torsional potential of the form23

with c0 ) 2.217, c1 ) 2.905, c2 ) -3.135, c3 ) -0.731, c4
) 6.271, and c5 ) -7.527 in kcal/mol.

Adjacent methyl and methylene groups along each
chain backbone are maintained at a fixed distance l )
1.54 Å from each other. To make the model sample the
configuration-space probability density characteristic
of a flexible model in the limit of infinitely stiff bond
stretching force constants,24 a Fixman potential25 is

VLJ(r) ) 4ε[(σr)12
- (σr)6] (1)

Vbending(θ) ) 1/2Kθ(θ - θ0)
2 (2)

Vtorsional(φ) ) c0 + c1 cos φ + c2(cos φ)2 + c3(cos φ)3 +

c4(cos φ)4 + c5(cos φ)5 (3)
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introduced in the MD simulation. The Fixman potential
for a chain of N sites numbered from 0 to N - 1, (N -
1) bonds numbered from 1 to N - 1 and (N - 2) bond
angles numbered from 1 to N - 2, has the form

where l1 ) l2 ) ... ) lN-1 ) l are the bond lengths and
HN is the matrix

with

In eq 6, mi is the mass of the ith skeletal site and θi the
ith bond angle. The determinant hN ) det HN can be
calculated recursively, through the equation

with h1 ) 1 and h2 ) (1/m0) + (1/m1). The total Fixman
potential, VFixman, is a sum of contributions of the form
of eq 4 from all “parent” chains in the system. The force
on any particle i in the model system due to the Fixman
potential is calculated as

with Ri the position vector of the particle, by making
use of the recursive relations, eq 7. With the Fixman
potential, the MD model becomes fully equivalent to
that used in our end-bridging MC runs,20 which employ
the VLJ, Vbending, and Vtorsional potentials stated above.

Results reported in this work are based on MD
simulations conducted in the NVE equilibrium ensemble
for the C24 and C78 systems, and in the NVT ensemble
for the C156 system. The C24 and C78 systems were also
studied in the NVT ensemble, and it was confirmed that
the resulting dynamics was identical. In all simula-
tions, the volume was kept constant at a value corre-
sponding to a melt density exactly the same as the mean
density obtained from the NPT end-bridging MC run20

that yielded the initial configuration for the dynamic
simulation. P ) 1 atm and T ) 450 K were used in all
cases reported here.

The total duration of the MD runs was 8 ns for the
C24 chain system, 30 ns for the C78 system, and about
20 ns for the C156 system.

In both NVE and NVT simulations, a 6th-order Gear
predictor-corrector scheme was used to integrate the
equations of motion in Cartesian coordinates. Con-
straint forces associated with the fixed bond length
constraints were determined using the method of Ed-

berg, Evans, and Morriss.26 The code made use of a
Verlet neighbor list to keep the CPU time spent in the
calculation of forces at a minimum. For the larger C156
chain system, an additional linked-cell list was kept;2
according to this, the simulation box is divided into 4 ×
4 × 4 subcells with the Verlet neighbor list searching
for potential neighbors only within the 27 nearest sub-
cells. The integration time step was always equal to 1
fs.

The simulations in the NVT ensemble further re-
quired the use of a Nosé-Hoover thermostat27,28 to
maintain the temperature fixed at its prescribed value.
This was achieved by introducing an additional degree
of freedom, s, playing the role of a heat bath, whose aim
is to damp out temperature deviations from the desir-
able level. This necessitates adding to the total energy
an additional potential term of the form

and an additional kinetic energy term of the form

In the above equations, g is the total number of degrees
of freedom () 3 Natoms - Nbonds - 3 with Natoms and Nbonds
standing for the total numbers of atoms and bonds in
the model system, respectively), while Q and ps repre-
sent the “effective mass” and momentum, respectively,
associated with the new degree of freedom s. Equations
of motion are derived from the Lagrangian of the
extended ensemble, including the degree of freedom s.

