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Chapter 1

Some Elements of Hilbert Space

Theory

1.1 Vector spaces

A set V of elements u, v, w, . . . is called a vector space (over the complex numbers) if

1. For every pair of elements u ∈ V , v ∈ V we define a new element w ∈ V , their

sum, denoted by w = u+ v.

2. For every complex number λ and every u ∈ V we define an element w = λ u ∈ V ,

the product of λ and u.

3. Sum and product obey the following laws:

i. ∀u, v ∈ V : u+ v = v + u.

ii. ∀u, v, w ∈ V : (u+ v) + w = u+ (v + w).

iii. ∃ 0 ∈ V such that u+ 0 = u, ∀u ∈ V .

iv. ∀u ∈ V ∃ (−u) ∈ V such that u+ (−u) = 0.

v. 1 · u = u, ∀u ∈ V .

vi. λ(µu) = (λµ)u, ∀u ∈ V and complex λ, µ.

vii. (λ+ µ)u = λu+ µu, for u ∈ V , λ, µ complex.

viii. λ(u+ v) = λu+ λv, for u, v ∈ V , λ complex.
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The elements u, v, w, . . . of V are called vectors.

An expression of the form

λ1u1 + λ2u2 + . . .+ λnun,

where λi complex numbers and ui ∈ V is called a linear combination of the vectors ui,

1 ≤ i ≤ n. The vectors u1, . . . , un are called linearly dependent if there exist complex

numbers λi, not all zero, for which:

λ1u1 + λ2u2 + . . .+ λnun = 0.

They are called linearly independent if they are not linearly dependent, i.e. if λ1u1 +

λ2u2 + . . .+ λnun = 0 holds only in the case λ1 = λ2 = . . . = λn = 0.

A vector space V is called finite–dimensional (of dimension n) if V contains n

linearly independent elements and if any n+1 vectors in V are linearly dependent. As

a consequence, a set of n linearly independent vectors forms a basis of V , i.e. it is a set

of linearly independent vectors that spans V , i.e. such that any u in V can be written

uniquely as a linear combination of the basis vectors.

1.2 Inner product, Norm

A vector space V is called an inner product space if for every pair of elements u ∈ V ,

v ∈ V we can define a complex number, denoted by (u, v) and called the inner product

of u and v, with the following properties:

1. ∀u ∈ V : (u, u) ≥ 0. If (u, u) = 0 then u = 0.

2. (u, v) = (v, u), ∀u, v ∈ V , where z is the complex conjugate of the complex

number z.

3. (λu+ µv, w) = λ(u,w) + µ(v, w) for u, v, w ∈ V , λ, µ complex.

As a consequence of (2) and (3) (u, λu) = λ (u, v) for u, v ∈ V and λ complex. The

vectors u, v are called orthogonal if (u, v) = 0.

For every u ∈ V we define the nonnegative number ∥u∥ by

∥u∥ = (u, u)
1
2 ,
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which is called the norm of u. As a consequence of the properties of the inner product

we see that:

i. ∥u∥ ≥ 0 and if ∥u∥ = 0, then u = 0

ii. ∀ complex λ, u ∈ V : ∥λu∥ = |λ| ∥u∥

iii. ∀u, v ∈ V : ∥u+ v∥ ≤ ∥u∥+ ∥v∥ (Triangle inequality).

To prove (iii) we first prove the Cauchy–Schwarz Inequality:

iv. |(u, v)| ≤ ∥u∥ ∥v∥, ∀u, v ∈ V .

To prove (iv) we may assume that (u, v) ̸= 0. We let now θ = (u,v)
|(u,v)| . We find then for

any real λ that

0 ≤ (θu+ λv, θu+ λv) = λ2(v, v) + 2λ |(u, v)|+ (u, u).

Hence for any real λ the quadratic on the right hand side of the above inequality is

nonnegative. Hence, necessarily,

|(u, v)| 2 ≤ (u, u) (v, v),

which gives (iv). To prove now the triangle inequality (iii) we see that

∥u+ v∥ 2 = (u+ v, u+ v) = (u, u) + (v, v) + (u, v) + (v, u)

≤ ∥u∥2 + ∥v∥2 + 2 |(u, v)| ≤ ∥u∥2 + ∥v∥2 + 2 ∥u∥ ∥v∥

= (∥u∥+ ∥v∥) 2,

from which (iii) follows. (Supplied only with a norm that just satisfies properties

(i)–(iii), V becomes a normed vector space).

1.3 Some topological concepts

In V we define the distance ρ of two vectors u and v as ρ(u, v) = ∥u − v∥. If u0

is a fixed vector in V and δ a given positive number, then the set of vectors v in V

which satisfy ∥v − u0∥ < δ is called the open ball with center u0 and radius δ. The set

∥v − u0∥ ≤ δ is the closed ball with center u0 and radius δ. We say that a sequence of
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vectors u1, u2, u3, . . . in V is convergent if there exists a vector u ∈ V such that, given

ϵ > 0 there exists a positive integer N = N(ϵ) for which:

∥un − u∥ < ϵ, for all n ≥ N.

We call u the limit of the sequence {ui}i≥1 and write limn un = u or un → u in V as

n → ∞. It is easy to see that a convergent sequence has only one limit. Obviously

un → u in V ⇔ ∥un − u∥ → 0 as n→ ∞.

A sequence of vectors u1, u2, u3, . . . is said to be a Cauchy sequence if given any

ϵ > 0, there exists an integer N = N(ϵ) such that

∥un − um∥ < ϵ, for all m,n ≥ N.

It is easy to see that every convergent sequence is Cauchy. The converse is not always

true. We will say that V is complete whenever every Cauchy sequence in V is conver-

gent. A subset A of V is called a dense subset of V if for every u ∈ V there exists a

sequence u1, u2, u3, . . . ∈ A such that un → u as n→ ∞.

Exercise: If un → u, vn → v in V then:

(a) limn(λun + µvn) = λu+ µv for complex λ, µ.

(b) limn(un, vn) = (u, v) (and as a consequence we say that the inner product is a

continuous function of its arguments).

(c) limn ∥un∥ = ∥u∥.

(d) limn λnun = λu for every convergent sequence λn → λ of complex numbers. ♢

1.4 Hilbert space

A complete inner product space V is called a Hilbert space. In other words, a Hilbert

space is an inner product space in which a Cauchy sequence is always convergent. We

will usually denote Hilbert spaces by H.

A subset S of a Hilbert space H is called a subspace of H if u ∈ S, v ∈ S imply

that λu+µv ∈ S, for any complex numbers λ, µ. S is said to be a dense subspace of H

if it is a dense subset of H and a subspace of H. S is said to be a closed subspace of H
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if S is a subspace of H with the following property: let {un} be a convergent sequence

in H such that un ∈ S, n = 1, 2, 3, . . .. Then u = limn un belongs to S too.

Exercise: A dense, closed subspace of H coincides with H. ♢
Given any (noncomplete) inner product space V we can prove that by adding new

elements to V we can extend V to a (complete) Hilbert space H such that V is a dense

subspace of H. The process is referred to as completion of V or as closure of V in H.

1.5 Examples of Hilbert spaces

A. H = Cn with the Euclidean inner product (u, v) =
∑n

i=1 uivi and norm ∥u∥ =

(
∑n

i=1 |ui|2)
1/2

.

B. l2

We denote by l2 the set of all complex sequences u = {u1, u2, u3, . . .} ≡ {ui}∞i=1 which

satisfy the inequality
∞∑
j=1

|uj| 2 <∞.

In l2 we define u+ v, λu and (u, v) in the following way:

w = u+ v with w = {wi}∞i=1, wi = ui + vi.

z = λu (λ complex number) z = {zi}∞i=1, zi = λui.

(u, v) =
∞∑
j=1

ujvj.

Then it follows that
∑∞

j=1 |zj| 2 <∞ and
∑∞

j=1 |wj| 2 <∞ because

|wj| 2 = |uj + vj| 2 ≤ 2|uj| 2 + 2|vj| 2.

The convergence of the series defining the inner product follows from

|ujvj| = |uj||vj| ≤
1

2
{|uj| 2 + |vj| 2}.

By verifying the axioms one by one we easily conclude that the set of all vectors

u, v, w, . . . with the above mentioned properties and the given operations form an inner

product space. (The zero vector is the sequence 0= {0, 0, . . .}). The space l2 is a
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complete inner product space and hence a Hilbert space. To show that let u(1), u(2), . . .

be a Cauchy sequence in l2 with

u(n) = {u(n)1 , u
(n)
2 , . . .}.