An important result in Hoover’s analysis28 is that the
set of equations of motion is unique, in the sense that
no other equations of the same form can lead to a
canonical distribution. With the introduction of the
Nosé-Hoover thermostat, the total Hamiltonian HNosé,
defined as

should be conserved during the run. The first term on
the right hand side represents the kinetic energy (pi is
the momentum vector of site i), the second term is the
potential energy (including the Fixman potential), the
third term is the contribution to the Hamiltonian due
to constraint bond lengths with λi being the Lagrange
multiplier for the ith bond,26 and the last two terms are
the contributions due to the thermostat. In our MD
runs, HNosé, was found to change by less than 1% within
1 ns of simulation.

3. The Rouse Model
The Rouse model29,30 considers a polymer chain as a

sequence of N Brownian particles (numbered 0, 1, 2, ...,
N - 1) connected by harmonic springs and moving in a
viscous medium representing the background environ-
ment formed by all other chains. Hydrodynamic inter-
actions between different springs are neglected. An
important parameter in the Rouse formulation is the
friction factor ú (measured in units of mass per time),
i.e., the proportionality constant between the velocity
of a bead and the frictional force exerted on the bead as

VFixman )
kBT

2
ln[det HN] + kBT ln (l1

2 l2
2...lN-1

2 )
(4)

HN ) (µ1 γ1 0
γ1 µ2 0

0 0
0 µN-2 γN-2

0 γN-2 µN-1

) (5)

µi ) 1
mi-1

+ 1
mi

γi )
cos θi

mi
(6)

hi ) µi-1hi-1 - (γi-2)
2hi-2 3 e i e N (7)

Fi
Fixman ) -

∂VFixman

∂Ri
(8)

Vs ) gkBT ln s (9)

Ks ) 1
2
Qs̆2

s
)

ps
2

2Q
(10)

HNosé ) ∑
i

pi
2

2mi

+ V(r) -
1

2
∑

i

λi

2
((Ri+1 - Ri)

2 - l2) +

Q

2(s̆s)
2

+ g
ln s

â
(11)
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it moves through the “sea” formed by all other particles
in the system. Through the fluctuation-disipation
theorem, ú also defines the mean squared magnitude
of the random (Langevin) force on the particle. The
assumption of a harmonic potential for the interaction
between adjoining particles allows the introduction of
normal coordinates or modes Xp, p ) 0, 1, 2, ..., N - 1,
each of which is capable of independent motion.

The normal coordinates can be defined in two ways;
in terms of the position vectors29 of the beads, or in
terms of the connector vectors between beads;31 the two
approaches, of course, lead to consistent results. With-
out loss of generality, we can use the chemical methyl-
ene and methyl segments as beads to define Rouse
modes in our atomistic model. The relevant formula-
tions and the equations pertinent to each definition are
shown in detail in the Appendix. If we choose to work
with the position vectors, then the normal coordinates
are given by

where Ωjp are the elements of the orthogonal matrix Ω,
given by

with j ) 1,2, ..., N and p ) 0, 1, ..., N - 1, and Ri denotes
the position vector of bead i.

With the above definition of the normal modes, the
exact expression for the time autocorrelation function,
〈Xp(t)‚Xp(0)〉, of the normal mode Xp, is given by eqs A.9
and A.10 of the Appendix. For 1 e p , N - 1, an
approximation to the exact equation can be used by
taking the small p/(N - 1) limit in the expression for
kp:

where τp, p ) 1, 2, ..., N - 1, denotes the spectrum of
relaxation times,

with

being the longest (or Rouse, τ1 ) τR) relaxation time. In
the above equations, b2 denotes the mean-square dis-
tance between adjacent beads at equilibrium. In gen-
eral, Xp represents the local motion of a chain segment
encompassing N/p beads and corresponds to motion on
a length scale of the order (Nb2/p)1/2. The zero mode
X0, in particular, represents the center of mass position
RG, the mean-square displacement of which in the
Rouse model is given by

From eq 17 and the Einstein relation

the self-diffusion coefficient of the center of mass D can
be obtained as

The Rouse model also predicts a relation for the
relaxation of the time autocorrelation function of the
end-to-end vector r ) RN-1 - R0 as

where Nb2() 〈r2〉) is the equilibrium (unperturbed) mean
square end-to-end distance of chains in the melt. From
eq 20, it is obvious that the autocorrelation function of
the end-to-end vector is clearly dominated by the first
(p ) 1 ) mode.