Then given ϵ > 0

∥u(n) − u(m)∥ = (u(n) − u(m), u(n) − u(m))
1
2 =

(
∞∑
j=1

|u(n)j − u
(m)
j | 2

) 1
2

< ϵ (1.1)

for all n,m ≥ N(ϵ). In particular it follows that

|u(n)j − u
(m)
j | < ϵ, for all n,m ≥ N(ϵ) and every j = 1, 2, 3, . . . .

Fix j. Then the sequence u
(1)
j , u

(2)
j , . . . is convergent. We denote the limit of this

sequence by uj, i.e.

lim
n→∞

u
(n)
j = uj for j = 1, 2, 3, . . . . (1.2)

Now it follows from (1.1) that for every positive integer k

k∑
j=1

|u(n)j − u
(m)
j | 2 < ϵ 2 for all n,m ≥ N(ϵ).

Letting m→ ∞ in the above, since it is a finite sum, we obtain by (1.2) that

k∑
j=1

|u(n)j − uj| 2 ≤ ϵ 2 for all n,m ≥ N(ϵ).

Letting now k → ∞ in the above, we obtain that

∞∑
j=1

|u(n)j − uj| 2 ≤ ϵ 2 for all n,m ≥ N(ϵ). (1.3)

We set now u = {u1, u2, . . .}. By (1.3), u− u(n) ∈ l2. Hence u = (u− u(n)) + u(n) ∈ l2.

By (1.3) it also follows that

∥u(n) − u∥ =

(
∞∑
j=1

|u(n)j − uj| 2
) 1

2

< ϵ for all n ≥ N(ϵ).

Hence there exists u ∈ l2 such that u(n) → u as n → ∞. We conclude that the

Cauchy sequence {u(1), u(2), . . .} is actually a convergent sequence. Therefore l2 is
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complete and hence a Hilbert space. We remark that the Cauchy–Schwarz inequality

|(u, v)| ≤ ∥u∥∥v∥ becomes

|
∞∑
j=1

ujvj| ≤

(
∞∑
j=1

|uj| 2
) 1

2
(

∞∑
j=1

|vj| 2
) 1

2

.

The triangle inequality ∥u+ v∥ ≤ ∥u∥+ ∥v∥ becomes(
∞∑
j=1

|uj + vj| 2
) 1

2

≤

(
∞∑
j=1

|uj| 2
) 1

2

+

(
∞∑
j=1

|vj| 2
) 1

2

.

C. L2(Ω)

Let Ω be an open set of Rn. We describe the points in Rn by n–tuples x = (x1, x2, . . . , xn)

and denote the (Euclidean) length of the vector x by:

|x| =

(
n∑

i=1

x2i

) 1
2

.

We now consider the set of complex–valued continuous functions u(x) = u(x1, . . . , xn)

defined on Ω. Addition u+v and multiplication λu by a complex number λ are defined,

as usual, by:

w = u+ v, w(x) = u(x) + v(x) ,

z = λu, z(x) = λu(x)

We define now an inner product for such functions by:

(u, v) =

∫
Ω

u(x)v(x)dx , (1.4)

where dx is the volume element in Ω, i.e. dx = dx1dx2 . . . dxn and
∫
Ω
. . . dx is the

multiple integral (in the Riemann sense)∫
Ω

. . . dx =

∫ ∫ ∫
. . .

∫
︸ ︷︷ ︸

Ω

. . . dx1dx2 . . . dxn.

Since Ω is an arbitrary open set of Rn , the integral in (1.4) defining the inner product

may not exist. We restrict therefore our attention to complex–valued functions u(x),

defined on Ω, with the property that∫
Ω

|u(x)| 2 dx <∞.
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Let now V be the above–described vector space, i.e. let

V = {u | u continuous on Ω,

∫
Ω

|u(x)| 2 dx <∞}.

V is an inner product space with the inner product defined by (1.4). To see this, note

that

|u(x) + v(x)| 2 ≤ 2(|u(x)| 2 + |v(x)| 2).

It follows that u ∈ V , v ∈ V ⇒ u + v ∈ V and easily, λu ∈ V for λ complex. Finally

the existence of the integral in (1.4) is proved by noting that ∀x ∈ Ω:

2|u(x)||v(x)| ≤ |u(x)| 2 + |v(x)| 2.

Hence, integrating:

|(u, v)| = |
∫
Ω

u(x)v(x)dx| ≤
∫
Ω

|u(x)||v(x)|dx

≤ 1

2

∫
Ω

|u(x)| 2dx+ 1

2

∫
Ω

|v(x)| 2dx.

By verifying now the axioms one by one we confirm that V is an inner product space.

The norm on V is given by

∥u∥ ≡ (u, u)
1
2 =

(∫
Ω

|u(x)| 2dx
) 1

2

.

The zero element in V is the function u(x) ≡ 0, x ∈ Ω. For u, v ∈ V , the Cauchy–

Schwarz and the triangle inequalities take the form:

|
∫
Ω

u(x)v(x)dx| ≤
(∫

Ω

|u(x)| 2dx
) 1

2
(∫

Ω

|v(x)| 2dx
) 1

2

(∫
Ω

|u(x) + v(x)| 2dx
) 1

2

≤
(∫

Ω

|u(x)| 2dx
) 1

2

+

(∫
Ω

|v(x)| 2dx
) 1

2

.

The functions u1, u2, . . . ∈ V form a Cauchy sequence in V if ∀ ϵ > 0

∥um − un∥ =

(∫
Ω

|um(x)− un(x)| 2dx
) 1

2

< ϵ ,

for all m,n ≥ N = N(ϵ). The sequence is convergent if there exists a function u ∈ V

such that for every ϵ > 0 there exists an integer N = N(ϵ) such that

∥un − u∥ =

(∫
Ω

|un(x)− u(x)| 2dx
) 1

2

< ϵ

8



holds for all n ≥ N(ϵ).

The space V is not complete. To see that let Ω = (−1, 1) in R and let V be the set

of continuous, real–valued functions u defined on (−1, 1) such that
∫ 1

−1
|u(x)| 2 dx <∞.

Let (u, v) be defined as
∫ 1

−1
u(x)v(x)dx and let ∥u∥ = (u, u)

1
2 . Consider the sequence

u1, u2, . . ., where

uj(x) =


−1 for −1 < x < −1

j

jx for −1
j
≤ x ≤ 1

j

1 for 1
j
< x < 1 .

Exercise: Prove that {uj}∞j=1 is a Cauchy sequence in V . ♢
However, there is no continuous function u on (−1, 1) for which ∥un − u∥ → 0 as

n → ∞. It is easy to see that ∥un − f∥ → 0 as n → ∞ where f is the discontinuous

function

f(x) =


−1 for −1 < x < 0

0 for x = 0

1 for 0 < x < 1 .

Thus, V is a non–complete inner product space. By our assertion in §1.4 we can

complete the space V by ‘adding’ new elements to it. This extended complete space

we call L2(Ω). The elements that we add to V can be considered as representatives of

those Cauchy sequences of V for which there do not exist functions u ∈ V such that

∥un − u∥ → 0. Some of those ‘additional’ functions may be piecewise continuous but

in general they will be highly discontinuous functions defined on Ω. (For example f ,

above, belongs to L2(Ω)).

It is well-known that L2(Ω) is isometrically isomorphic to the set of (equivalence

classes of) complex–valued Lebesgue measurable functions u on Ω for which the (Lebe-

sgue) integral
∫
Ω
|u(x)|2dx is finite. The inner product (understood in the Lebesgue

sense) is given again by (1.4).

As a consequence of the process of completion of V :

(i) L2(Ω) is a complete inner product space (a Hilbert space).

(ii) V is dense in L2(Ω), i.e. for every u ∈ L2(Ω) there exists a sequence {un}∞n=1 of

functions in V such that ∥un − u∥ =
(∫

Ω
|un(x)− u(x)| 2dx

) 1
2 → 0 as n→ ∞.
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1.6 The Projection Theorem

The following result provides important information about geometric properties of a

Hilbert space.

Theorem 1.1 (Projection Theorem). Let G be a closed subspace of a Hilbert space H,

properly included in H. Then, given h ∈ H there exists a unique element g ∈ G such

that:

(i) ∥h− g∥ = inf
ϕ∈G

∥h− ϕ∥.

Moreover

(ii) (h− g, ϕ) = 0 for each ϕ ∈ G.