The first mode defines also the zero-shear (i.e.,
characteristic of the Newtonian plateau) viscosity of the
melt through

where G(t) is the stress relaxation modulus, expressed
as

By combining eqs 16, 19, and 21, η0 also becomes

The above expressions are written in terms of the
molecular weight M, the mass density of the melt F, and
the gas constant R.

4. Results
4.1. Conformation and Local Dynamics. As a

check of the correctness of the MD simulation runs, the
equilibrium conformational properties of the polymer
melt were first compared against those obtained from
the end-bridging MC (EBMC) runs. Tables 1 and 2
present this comparison for the mean-square end-to-end
distance 〈r2〉 of the chains and their mean-square radius
of gyration 〈s2〉, for a variety of chain lengths. The tables
also show the results obtained from MC sampling of
isolated continuous unpertubed chains (CUCs).20 The
agreement between the three sets of data for both 〈r2〉

Table 1. The Mean-Square End-to-End Distance 〈r2〉 for
Various Chain Lengths As Obtained from Bulk MD Runs,
from End-Bridging MC Runs, and from MC Sampling of

CUCs (P ) 1 atm, T ) 450 K)

〈r2〉 (Å2) C46 C78 C84 C102 C117

MD 770 ( 30 1510 ( 20 1640 ( 30 2020 ( 40 2355 ( 50
EBMC 810 ( 30 1490 ( 100 1635 ( 110 2025 ( 120 2330 ( 130
CUCs 810 1500 1624 2020 2340

Xp ) ∑
j)1

N

ΩjpRj-1 (12)

Ωjp ) x2 - δp0

N
cos((j - 1/2)pπ

N ) (13)

〈Xp(t)‚Xp(0)〉 )
kBT
kp

exp(- t
τp

) ) Nb2

6π2
1
p2

exp(- t
τp

) (14)

τp ) τ1/p
2 (15)

τ1 ) úN2b2

3π2kBT
(16)

〈RG(t) - RG(0)〉2 ) 6
kBT
Nú

t (17)

D ) lim
tf∞

〈RG(t) - RG(0)〉2

6t
(18)

D )
kBT
Nú

(19)

〈r(t)‚r(0)〉

Nb2
) ∑

p)1,3,...

8

p2π2
exp(-

tp2

τ1
) (20)

η0 ) ∫0

∞
G(t) dt ) π2

12
FRT
M

τ1 (21)

G(t) )
FRT

M
∑
p)1

N

exp(-2tp2

τ1
) (22)

η0 )
FRT〈r2〉
36MD

(23)
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and 〈s2〉 is clear. This agreement with Flory’s random
coil hypothesis has been noted earlier in well-equili-
brated monodisperse PE melts.15,21 Here it is shown
true for a polydisperse melt as well. One point to notice
about the data of Table 1 is the large characteristic
ratios to which they correspond: For the C102 chain, for
example, C102 ) 8.35. This value is significantly larger
than the value 7.8 obtained by neutron diffraction
measurements32,33 on molten polyetehylene at 413 K.
This is because the torsional potential employed in our
model enhances trans conformational states.34 Note
that a recent simulation work of Yoon and collabora-
tors,16,17 using a different parameterization than the
present work, has yielded results consistent with the
measured characteristic ratios.

Figure 1 shows a comparison between the intermo-
lecular mer-mer pair distribution functions g(r) ob-
tained from MD and EBMC. The agreement between
the MC and MD simulation predictions is again excel-
lent.

The local dynamics of the chains, particularly their
torsional dynamics, can be quantified in terms of the
torsion autocorrelation function, defined as

The decay of P(φ(t)) is shown in Figure 2a,b. Figure 2a
shows P(φ(t)) for three different mean chain length
systems, C24 (dashed line), C78 (solid line), and C156
(long-dashed line). The figure shows quite evidently
that the local dynamics is faster in the small-molecular
weight system, C24, and slower in the large-molecular
weight system, C156. The decay of P(φ(t)) for the C78
system is also shown in Figure 2b (solid line); also
shown in the same figure (dashed line) is its best fit
with a stretched exponential function of the form:

P(φ(t)) ) exp(-(t/tc)â). The characteristic relaxation time
obtained by the fitting is tc ) 4.2 ps and the stretching
exponent â ) 0.8. The correlation time (integral under
curve) is 4.6 ps.

4.2. Terminal Relaxation Properties. Figure 3
presents the decay of the orientational autocorrelation
function for the end-to-end vector 〈r(t)‚r(0)〉/〈r2〉 as a
function of time for three chain lengths (C46, C83, and
C102). These chain lengths were tracked in the system
with mean molecular weight C78. The rate at which
〈r(t)‚r(0)〉/〈r2〉 approaches the zero value is a measure
of how fast the chain “forgets” its initial configuration,

Table 2. The Mean-Square Radius of Gyration 〈s2〉 for
Various Chain Lengths As Obtained from Bulk MD Runs,
from End-Bridging MC Runs, and from MC Sampling of

CUCs (P ) 1 atm, T ) 450 K)

〈s2〉 (Å2) C46 C78 C84 C102 C117

MD 107 ( 5 218 ( 10 244 ( 20 292 ( 30 335 ( 40
EBMC 112 ( 7 224 ( 10 247 ( 10 306 ( 30 360 ( 40
CUCs 111 ( 5 227 ( 10 265 ( 10 309 ( 10 333 ( 10

Figure 1. Intermolecular mer-mer pair distribution function,
g(r), for the C78 chain system, as obtained from the end-
bridging MC (solid line) and the MD algorithm (dashed line).
T ) 450 K; P ) 1 atm.

P(φ(t)) )
〈cos(φ(t))cos(φ(0))〉 - 〈(cos(φ(0))〉2

〈cos(φ(0))cos(φ(0))〉 - 〈(cos(φ(0))〉2
(24)

Figure 2. Torsional time autocorrelation function (a) for three
mean chain length systems, C78 (solid line), C24 (dashed line)
and C156 (long-dashed line) and (b) for the C78 chain system
(solid line) and its stretched exponential fit (dashed line). T )
450 K; P ) 1 atm.

Figure 3. Time autocorrelation function for the chain end-
to-end vector for various chain lengths N at T ) 450 K and P
) 1 atm.
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i.e., of the rate of overall relaxation of the chain. As
we can see in the figure, in order for the quantity
〈r(t)‚r(0)〉/〈r2〉 to reach zero (which corresponds to full
relaxation of the chains) approximately 1.5 ns are
needed for the C46 chains. For the C83 chains this time
increases to about 4.5 ns, and for the C102 chains to 9
ns. This fast rise of the relaxation time with chain
length shows very convincingly how difficult it is for MD
to relax the conformational characteristics of chains
with more than about 100 carbon atoms along their
backbone.