H

G

0

φ

g

h−g

h

Figure 1.1:

Proof. Let h ∈ H such that h ̸∈ G (if h ∈ G pick g = h and the theorem is

proved). Now, since for all ϕ ∈ G, ∥h − ϕ∥ ≥ 0, there exists a sequence ϕn ∈ G such

that

lim
n→∞

∥h− ϕn∥ = inf
ϕ∈G

∥h− ϕ∥ ≡ δ (1.5)

We first show that {ϕn}n≥1 is a Cauchy sequence. Let f1, f2 ∈ H. Then the parallelo-

gram law holds:

2∥f1∥ 2 + 2∥f2∥ 2 = ∥f1 + f2∥ 2 + ∥f1 − f2∥2.

(Proof: Exercise). Set f1 = h− ϕm, f2 = h− ϕn. Then

∥ϕm − ϕn∥ 2 = 2∥h− ϕm∥ 2 + 2∥h− ϕn∥ 2 − 4∥h− ϕm + ϕn

2
∥ 2. (1.6)

Now

∥h− ϕm + ϕn

2
∥ ≤ 1

2
∥h− ϕm∥+

1

2
∥h− ϕn∥

10



and by (1.5),

lim sup
m,n→∞

∥h− ϕm + ϕn

2
∥ ≤ 1

2
δ +

1

2
δ = δ.

But by definition of δ,

lim inf
m,n→∞

∥h− ϕm + ϕn

2
∥ ≥ δ.

Hence limm,n→∞ ∥h− ϕm+ϕn

2
∥ = δ. Then by (1.6) and (1.5) we conclude that

lim
m,n→∞

∥ϕm − ϕn∥ 2 = 2δ2 + 2δ2 − 4δ2 = 0.

Hence {ϕn}n≥1 is a Cauchy sequence in G. Since G is closed, the sequence is convergent

in G, i.e. there exists g ∈ G such that ϕn → g as n→ ∞. We show that this g satisfies

∥h−g∥ = infϕ∈G ∥h−ϕ∥ ≡ δ. Obviously ∥h−g∥ ≤ ∥h−ϕn∥+∥g−ϕn∥ and taking the

limit of both sides as n→ ∞ we get that ∥h− g∥ ≤ δ. By definition of δ, ∥h− g∥ ≥ δ.

Hence ∥h− g∥ = δ as required. We also show that g is unique. Indeed, let g1, g2 ∈ G,

g1 ̸= g2 have the property that

δ ≡ inf
g∈G

∥h− g∥ = ∥h− g1∥ = ∥h− g2∥.

Then, since 1
2
(g1 + g2) ∈ G⇒ δ ≤ ∥h− 1

2
(g1 + g2)∥. But by the triangle inequality

∥h− 1

2
(g1 + g2)∥ ≤ 1

2
∥h− g1∥+

1

2
∥h− g2∥ =

1

2
δ +

1

2
δ = δ.

Hence

∥h− 1

2
(g1 + g2)∥ = δ =

1

2
∥h− g1∥+

1

2
∥h− g2∥,

i.e. the triangle inequality holds as equality. Now for any χ, ψ ∈ H such that χ ̸= 0,

ψ ̸= 0, ∥χ + ψ∥ = ∥χ∥ + ∥ψ∥ ⇔ χ = λψ, for some λ > 0. (Proof: Exercise.) Hence

there exists λ such that h− g1 = λ(h− g2), i.e. h(1− λ) = g1 − λg2. If λ = 1, g1 = g2

(contradiction). If λ ̸= 1, h = (g1−λg2)
1−λ

i.e. h ∈ G (contradiction). Hence g is unique

and we proved (i) above.

To prove (ii), with g constructed as above, suppose that there exists ϕ∗ ̸= 0 in G

for which (ii) fails, i.e (h− g, ϕ∗) ̸= 0. Define the element g∗ ∈ G by:

g∗ = g +
(h− g, ϕ∗)

(ϕ∗, ϕ∗)
ϕ∗.

11



Then

∥h− g∗∥ 2 = (h− g − (h− g, ϕ∗)

∥ϕ∗∥ 2
ϕ∗, h− g − (h− g, ϕ∗)

∥ϕ∗∥ 2
ϕ∗)

= (h− g, h− g)− (h− g, ϕ∗)

(ϕ∗, ϕ∗)
(ϕ∗, h− g)

− (h− g, ϕ∗)

(ϕ∗, ϕ∗)
(h− g, ϕ∗) +

|(h− g, ϕ∗)| 2

∥ϕ∗∥4
(ϕ∗, ϕ∗)

= ∥h− g∥2 − |(h− g, ϕ∗)| 2

∥ϕ∗∥ 2
.

Hence

∥h− g∗∥ < ∥h− g∥ = inf
ϕ∈G

∥h− ϕ∥ (contradiction).

Hence (h− g, ϕ) = 0, ∀ϕ ∈ G and we have (ii). �
Exercise: Prove that if for some g ∈ G, (h − g, ϕ) = 0 ∀ϕ ∈ G, then (i) in Theorem

1.1 holds. ♢
Given h ∈ H we call g, the existence and uniqueness of which is guaranteed by

Theorem 1.1, the orthogonal projection of h on the closed subspace G or the best

approximation of h in G. If we denote by f = h− g, then we can write

h = f + g where g ∈ G and (f, ϕ) = 0, ∀ϕ ∈ G.

Hence f is orthogonal to all vectors of the closed subspace G. Let G⊥ be the set of all

such vectors, i.e. let

G⊥ = {u ∈ H : (u, ϕ) = 0 ∀ϕ ∈ G}.

G⊥ is called the orthogonal complement of G and it is a closed subspace of H. To see

that let un ∈ G⊥ such that un → u. Then (u, ϕ) = (u, ϕ) − (un, ϕ), for all ϕ ∈ G

since (un, ϕ) = 0. Hence for all ϕ ∈ G |(u, ϕ)| = |(u − un, ϕ)| ≤ ∥u − un∥∥ϕ∥ → ∞ as

n→ ∞, i.e. (u, ϕ) = 0 ⇒ u ∈ G⊥. Hence G⊥ is closed. (To show that it is a subspace

is trivial). It is easy to see that G ∩ G⊥ = {0}. Hence we can write H as the direct

sum of G and G⊥

H = G⊕G⊥,

meaning by that that there exist two disjoint closed subspaces G and G⊥ such that

every element h ∈ H can be written uniquely as the sum of g ∈ G and f ∈ G⊥,

12



h = g + f , as above.

Exercise: With g, f defined as above prove the Pythagorean theorem:

∥h∥2 = ∥g∥2 + ∥f∥2.

♢
A particular case of importance occurs when G is finite–dimensional. Then G is

closed (Proof: Exercise). Let {φ1, φ2, . . . , φs} be a basis of G. Given h ∈ H we can

explicitly construct the best approximation g of h in G as follows: By (ii), g satisfies:

(h− g, φ) = 0 ∀φ ∈ G.

Hence

(h− g, φi) = 0 , i = 1, 2, . . . , s. (1.7)

Let g =
∑s

i=1 ciφi. We seek the coefficients {ci}si=1. By (1.7), the ci’s satisfy the

following linear system of equations:

s∑
j=1

Mijcj = (h, φi) 1 ≤ i ≤ s, (1.8)

where M = {Mij} is the s× s Gram matrix (or mass matrix) associated with the basis

{φi}si=1 of G and defined by

Mij = (φj, φi), 1 ≤ i, j ≤ s.

To see that M is invertible, suppose that for some complex s–vector d = [d1, . . . ds]
T

we have that M d = 0. Thus

s∑
j=1

Mijdj = 0 ⇒ (
s∑

j=1

djφj, φi) = 0 ∀ i : 1 ≤ i ≤ s.

Hence we conclude easily that the vector u =
∑s

j=1 djφj ∈ G is orthogonal to all φ ∈ G,

i.e. u ∈ G⊥ ∩G⇒ u = 0. Hence
∑s

j=1 djφj = 0 and by the linear independence of the

φj’s ⇒ dj = 0 , ∀ j ⇒ d = 0. Hence M d = 0 ⇒ d = 0, i.e. M is invertible. Actually,

M is positive-definite (Exercise).

Example: Let Ω = (0, 1) andH = L2(0, 1) (real–valued). Suppose f is a given element

of L2(0, 1) and let G be the subspace of H consisting of all real–valued polynomials of

degree ≤ n− 1, n > 1. Find the best approximation to f in G.
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Solution. A basis for G obviously consists of the functions φj(x) = xj−1, 1 ≤ j ≤ n.