The results of the normal mode analysis based on the
Rouse model are shown in Figures 4-7. Figure 4 shows
the mean squared amplitudes 〈Xp(0)2〉 as a function of
1/p2, for three different chain lengths, C55, C83, and C102.
According to the Rouse model, eq 14, 〈Xp(0)2〉 should be
proportional to 1/p2. From the figure it is obvious that
this scaling is followed only for the first two normal
modes, almost exactly for N ) 102, and only ap-
proximately for N ) 83 and N ) 55; the third as well
as all higher modes do not follow the Rouse scaling. The
deviation from Rouse scaling decreases with increasing
chain length. In fact, higher modes for short chains
seem to follow a much stronger dependence on p,
approximately of the form 1/p3, as has also been
reported in a recent paper by Paul et al.17

Figures 5 and 6 show the logarithm of the normalized
time autocorrelation function 〈Xp(t)‚Xp(0)〉/〈Xp(0)2〉 as a
function of p2t for the modes p ) 1-5, and for two
different chain lengths, C83 and C117. If the chains
behaved identically as Rouse chains at all length scales,
then, according to eqs 14 and 15, all lines on each graph
should have collapsed onto a single straight line. This
is not seen in Figures 5 and 6: Only the first two modes
(p ) 1 and 2 ) fall on the same line, which is straight to
a good approximation; all higher modes, including the
p ) 3 mode, show clear deviations from Rouse scaling.
The deviations are, in fact, more pronounced for the
shorter C83 chains than for the C117 chains. The origin
of these deviations should be sought in the length scale
of the motion to which higher modes correspond: As p
increases, the subchain whose relaxation is described
by the pth mode gets smaller and smaller and the
Gaussian assumption provides only a poor representa-
tion of the conformational statistics of such subchains.
This also justifies the smaller deviations seen in the case
of C117 chains.

By fitting the simulation results for each mode
between p ) 1 and p ) 5 to an exponential function,
estimates of the relaxation times τp were obtained. Of
greatest importance, of course, is the value of the longest
time τ1, since this (a) governs the long length scale
relaxation of the chain, and (b) defines, through eq 21,

Figure 4. Normal-mode analysis. The squared amplitudes of
the Rouse normal modes 〈Xp(0)2〉 are shown as a function of
the inverse squared mode number p in log-log coordinates
for C55, C83, and C102 chains. The dashed line is drawn with a
slope of -1, corresponding to the Rouse model.

Figure 5. Normal-mode analysis. Time autocorrelation func-
tions of the first five normal modes versus p2t. Chain length
N ) 83; T ) 450 K; P ) 1 atm.

Figure 6. Normal-mode analysis. Time autocorrelation func-
tion of the first five normal modes versus p2t. Chain length N
) 117; T ) 450 K; P ) 1 atm.

Figure 7. Time autocorrelation function for the chain end-
to-end vector as extracted directly from the simulation (solid
line) and as calculated from the Rouse model using the τ1 value
derived from the normal-mode analysis. Chain length N ) 83;
T ) 450 K; P ) 1 atm.
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the viscosity of the melt. According to eq 16, τ1 should
increase quadratically with chain length N. The data
reported in Table 3 show an increase of τ1 with chain
length N which is almost quadratic, mainly for the
longer chains. According to eq 15, τp should be propor-
tional to the inverse squared order of the normal mode
p. This means that the ratios τ1/τ2 and τ1/τ3 should
assume values of 4 and 9, respectively. From Table 3
one can see that the ratio τ1/τ2 is roughly 4 for almost
the entire range of chain lengths present in our system,
within the error bars of the simulation. This ratio
clearly exhibits an increasing tendency with increasing
chain length, suggesting a slight departure of the second
mode from the Rouse prediction. The ratio τ1/τ3, on the
other hand, is significantly larger than 9 for most chain
lengths, suggesting that chains are too short for their
third mode to behave in a Rouse-like fashion.

One way to check the validity of the picture of
exponentially decaying modes is to reconstruct the time
autocorrelation function for the chain end-to-end vector,
eq 20, and compare it with that obtained directly from
the MD simulation. The case of C83 chains is shown in
Figure 7: The solid line represents the curve obtained
from the simulation while the dashed line shows the
reconstructed curve based on the first 5 normal modes,
using the τ1 values reported in Table 3 and eq 15. The
figure shows that the Rouse model reproduces quite
faithfully the simulation curve, and this indicates that
the model can reliably capture the long- (if not the
short-) time dynamics of chains.

The self-diffusion behavior of the chains is examined
in Figure 8, which shows a typical plot of the mean-
square displacement of the chain center of mass
〈(RG(t) - RG(0))2〉 for three different chain lengths (C55,
C78, and C83 ) as a function of time t. In the small-time
regime (times shorter than the longest relaxation time),
a non-Fickian, subdiffusive behavior is observed, where
〈(RG(t) - RG(0))2〉 ∝ t0.8, as has already been observed
in other simulations, both with atomistic17 and with
coarse-grained models.3 In the long-time (t > τ1) regime,
however, a linear dependence of 〈(RG(t) - RG(0))2〉 on t

is indeed seen, and this permits the calculation of the
self-diffusion coefficient D through the Einstein relation.
By repeating the procedure for various chain lengths,
D can be tabulated as a function of N; the results are
shown in Table 4.

Values of the segmental friction coefficient úD ex-
tracted from D through eq 19 are shown in the fifth row
of Table 4. Estimates of the same quantity úτ, extracted
from the Rouse times listed in the first row of Table 4
through eq 16, are shown in the fourth row of the same
table. Estimates of the zero-shear rate viscosity ob-
tained from úD using eq 23 of the Rouse model are listed
in the sixth row of Table 4. In the third and seventh
row of Table 4 experimental data35 for D and η0 are
shown for almost monodisperse low-molecular weight
polyethylene melts found in the literature.

The first point to notice about the data presented in
Table 4 is the very good agreement between simulation
and experimental values for the self-diffusion coefficient
D: Both for the C46 and C90 chains considered, the
experimentally measured values are very close to the
simulation results. An interesting point to remark
concerns the friction coefficient ú: Although the two
values, úτ and úD, obtained from τ1 and D, respectively,
show some deviations for the shorter chains, for the
longer chains they fall within the error bars of each
other. This can be seen better in Figure 9, where ú is
plotted as a function of N: The friction coefficient úD
and úτ values are low and different from each other in
the short-chain regime (N < 40), but exhibit common
values for longer chains. We regard the values of úD as
more representative of the melts studied; they can be
obtained with less statistical error from the simulation
trajectories, rely merely on the Einstein equation for the
diffusivity (eq 19), and are therefore less dependent on
the validity of the Rouse model. As N increases and
the Rouse model gets more and more representative of
the actual system, the two values úD and úτ should come
closer; the figures do support this. On the other hand,
according to the Rouse model, ú should be a constant,
independent of chain length. The results of our MD
simulations show that this is not true: According to
Figure 9, úD becomes independent of chain length N only
for chains longer than C70. More specifically, Figure 9
shows that ú increases from a small value (close to 0.15
× 10-9 dyn s/cm) representative of a short-chain alkane-
like behavior, to a plateau value (around 0.45 × 10-9

dyn s/cm) characteristic of the long-chain Rouse behav-
ior. This is an important result of the present work,
since it defines the threshold in chain length, above
which the Rouse model should be expected to provide a
realistic description of the dynamics of an unentangled
polymer melt. One should note that the points dis-
played in Figure 9 were obtained from systems of
various sizes and mean chain lengths. The points with
N e 46 were obtained from the system with mean length
C24, the points with 46 e N e 117 were obtained from
the system with mean length C78, and finally the last
two points were obtained from the system with mean

Table 3. The Three First Relaxation Times τp and Their Ratios for Various Chain Lengths As Obtained from Bulk MD
Runs (P ) 1 atm, T ) 450 K)