Let g be the best approximation (orthogonal projection) of f in G. Suppose that

g =
∑n

j=1 ajφj. Then g satisfies:

(g − f, φi) = 0 , 1 ≤ i ≤ n,

from which
n∑

j=1

Mijaj = (f, φi) , 1 ≤ i ≤ n, (1.9)

where M is the n× n Gram matrix,

Mij = (φi, φj) =

∫ 1

0

φiφj =

∫ 1

0

xi+j−2dx =
1

i+ j − 1
·

M is positive-definitive but very ill conditioned. �

1.7 Bounded (continuous) linear functionals on a

Hilbert space

Let H be a Hilbert space. By a functional F on H we mean a function from H into

the complex numbers C, i.e. a map which assigns to every ϕ ∈ H a unique complex

number F (ϕ),

F : H → C , ϕ 7→ F (ϕ).

A functional F on H is called a linear functional if for every ϕ, ψ ∈ H and λ, µ ∈ C :

F (λϕ+ µψ) = λF (ϕ) + µF (ψ).

A functional F on H is called bounded if

sup
0̸=ϕ∈H

|F (ϕ)|
∥ϕ∥

<∞.

If a functional F on H is bounded we define its norm, denoted by ∥F∥ (do not confuse

with the norm of ϕ ∈ H, ∥ϕ∥) by

∥F∥ = sup
0̸=ϕ∈H

|F (ϕ)|
∥ϕ∥

. (1.10)
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Let F be a bounded, linear functional on H. Then it is easy to see that F is a

continuous function of its argument. Indeed, let ϕn → ϕ in H. Then

|F (ϕn)− F (ϕ)| = |F (ϕn − ϕ)| ≤ ∥F∥∥ϕn − ϕ∥ n→∞−→ 0.

Hence F (ϕn) → F (ϕ) in C, i.e. F is continuous. (Note that the inequality

|F (ϕ)| ≤ ∥F∥∥ϕ∥

follows from the definition of the norm (1.10) ∥F∥ of F .)

Conversely, let F be a linear functional on H and suppose that F is a continuous

function of its argument on H. We shall show that F is bounded. Indeed, if F is

continuous at ϕ0 ∈ H, then for each ϵ > 0 there exists a δ > 0 such that |F (ϕ0) −

F (h)| < ϵ for ∥h − ϕ0∥ ≤ δ. Now let ϕ ̸= 0 be an arbitrary element of H. By the

linearity of F we obtain that

F (ϕ) =
∥ϕ∥
δ
F

(
δϕ

∥ϕ∥

)
=

∥ϕ∥
δ

{
F

(
δϕ

∥ϕ∥
+ ϕ0

)
− F (ϕ0)

}
·

Since the vector δϕ
∥ϕ∥ +ϕ0 = h, satisfies the relation ∥h−ϕ0∥ ≤ δ we have that |F (ϕ)| <

ϵ
δ
∥ϕ∥, i.e. |F (ϕ)|

∥ϕ∥ < ϵ
δ
. Fix ϵ = ϵ0 > 0. Then δ = δ(ϵ0) ≡ δ0, and since ϵ0, δ0 are

independent of ϕ we see that

∥F∥ = sup
0 ̸=ϕ∈H

|F (ϕ)|
∥ϕ∥

≤ ϵ0
δ0
<∞,

i.e. F is bounded.

Hence we proved that for a linear functional f on H, boundedness ⇔ continuity.

We speak thus of a bounded (continuous) linear functional (b.l.f.).

Exercise: Let F be a b.l.f. on H. With the norm ∥F∥defined by (1.10) show that

∥F∥ = sup
ϕ∈H: ∥ϕ∥≤1

|F (ϕ)| = sup
ϕ∈H: ∥ϕ∥=1

|F (ϕ)|.

♢
Now let F , G be b.l.f.’s on a Hilbert space H. We can define the sum of two b.l.f.’s

F + G = L by L(ϕ) = F (ϕ) + G(ϕ) for each ϕ ∈ H and the scalar product λF as

λF = G, G(ϕ) = λF (ϕ).

Exercise: We denote by H ′ the space of bounded linear functionals F,G, . . . on a
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Hilbert space H. (H ′ is called the dual of H). With addition and scalar multiplication

defined as above show that H ′ forms a vector space. Then ∥F∥, defined by (1.10) is

a norm on H ′, i.e. H ′ is a normed linear space. Finally show that H ′ is complete, i.e.

every Cauchy sequence in H ′ converges to an element in H ′. ♢
An example of a bounded, linear functional on H is furnished by the inner product

on H of the elements of H with a fixed element f ∈ H. Given f ∈ H, define for every

ϕ ∈ H, F (ϕ) by

F (ϕ) = (ϕ, f).

Clearly F is a linear functional on H. To see that it is bounded observe that

|F (ϕ)| = |(ϕ, f)| ≤ ∥ϕ∥ ∥f∥.

So for all ϕ ̸= 0:
|F (ϕ)|
∥ϕ∥

≤ ∥f∥ <∞.

Hence

∥F∥ = sup
0̸=ϕ∈H

|F (ϕ)|
∥ϕ∥

≤ ∥f∥.

In fact, since F (f) = ∥f∥2 we see that the sup is attained for ϕ = f ∈ H. Hence

∥F∥ = ∥f∥.

It turns out that the converse of the above statement is also true. Namely that

every bounded linear functional on H has the form (ϕ, f) for some f ∈ H. This is the

content of:

Theorem 1.2 (Riesz Representation Theorem). Every bounded (continuous) linear

functional F on a Hilbert space H can be expressed in the form F (ϕ) = (ϕ, f), for each

ϕ ∈ H, where f is an element of H which is uniquely determined by F ; moreover,

∥F∥ = ∥f∥.

Proof. We denote by G the set of all elements g ∈ H such that F (g) = 0, i.e.

G = KerF . Obviously G is a subspace of H. Moreover G is a closed subspace of H. To

see that let gn → g with gn ∈ G. Then F (g) = F (g − gn) + F (gn) = F (g − gn). Hence

|F (g)| ≤ ∥F∥∥g − gn∥ → 0 as n→ ∞, i.e. F (g) = 0 ⇔ g ∈ G.

There are two possibilities now: either G = H or G ( H (properly included in H).

In the first case F is the zero functional on H and the theorem is proved with f = 0.
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Hence, assume that G ( H. In this case G⊥ contains non–zero elements. Let f0 ∈ G⊥,

f0 ̸= 0. For ϕ ∈ H, consider the vector F (ϕ)f0 − F (f0)ϕ. This vector belongs to G

because F (F (ϕ)f0 − F (f0)ϕ) = F (ϕ)F (f0) − F (f0)F (ϕ) = 0. Hence, since f0 ∈ G⊥,

we see that for all ϕ ∈ H:

(F (ϕ)f0 − F (f0)ϕ, f0) = 0.

Hence F (ϕ)∥f0∥ 2 = F (f0) (ϕ, f0) from which

F (ϕ) =

(
ϕ,
F (f0)

∥f0∥ 2
f0

)
, for all ϕ ∈ H.

We set now

f =
F (f0)

∥f0∥ 2
f0

and the equality above provides the required representation, i.e. we have existence of

f .

To prove that f is unique, suppose that there exist two vectors f1 ̸= f2 such that

for all ϕ ∈ H: f(ϕ) = (ϕ, f1) = (ϕ, f2). Hence (ϕ, f1 − f2) = 0 for all ϕ ∈ H. In

particular, set ϕ = f1 − f2 from which it follows that f1 − f2 = 0. It remains to prove

that ∥F∥ = ∥f∥. We immediately obtain from F (ϕ) = (ϕ, f) that

|F (ϕ)| = |(ϕ, f)| ≤ ∥ϕ∥∥f∥ ϕ̸=0
=⇒ |F (ϕ)|

∥ϕ∥
≤ ∥f∥.

Hence

∥F∥ = sup
0̸=ϕ∈H

|F (ϕ)|
∥ϕ∥

≤ ∥f∥.

On the other hand taking ϕ = f we see that F (f) = (f, f) = ∥f∥ 2, from which

∥f∥ 2 ≤ ∥F∥∥f∥ , i.e. ∥f∥ ≤ ∥F∥.

Hence ∥F∥ = ∥f∥. �

1.8 Bounded (continuous) linear operators on a Hil-

bert space

Let H be a Hilbert space as usual. Let M be a subspace of H. By a linear operator

T : M → H we mean a function defined on M with values in H which assigns to the
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vector u ∈M the (unique) vector Tu ∈ H and which satisfies:

T (λu+ µv) = λT (u) + µT (v) for u, v ∈M, λ, µ ∈ C .

The subspace M of H on which T is defined is called the domain of T and is denoted

by D(T ). The range of T is the set of vectors v ∈ H to each one of which there

corresponds at least one u ∈ D(T ) such that Tu = v, i.e.

Range(T ) ≡ Ran(T ) = {v ∈ H : ∃u ∈ D(T ) such that Tu = v}.

We also define

Ker(T ) ≡ {u ∈ D(T ) : Tu = 0}.

The operator T is called one–to–one (1–1) if u1 ̸= u2 ⇒ Tu1 ̸= Tu2. Equivalently, T is

one–to–one if Tu1 = Tu2 ⇒ u1 = u2. T is called onto if Ran(T ) = H, i.e. if for every

v ∈ H we can find a u ∈ D(T ) such that Tu = v.

Exercise: Ran(T ) is a subspace of H. So is Ker(T ). ♢
A linear operator T defined on the whole of H, (i.e. D(T ) = H) will be called

a linear operator on H. Unless otherwise indicated we will assume henceforth that

D(T ) = H. A linear operator T on H is said to be bounded if

sup
0̸=ϕ∈H

∥Tϕ∥
∥ϕ∥

<∞.

Let T be a bounded linear operator (b.l.op.) on H. We define the norm of T by

∥T∥ = sup
0 ̸=ϕ∈H

∥Tϕ∥
∥ϕ∥

. (1.11)

(It follows that ∥Tϕ∥ ≤ ∥T∥∥ϕ∥ ∀ϕ ∈ H).

A linear operator T onH is continuous if whenever fn → f inH then ∥Tfn−Tf∥ →

0. As in the case of bounded linear functionals we can prove (Exercise) that a linear

operator T on H is bounded if and only if it is continuous. As in the case of bounded

linear functionals we can show (Exercise) that

∥T∥ = sup
0 ̸=ϕ∈H: ∥ϕ∥≤1

∥Tϕ∥ = sup
ϕ∈H: ∥ϕ∥=1

∥Tϕ∥.

Now, let T, S, . . . be b.l.op’s on H. We define their sum T +S as that (linear) operator

W on H, such that Wϕ = Tϕ+ Sϕ, ∀ϕ ∈ H. Similarly λT = S, where Sϕ = λTϕ. It
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is easy to see that with these definitions of addition and scalar multiplication, the set

of b.l.op’s on H forms a vector space.

Exercise: With the norm defined by (1.11) the vector space of b.l.op’s on H becomes

a normed linear space. ♢
We denote this normed linear space by B(H).

Exercise: B(H) is a complete normed linear space. ♢
Now, let T, S be b.l.op’s on B(H). Their product TS is defined as the function

D : H → H which maps the element u ∈ H on the element T (Su). It is easily seen

that (TS)u = T (Su) defines a linear operator on H. Moreover T (S1+S2) = TS1+TS2

etc, while in general TS ̸= ST . Since ∥TSu∥ = ∥T (Su)∥ ≤ ∥T∥∥Su∥ ≤ ∥T∥∥S∥∥u∥,

we see that ∥TS∥ ≤ ∥T∥∥S∥, i.e. TS ∈ B(H).

Referring to the Projection Theorem 1.1, set g = Ph, where g is the orthogonal

projection (best approximation) of h on a closed subspace G of H. P is called the

projection operator onto G.

Exercise: Show that

(i) P is a linear operator on H.

(ii) P is a bounded linear operator on H.

(iii) RanP = G, KerP = G⊥, Ran(I − P ) = G⊥, Ker(I − P ) = G, where I is the

identity operator Iu = u, ∀u ∈ H (obviously I ∈ B(H) with ∥I∥ = 1).

(iv) P 2 = P , ∥P∥ = 1.

(v) I − P is the projection operator onto G⊥. ♢

1.9 The Lax–Milgram and the Galerkin theorems

Henceforth we will usually consider real Hilbert spaces, i.e. complete inner product

spaces over the real numbers with (λf, µg) = λµ(f, g), ∀λ, µ real, f, g ∈ H, and

(f, g) = (g, f), ∀ f, g ∈ H.

A (real) bilinear form on a real Hilbert space H is a map from H×H into R denoted
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by B(f, g) for f, g ∈ H, which satisfies:

B(λ1f1 + λ2f2, g) = λ1B(f1, g) + λ2B(f2, g)

B(f, µ1g1 + µ2g2) = µ1B(f, g1) + µ2B(f, g2)

for fi, f, gi, g ∈ H, µi, λi ∈ R. In general, B(f, g) ̸= B(g, f), i.e. B is not symmetric.

The following theorem will be central in the sequel:

Theorem 1.3 (Lax–Milgram Theorem). Let H be a (real) Hilbert space and let B(., .) :

H ×H → R be a bilinear form on H which satisfies:

(i) |B(ϕ, ψ)| ≤ c1∥ϕ∥∥ψ∥ ∀ϕ, ψ ∈ H

(ii) B(ϕ, ϕ) ≥ c2∥ϕ∥ 2 ∀ϕ ∈ H,

where c1, c2 are positive constants independent of ϕ, ψ ∈ H.

Let F : H → R be a given (real valued) bounded linear functional on H. Then there

exists a unique u ∈ H satisfying

B(u, v) = F (v) for all v ∈ H.

Moreover,

∥u∥ ≤ 1

c2
∥F∥.

Proof. Let ϕ ∈ H be fixed. Then Φ : H → R , defined for every v ∈ H by

Φ(v) = B(ϕ, v), defines a continuous linear functional on H. (Linearity follows from

the fact that B is a bilinear form. For boundedness observe that for each v ∈ H:

|Φ(v)| = |B(ϕ, v)| ≤ c1∥ϕ∥∥v∥.

Hence ∥Φ∥ ≤ c1∥ϕ∥ <∞).

By the Riesz Representation Theorem (1.2) therefore, there exists a unique element

ϕ̃ ∈ H such that

Φ(v) = B(ϕ, v) = (v, ϕ̃) for every v ∈ H. (1.12)

Hence for every ϕ ∈ H, we define a ϕ̃ ∈ H by (1.12) and denote the correspondence

ϕ 7→ ϕ̃ by ϕ̃ = Aϕ, i.e.

B(ϕ, v) = (v, Aϕ), ∀ϕ ∈ H, ∀ v ∈ H. (1.13)
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Now A is a linear operator defined on H. To show linearity, observe that, given

ϕ, ψ ∈ H for every v ∈ H and λ, µ real we have that

(v, A(λϕ+ µψ)) = B(λϕ+ µψ, v) = λB(ϕ, v) + µB(ψ, v) =

= λ(v, Aϕ) + µ(v, Aψ) = (v, λAϕ+ µAψ).

Hence A(λϕ+ µψ) = λAϕ+ µAψ ⇐⇒ A is linear.

We claim now that A, defined by (1.13) has a range Ran(A) which is a closed

subspace of H. It is (easily) a subspace. To show that it is closed, let ϕ̂n = Aϕn be

a convergent sequence, such that ϕ̂n → ϕ̂. Now, since B(ϕn, v) = (v, Aϕn) ∀ v ∈ H

⇒ B(ϕn − ϕm, v) = (Aϕn − Aϕm, v) ∀ v ∈ H. Choose ϕn − ϕm = v and using (ii) get

∥ϕn−ϕm∥ ≤ 1
c2
∥Aϕn−Aϕm∥. Hence {ϕn} is a Cauchy sequence in H, i.e. there exists

ϕ ∈ H such that ϕn → ϕ. We now show that ϕ̂ = Aϕ, thus showing that ϕ̂ ∈ Ran(A),

i.e. that Ran(A) is closed.

Now |B(ϕn, v)−B(ϕ, v)| ≤ C1∥ϕn − ϕ∥∥v∥ gives that

lim
n→∞

B(ϕn, v) = B(ϕ, v) ∀ v ∈ H.

Also (Aϕn, v) = (ϕ̂n, v) → (ϕ̂, v) since |(ϕ̂n, v)−(ϕ̂, v)| ≤ ∥ϕ̂n−ϕ̂∥∥v∥. Since B(ϕn, v) =

(Aϕn, v) ∀ v ∈ H ⇒ B(ϕ, v) = (ϕ̂, v) ∀ v ∈ V , i.e. ϕ̂ = Aϕ, by definition of A. Hence

Ran(A) is closed. We now claim that Ran(A) = H. Suppose that Ran(A) is properly

included in H, so that ∃ z ̸= 0 ∈ (Ran(A))⊥. Hence (z, v) = 0 ∀ v ∈ Ran(A). In

particular ∀ϕ ∈ H, B(ϕ, z) = (Aϕ, z) = 0. Hence for ϕ = z, 0 = B(z, z) ≥ c2∥z∥ 2

⇒ z = 0 (contradiction). So Ran(A) = H.