C46 C83 C91 C102 C117

τ1 (ps) 800 ( 100 2800 ( 100 3600 ( 200 4200 ( 200 4800 ( 400
τ2 (ps) 230 ( 30 860 ( 70 890 ( 60 920 ( 70 1040 ( 100
τ3 (ps) 90 ( 10 285 ( 20 350 ( 20 380 ( 30 450 ( 80
τ1/τ2 3.5 ( 0.63 3.3 ( 0.29 4.05 ( 0.35 4.5 ( 0.41 4.6 ( 0.65
τ1/τ3 8.9 ( 1.49 9.8 ( 0.9 10.3 ( 0.82 11.0 ( 1.02 10.7 ( 2.2

Figure 8. The chain center-of-mass mean-square displace-
ment as a function of time for three chain lengths: C83 (solid
line), C78 (dashed line), and C55 (dotted line).
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chain length C156. For some points (for example C90 and
C102), ú were extracted from both the C78 and C156 mean
chain length systems; these values were found practi-
cally identical. This proves that the friction factors are
not significally affected by mean molecular weight and
system size at these chain lengths. Additional evidence
for the system size independence of our results comes
from the following observation: Running the C78 simu-
lation with the same molecular weight distribution in
a box four times larger than the one for which results
are reported here34 yielded identical dynamics for all
chain lengths.

Of great importance is the calculation of the zero-
shear viscosity η0 from the simulations and its compari-
son with experimental data. In contrast to D, which is
a primary property obtained directly from the simula-
tion, η0 is evaluated by invoking the Rouse model, eq
21. Therefore, η0 should be expected to be predicted
reliably only for those chain lengths for which the Rouse
model also provides a valid description of the system,
i.e., for N > 60-70. This explains the large difference
observed between the calculated and the experimentally
measured η0 values for the C46 chains, but it also
justifies the very good agreement seen for the longer
C90 system. Unfortunately, no experimental values of
η0 were found in the literature for chains longer than
C90 and shorter than C150 with which to compare our
simulation results.

5. Conclusions

Results have been presented for the dynamic proper-
ties of linear PE melts of uniform chain length distribu-
tion and polydispersity index 1.09 for a variety of mean
chain lengths from detailed atomistic MD simulations.
Before subjecting the systems to the MD simulation,
exhaustive equilibration at all length scales was achieved

by use of the end-bridging MC algorithm. A wide range
of chain lengths, ranging from C20 to about C150, have
been analyzed for times longer than about 12 ns to
calculate reliably their dynamic properties.

The most significant result of this work is the evalu-
ation of the friction coefficient ú, an important mesos-
copic parameter invoked by the Rouse model to describe
the interactions of the chain backbone with the viscous
medium. The dependence of ú on chain length has been
extracted by mapping MD trajectories onto the Rouse
model. The simulation results demonstrated the pres-
ence of a minimum chain length value around C60, above
which ú can be considered as a constant, chain length
independent parameter of the system. In the regime
of chain lengths corresponding to this constant, asymp-
totic value of ú, the zero-shear viscosity η0 was calcu-
lated from the Rouse model and found to be in excellent
agreement with measured values. Results were also
presented for the self-diffusivity D as a function of chain
length; these were found to be within a few percent of
the experimentally measured values.

In the future, results from MD simulations of strained
preoriented configurations will be presented and com-
pared with the present data. Results will also be
presented for chain lengths greater than C150, corre-
sponding to the onset of the entangled regime.
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Appendix. Normal Modes

The normal coordinates in the Rouse model can be
defined using either the position vectors Ri (i ) 0, 1, ...,
N - 1) or the connector vectors Qi ≡ Ri - Ri-1 (i ) 1,
..., N - 1) of the beads. Although both definitions should
lead to consistent results, as they involve a linear
transformation between the two sets of vectors, the final
equations for the time autocorrelation functions of the
normal modes present some differences, which will be
reported in this Appendix.