Now, given F , a b.l.f. on H, by Riesz representation, ∃ !χ ∈ H such that F (v) =

(χ, v) ∀ v ∈ H. Since Ran(A) = H, ∃u ∈ H such that Au = χ. Hence ∃u such that

F (v) = (Au, v) = B(u, v) ∀ v ∈ H

and we have existence of u as claimed in the statement of the theorem.

For uniqueness, suppose that ∃u1 ̸= u2 such that B(u1, v) = F (v) = B(u2, v)

∀ v ∈ H. Hence

B(u1 − u2, v) = 0 ∀ v ∈ H ⇒ 0 = B(u1 − u2, u1 − u2) ≥ c2∥u1 − u2∥ 2 ⇒ u1 = u2.
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Finally since B(u, u) = F (u), (i), (ii) give that (u ̸= 0) c2∥u∥ 2 ≤ |F (u)|, from which

∥u∥ ≤ 1
c2

|F (u)|
∥u∥ . Hence

∥u∥ ≤ sup
v ̸=0

1

c2

|F (v)|
∥v∥

=
1

c2
∥F∥.

�
We finally present a basic theorem for the Galerkin approximation (see below for

definition) uh to the solution u of B(u, v) = F (v) guaranteed by the Lax–Milgram

theorem.

Theorem 1.4 (Galerkin). Let H be a real Hilbert space and let B(., .) : H ×H → R

be a bilinear form on H which satisfies:

(i) |B(ϕ, ψ)| ≤ c1∥ϕ∥∥ψ∥ ∀ϕ, ψ ∈ H,

(ii) B(ϕ, ϕ) ≥ c2∥ϕ∥ 2 ∀ϕ ∈ H,

for some positive constants c1, c2 independent of ϕ, ψ ∈ H. Let F be a given real–

valued b.l.f. on H and let u be the unique element of H, guaranteed by the Lax–Milgram

theorem, satisfying B(u, v) = F (v), ∀ v ∈ H.

Let {Sh} for 0 < h ≤ 1 be a family of finite–dimensional subspaces of H. For every h

there exists a unique uh such that

B(uh, vh) = F (vh) ∀ vh ∈ Sh. (1.14)

We call uh the Galerkin approximation of u in Sh.

Moreover we have the error estimate

∥u− uh∥ ≤ c1
c2

inf
χ∈Sh

∥u− χ∥.

Proof. The existence–uniqueness of uh ∈ Sh is guaranteed by the Lax–Milgram

theorem applied to the Hilbert space (Sh, ∥ · ∥). Alternatively, let {ϕj}mj=1 be a basis

for Sh, where m = m(h) = dimSh, and try to find uh ∈ Sh in the form uh =
∑m

j=1 cjϕj.

By (1.14) uh satisfies

B(uh, ϕi) = F (ϕi) 1 ≤ i ≤ m, i.e.

B

(
m∑
j=1

cjϕj, ϕi

)
= F (ϕi) 1 ≤ i ≤ m =⇒

m∑
j=1

cjB(ϕj, ϕi) = F (ϕi), 1 ≤ i ≤ m.
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Hence if A is the m×m matrix given by Aij = B(ϕj, ϕi), 1 ≤ i, j ≤ m, the cj’s are the

solution of the linear system

m∑
j=1

Aijcj = F (ϕi), 1 ≤ i ≤ m. (1.15)

The associated homogeneous system
∑m

j=1Aij c̃j = 0, 1 ≤ i ≤ m, has only the zero

solution. (Since
∑m

j=1Aij c̃j = 0 ⇒ B(
∑m

j=1 c̃jϕj, ϕi) = 0, 1 ≤ i ≤ m, ⇒ B(vh, vh) = 0,

where vh =
∑m

j=1 c̃jϕj. Hence, by (ii) vh = 0 ⇒ c̃i = 0.) Therefore A is invertible and

(1.15) has a unique solution, i.e. (1.14) has a unique solution uh ∈ Sh. (Exercise:

Show that A is positive definite.)

For the error estimate observe that by (ii)

c2∥u− uh∥2 ≤ B(u− uh, u− uh) = B(u− uh, u) (1.16)

(since B(uh, ψ) = F (ψ) = B(u, ψ) ∀ψ ∈ Sh ⇒ B(u − uh, ψ) = 0 ∀ψ ∈ Sh). For the

same reason, for any χ ∈ Sh

B(u− uh, u) = B(u− uh, u− χ) ≤ c1∥u− uh∥ ∥u− χ∥,

using (i).

By (1.16) we conclude therefore that c2∥u− uh∥2 ≤ c1∥u− uh∥ ∥u− χ∥, i.e.

∥u− uh∥ ≤ c1
c2
∥χ− u∥ ∀χ ∈ Sh, i.e.

∥u− uh∥ ≤ c1
c2

inf
χ∈Sh

∥χ− u∥ =
c1
c2
∥Phu− u∥,

where Ph is the projection operator on Sh. �
Here is an immediate corollary to Galerkin’s Theorem 1.4.

Corollary 1.1. With notation introduced in Theorem 1.4, suppose that the family Sh

of subspaces satisfies

lim
h→0

inf
χ∈Sh

∥u− χ∥ = 0.

Then limh→0 ∥u− uh∥ = 0. �

Finally we mention that in the case of a symmetric, bilinear form B, i.e. when (in

addition to (i), (ii) of Theorem 1.3)

(iii) B(u, v) = B(v, u) ∀u, v ∈ H
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we can obtain a variational formulation of the problem of finding u ∈ H such that

B(u, v) = F (v) ∀ v ∈ H,

where F is a bounded linear functional on H.

For v ∈ H consider the following (nonlinear) functional J : H → R defined by

J(v) =
1

2
B(v, v)− F (v) (1.17)

and the associated problem of finding z ∈ H such that

J(z) = min
v∈H

J(v). (1.18)

We have the following theorem:

Theorem 1.5 (Rayleigh–Ritz). Suppose B is a symmetric, bilinear form which satisfies

the hypotheses (i), (ii) of Theorem 1.3. Then, the problem (1.18) of minimizing over

H the functional J defined by (1.17) has a unique solution which coincides with u, the

existence–uniqueness of which was guaranteed by the Lax–Milgram Theorem 1.3.

Proof. Let u be the solution of the problem B(u, v) = F (v) ∀ v ∈ H. Then

∀w ∈ H:

J(u+ w) =
1

2
B(u+ w, u+ w)− F (u+ w) = (due to the symmetry of B) =

=

(
1

2
B(u, u)− F (u)

)
+

(
1

2
B(w,w)

)
+ (B(u,w)− F (w))

= J(u) +
1

2
B(w,w), since B(u,w) = F (w) by Theorem 1.3.

Hence

J(u+ w) = J(u) +
1

2
B(w,w) ≥ J(u) +

c2
2
∥w∥ 2 by (ii).

Therefore ∀w ∈ H,w ̸= 0: J(u+ w) > J(u) i.e.

J(u) = min
v∈H

J(v) and J(v) > J(u) if v ̸= u.

�
Immediately, we have the following corollary, which is the analog of Theorem 1.4.
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Corollary 1.2 (Rayleigh–Ritz, Galerkin). With notation introduced in Theorem 1.4

and the additional hypothesis of symmetry of B, the problem of minimizing the func-

tional J defined by (1.17), over Sh, i.e. finding uh ∈ Sh such that

J(uh) = min
χ∈Sh

J(χ)

has a unique solution uh, which coincides with the Galerkin approximation in Sh of u,

constructed in Theorem 1.4. �
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Chapter 2

Elements of the Theory of Sobolev

Spaces and Variational Formulation

of Boundary–Value Problems in

One Dimension

This chapter (and chapter 4) follows closely the analogous material in H. Brezis, Anal-

yse fonctionelle, théorie et applications, Masson, Paris, 1983. (For the translation in

Greek and the new English edition, see the References)

2.1 Motivation

We consider the following “two–point” boundary–value problem in one dimension. Find

a real–valued function u(x), defined for x ∈ [a, b] and satisfying

(∗)

 −(p(x)u′(x))′ + q(x)u(x) = f(x), a ≤ x ≤ b.

u(a) = u(b) = 0.

Here p(x), q(x), f(x) are real–valued functions defined on [a, b] such that p ∈ C1([a, b]),

p(x) ≥ α > 0 for x ∈ [a, b], q ∈ C([a, b]), q(x) ≥ 0 ∀x ∈ [a, b], f ∈ C([a, b]). A classical

(or strong) solution of the boundary–value problem (b.v.p.) (∗) is a function u of class

C2([a, b]) which satisfies (∗) in the usual sense.
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If we multiply the equation in (∗) by a function ϕ ∈ C1([a, b]), such that ϕ(a) =

ϕ(b) = 0 and integrate by parts we obtain

(∗∗)
∫ b

a

pu′ϕ ′ dx+

∫ b

a

quϕ dx =

∫ b

a

fϕ dx, ∀ϕ ∈ C1([a, b]), ϕ(a) = ϕ(b) = 0.

Note that (∗∗) makes sense for u ∈ C1([a, b]) e.g. (as opposed to (∗) which requires

u ∈ C2([a, b])). In fact (∗∗) just requires that u, u′ be integrable functions. One may

say (vaguely) that a solution u ∈ C1([a, b]) (such that u(a) = u(b) = 0) of (∗∗) is (one

kind of) a weak or generalized solution of (∗).

The variational method for solving (i.e. proving existence and uniqueness of solu-

tions) problems such as (∗) – and also boundary–value problems for partial differential

equations proceeds roughly as follows:

(i) We define precisely what we mean by a weak solution of (∗). Typically it will

be the solution of a weak (or variational) form of the problem (∗), such as (∗∗),

or, equivalently the solution of an appropriate minimization problem. Here the

Sobolev spaces will play a central role.

(ii) We show existence and uniqueness of the weak solution, for example by the Lax–

Milgram theorem; note that (∗∗) suggests the variational problem

B(u, ϕ) ≡
∫ b

a
(pu′ϕ ′ + quϕ) = F (ϕ) ≡

∫ b

a
fϕ, ∀ϕ ∈ C1([a, b]), such that ϕ(a) =

ϕ(b) = 0.

(iii) We then prove that the weak solution is sufficiently regular. For example here we

must prove that the weak solution is in C2([a, b]).

(iv) We finally prove that a weak solution, which is in C2([a, b]), is a strong (classical)

solution of (∗).

Note that a weak formulation of the problem provides us also with a method

(Galerkin) for approximating its weak solution in a suitably chosen finite–dimensional

subspace of functions with good approximation properties, that are also suitable for

numerical computations.
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2.2 Notation and preliminaries

We now introduce some notation on function spaces that will be used in the sequel and

collect (without proof) some useful facts about L2.

We let Ω denote an open subset of RN ; for this part of the notes take, for example,

Ω to be an open interval (a, b) in R . For simplicity we shall consider only real–valued

functions defined on Ω or Ω. We define:

C(Ω) = space of continuous functions on Ω.

C k(Ω) = space of k–times differentiable functions on Ω, i.e the space of those functions

f(x), x ∈ Ω such that ∂α1+···+αN f(x)

∂x
α1
1 ...∂x

αN
N

are continuous functions on Ω for all integers

0 ≤ αi ≤ k, 1 ≤ i ≤ N such that α1 + α2 + · · ·+ αN ≤ k. Put C 0(Ω) ≡ C(Ω).

C∞(Ω) = ∩k≥0C
k(Ω).

Cc(Ω) = space of functions in C(Ω) whose support is a compact set included in Ω. (If

f ∈ C(Ω), support of f = suppf = {x ∈ Ω : f(x) ̸= 0}). Hence these functions

vanish outside a compact set (strictly) included in Ω.

C k
c (Ω) = C k(Ω) ∩ Cc(Ω).

C∞
c (Ω) = C∞(Ω) ∩ Cc(Ω). Often the notation C∞

0 (Ω) is used instead of C∞
c (Ω).

We recall a few facts about the spaces Lp(Ω). Let dx denote the Lebesgue measure

in Rn . By L1(Ω) we denote the space of (Lebesgue) integrable functions f on Ω, i.e.

the functions for which

∥f∥L1 = ∥f∥L1(Ω) =

∫
Ω

|f(x)| dx <∞.

(We denote usually
∫
Ω
f =

∫
Ω
f(x) dx).

Let 1 ≤ p <∞. Then

Lp(Ω) = {f : Ω → R ; |f | p ∈ L1(Ω)}.

We put

∥f∥Lp = ∥f∥Lp(Ω) =

(∫
Ω

|f(x)| p dx
) 1

p

.
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For p = ∞ we define L∞(Ω) = {f : Ω → R , f measurable such that there exists a

constant C < ∞ such that |f(x)| ≤ C a.e. (almost everywhere) in Ω, i.e. such that

|f(x)| ≤ C for all x ∈ Ω except possibly for some x belonging to a subset of Ω of

Lebesgue measure zero}. We put

∥f∥L∞ = ∥f∥L∞(Ω) = inf{C : |f(x)| ≤ C a.e. in Ω}

and note that |f(x)| ≤ ∥f∥L∞ for every x ∈ Ω − O, where O has measure 0. (The

quantities ∥f∥Lp , 1 ≤ p ≤ ∞ are norms on the respective spaces Lp. We have already

introduced the Hilbert space L2 = L2(Ω)).

We shall mainly be concerned with L2(Ω). We would like to emphasize that the

“functions” f(x) ∈ L2(Ω) are not really functions but equivalence classes of functions,

where the equivalence f ∼ g holds if and only if f(x) = g(x) a.e. in Ω. For example,

when we say that f = 0 as an element of L2(Ω), we mean that f(x) = 0 for all x

outside a set of measure zero in Ω, i.e. that f(x) = 0 a.e. in Ω; contrast with the

situation f ∈ C(Ω), f = 0 ⇒ f(x) = 0 ∀x ∈ Ω.

The following results (see Brezis for proofs) will be used in sequel. (L1
loc(Ω) will

denote the functions f on Ω for which
∫
K
|f(x)| dx <∞ for every compact set K ⊂ Ω.

For example f(x) = 1
x

∈ L1
loc((0, 1)) but f ̸∈ L1((0, 1)).

Lemma 2.1. If f ∈ L1
loc(Ω) such that∫

Ω

f u = 0 ∀u ∈ Cc(Ω),

then f = 0 a.e. in Ω.

Lemma 2.2. The space Cc(Ω) is dense in L2(Ω), i.e.

∀ f ∈ L2(Ω), ∀ ϵ > 0 ∃ f̃ ∈ Cc(Ω) : ∥f − f̃∥L2 < ϵ.

Definition 2.1. A regularizing sequence (or a sequence of mollifiers) is a sequence of

functions {ρn}, n = 1, 2, . . . such that:

ρn ∈ C∞
c (RN),

ρn ≥ 0 on RN ,

suppρn ⊂ B(0,
1

n
) ≡ {x ∈ RN : |x| ≡

(
N∑
i=1

x2i

) 1
2

≤ 1

n
},∫

RN

ρn dx = 1.
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Such functions clearly exist. E.g. in R , let

ρ(x) =

 e
1

x2−1 if |x| < 1

0 if |x| ≥ 1.

Clearly ρ(x) is continuous on R and

ρ(j)(x) =
Πj(x)

(1− x2)2j
e
− 1

1−x2 , |x| < 1,

where Πj(x) are polynomials. Since yje−y → 0 as y → +∞ we see that ρ(x) ∈ C∞
c (R).

Of course suppρ = [−1, 1]. Let

C =

(∫ ∞

−∞
ρ(x) dx

)−1

.

Define

ρn(x) = C nρ(nx).

Then

ρn ∈ C∞
c (R), ρn(x) ≥ 0 on R , suppρn = [− 1

n
,
1

n
],

∫ ∞

−∞
ρn dx = 1.

In RN define

ρ(x) =

 e
1

|x| 2−1 if |x| < 1

0 if |x| ≥ 1.

(where |x| = (
∑N

i=1 x
2
i )

1/2) and

ρn(x) = C nN ρ(nx) , C =

(∫
RN

ρ(x) dx

)−1

.

Denote the convolution of two functions f(x), g(x) defined on RN as the function

(f ∗ g)(x) =
∫
RN

f(x− y) g(y) dy

(provided the integrals exist).

Lemma 2.3. (i) Let f ∈ Cc(Ω). Extend f by zero on the whole of RN . Then, for

sufficiently large n,

ρn ∗ f ∈ C∞
c (Ω)

and sup
x∈Ω

|f(x)− (ρn ∗ f)(x)| → 0, n→ ∞.
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(ii) Let f ∈ C(RN). Then ρn ∗ f ∈ C∞(RN) and ρn ∗ f → f uniformly, on every

compact set K ⊂ RN , i.e.

sup
x∈K

|f(x)− (ρn ∗ f)(x)| → 0 , n→ ∞

∀K compact ⊂ RN .