The first way to define the normal coordinates is
through the position vectors,29,36 through eqs 12 and 13
of the main text. The eigenvalues of Ω are given by

The second way is to define the normal coordinates
through the connector vectors:31

Table 4. Friction Coefficient ú, Self-Diffusivity D, and Zero-Shear Rate Viscosity η0 versus Chain Length

C46 C83 C90 C117 C128 C144

τ1 (ps) 800 ( 100 2800 ( 200 3600 ( 300 4800 ( 500 7500 ( 400 10000 ( 500
D (10-6 cm2/s) 4.0 ( 0.2 1.98 ( 0.1 1.46 ( 0.1 1.16 ( 0.2 1.0 ( 0.1 0.93 ( 0.1
Dexp (10-6 cm2/s) 4.6 1.4
úτ (10-9 dyn s/cm) 0.39 ( 0.04 0.386 ( 0.04 0.42 ( 0.04 0.32 ( 0.06 0.425 ( 0.04 0.44 ( 0.04
úD (10-9 dyn s/cm) 0.34 ( 0.05 0.38 ( 0.04 0.47 ( 0.05 0.46 ( 0.06 0.48 ( 0.04 0.47 ( 0.04
η0 (cp) 1.46 ( 0.07 5.8 ( 0.03 8.6 ( 0.5 12.9 ( 1.5
η0,exp (cp) 2.5 9.2

Figure 9. The friction coefficient ú versus chain length N, as
obtained from the Rouse relation between ú and diffusion
coefficient D (úD, full symbols) and from the Rouse relation
between ú and the longest relaxation time τ1 (úτ, open symbols).

λp ) 4 sin2(pπ
2N) p ) 0, ..., N - 1 (A.1)
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where Ω′jp are the elements of the orthogonal matrix
Ω′, given by

with j ) 1, ..., N - 1 and p ) 1, ..., N - 1. The
eigenvalues of Ω′ are given by

Note that Ω′ is a (N - 1) × (N - 1) matrix, whereas Ω
is a N × N matrix. On the other hand, the matrix Ω is
singular, its first eigenvalue being zero and all its
nonzero eigenvalues coinciding with those of Ω′.

The analysis to find the time autocorrelation function
of the normal modes proceeds by transforming the
Langevin equation for the position vectors to a corre-
sponding equation for the normal coordinates, using the
orthogonality property of the matrices Ω or Ω′. An
important step in the transformation procedure is the
way in which the random forces on the beads are
transformed from the original to the eigenvector space.
If, for example, fn is the random force on bead n in the
original Cartesian space, then the existence of a friction
factor ú for the interaction of beads with the viscous
medium implies that30

To be able to derive the time autocorrelation function
for the normal modes, a similar expression should be
written for the transformed force fp on mode p, that is,
we assert that there exists a friction constant úp such
that

The task therefore is to find the relation between úp and
ú for the two definitions of the normal modes. In the
case where the normal modes are defined on the basis
of the position vectors of the beads, it is found that30

In the case where the normal modes are defined on the
basis of the connector vectors of the beads, following an
approach similar to the one outlined in ref 30, it is found
that

After having defined the relation between úp and ú,
the time autocorrelation function for the normal modes
is written as

where kp (p ) 1, 2, ..., N - 1) is found from the spring

constant k ) (3kBT)/b2 of the Rouse chain as

Since two different expressions are found for úp, depend-
ing on the definition of the normal modes, kp is also
different.

Since kp defines the magnitude of the normal modes
and not their time evolution, the two alternative defini-
tions differ only in the dependence of the intensity of
the normal modes on the mode number: According to
the first definition, 〈Xp(0)2〉 ∝ 1/p2 for p , N, but
according to the second definition it is the quantity (1
- cos(pπ/N)) 〈Xp(0)2〉 which is proportional to 1/p2.
Although the normal mode analysis results reported in
the main body of this paper have all been based on the
first definition, exploratory calculations with the second
definition were found to conform perfectly to the scalings
reported in this Appendix.

With regard to the definition of the spectrum of
relaxation times and the exponential decay of the
normal modes, the two definitions produce identical
results, because these depend on the ratio úp/kp, which
is the same in the two cases. The corresponding
equations were given in section 3 of the paper.
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