(iii) Let f ∈ L2(RN). Then ρn ∗ f ∈ C∞(RN) ∩ L2(RN) and

∥ρn ∗ f − f∥L2(RN ) → 0 , n→ ∞.

Finally we mention:

Lemma 2.4. C∞
c (Ω) is dense in L2(Ω), i.e.

∀ f ∈ L2(Ω), ∀ ϵ > 0 ∃ f̃ ∈ C∞
c (Ω) : ∥f − f̃∥L2 < ϵ.

2.3 The Sobolev space H1(I)

Let I = (a, b) be an open interval in R . (We will mainly use a bounded interval (a, b)

in the applications but here we may suppose that I could be unbounded, i.e. that

possibly a = −∞ and/or b = ∞).

Definition 2.2. The Sobolev space H1(I) is defined by

H1(I) = {u ∈ L2(I) : ∃ g ∈ L2(I) such that

∫
I

uϕ ′ = −
∫
I

gϕ , ∀ϕ ∈ C1
c (I)}.

For u ∈ H1(I) we denote g = u′ and call g the weak (generalized) derivative of u (in

the L2 sense).

Remarks.

(i) When there is no reason for confusion we shall denote H1 = H1(I), L2 = L2(I),

etc.

(ii) It is clear that the generalized derivative g in the above definition is unique.

For suppose ∃ g1, g2 ∈ L2(I) such that
∫
I
(g1 − g2)ϕ = 0, ∀ϕ ∈ C1

c (I). Since

C∞
c (I) ⊂ C1

c (I) ⊂ L2(I) and since (by Lemma 2.4) C∞
c (I) is dense in L2(I),
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it follows that C1
c (I) is dense in L2(I). It follows that g1 − g2 = 0 in L2(I).

(N.B. In general in a Hilbert space H, where D ⊂ H dense in H, we prove that

(g, ϕ) = 0 ∀ϕ ∈ D ⇒ g = 0, since ∃ϕi ∈ D such that ϕi → g, i → ∞ in H.

Therefore 0 = (g, ϕi) → (g, g) ⇒ g = 0). We emphasize again that g1 = g2 in L2

means that g1(x) = g2(x) a.e. in I.

(iii) The functions ϕ ∈ C1
c (I) in the definition of g are called test functions. One could

take C∞
c (I) to be the set of test functions instead of C1

c (I). (The only thing to

show is that if
∫
I
uϕ ′ = −

∫
I
gϕ, for u, g ∈ L2(I), holds for every ϕ ∈ C∞

c (I),

then it will hold for every ϕ ∈ C1
c (I). This follows from the Cauchy–Schwarz

inequality and the facts that ϕ ∈ C1
c (I) ⇒ ρn ∗ ϕ ∈ C∞

c (I) and ρn ∗ ϕ → ϕ, e.g.

in L2(I), and also that (ρn ∗ ϕ)′ = ρn ∗ ϕ ′ ∈ C∞
c (I) and ρn ∗ ϕ ′ → ϕ ′ in L2(I)).

(iv) It is clear that if u ∈ C1(I)∩L2(I) and if the (classical) derivative u′ of u belongs

to L2(I), then integration by parts gives that
∫
I
uϕ ′ = −

∫
I
u′ϕ ∀ϕ ∈ C1

c (I), i.e.

that u′ is the weak derivative of u, i.e. that u ∈ H1(I). Of course, if I is bounded,

then u ∈ C1(I) ⇒ u, u′ ∈ L2(I) and we have C1(I) ⊂ H1(I).

(v) There are other ways of defining the Sobolev space H1. Using e.g. the theory of

distributions we may conclude that every u ∈ L2(I) has a distributional derivative

u′. We say that u ∈ H1(I) if u′ coincides as a distribution with a function

u′ ∈ L2(I). If I = R we may also define H1 using Fourier transforms.

Examples.

(i) Consider u(x) = |x| on I = (−1, 1). Clearly u ∈ C(I), u ∈ L2(I), but u fails to

have a classical derivative at x = 0. Consider the function

g(x) =

 −1 if − 1 < x ≤ 0

1 if 0 < x < 1.
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Clearly, g ∈ L2(I). In addition for each ϕ ∈ C1
c (I),

−
∫ 1

−1

g(x)ϕ(x) dx = −
∫ 0

−1

(−1)ϕ(x) dx−
∫ 1

0

1ϕ(x) dx

= −
∫ 0

−1

ϕ(x) d(−x)−
∫ 1

0

ϕ(x) dx = − [(−x)ϕ(x)]0−1

− [xϕ(x)]10 +

∫ 0

−1

(−x)ϕ ′(x) dx+

∫ 1

0

xϕ ′(x) dx

=

∫ 1

−1

|x|ϕ ′(x) dx =

∫ 1

−1

u(x)ϕ ′(x) dx.

It follows that u(x) = |x| ∈ H1((−1, 1)) and u′ = g is the weak derivative of u.

(ii) More generally, if I is a bounded interval and u ∈ C(I) with u′ (classical deriva-

tive) piecewise continuous on I (as would be the case e.g. if u is a piecewise

polynomial, continuous function on I), then u ∈ H1(I) and its weak derivative

coincides with the classical derivative a.e. in I.

(iii) As in (i) the function

u(x) =
1

2
(|x|+ x) =

 x if x ≥ 0

0 if x < 0

on I = (−1, 1) belongs to H1 and its weak derivative u′ is the function

H(x) =

 0 if − 1 < x ≤ 0

1 if 0 < x < 1,

which is called Heaviside’s function. Clearly H ∈ L2(I). Does H belong to

H1(I)? The answer is no: Suppose that H ∈ H1(I). Then there must exist

v(x) ∈ L2(I) such that
∫
I
Hϕ ′ = −

∫
I
vϕ, ∀ϕ ∈ C1

c (I), i.e. a v ∈ L2(I) such

that
∫ 1

−1
vϕ = −

∫ 1

−1
Hϕ ′ = −

∫ 1

0
ϕ ′ = −ϕ(1) + ϕ(0) = ϕ(0) ∀ϕ ∈ C1

c (I). Take

then such a ϕ with support in the interval (−1, 0). It follows that
∫ 0

−1
vϕ =∫ 1

−1
v(x)ϕ(x) = 0 ∀ϕ ∈ C1

c ((−1, 0)). Since C1
c ((−1, 0)) is dense in L2((−1, 0)), as

in Remark (ii), p. 30, we see that v(x) = 0 a.e. in (−1, 0). Analogously, taking

ϕ ∈ C1
c (0, 1) we prove that v(x) = 0 a.e. in (0, 1). We conclude therefore that

v = 0 a.e. in (−1, 1). But that would contradict
∫ 1

−1
vϕ = ϕ(0) ∀ϕ ∈ C1

c (I).

(Of course, as a distribution, H(x) has a distributional derivative which coincides

with the δ–“function”, H ′ = δ0. We just proved that δ0 ̸∈ L2(I)).
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It is clear that H1(I) is a linear subspace of L2(I), since if u, v ∈ H1(I) and u′, v′

are their weak derivatives, then λu′ + µv′ is the weak derivative of λu + µv. Hence

(λu + µv) ∈ H1(I), and (λu + µv)′ = λu′ + µv′ for λ, µ ∈ R. We denote by (·, ·),

∥ · ∥, respectively, the inner product, norm of L2 = L2(I), i.e. we let, for u, v ∈ L2(I),

(u, v) =
∫
I
u(x)v(x) dx, ∥u∥ = (u, u)

1
2 . Then, for u, v ∈ H1(I) we define

(u, v)1 ≡ (u, v) + (u′, v′),

∥u∥1 ≡
(
∥u∥2 + ∥u′∥2

) 1
2 = (u, u)

1
2
1 .

It is clear that (·, ·)1 defines an inner product on H1 = H1(I) and ∥ · ∥1 the induced

norm on H1(I). (To be precise, sometimes we shall denote ∥ · ∥1 = ∥ · ∥H1(I) etc.).

Hence H1(I) becomes an inner product space.

Theorem 2.1. The space (H1, ∥ · ∥1) is a Hilbert space.

Proof. We only need to show that H1(I) is complete in the norm ∥ · ∥1. Let

{un}n=1,2,... ∈ H1(I) be a Cauchy sequence in the norm ∥ · ∥1, i.e. let

lim
m,n→∞

∥um − un∥1 = 0.

By the definition of ∥ · ∥1 it follows that {un} and {u′n} are Cauchy sequences in L2.

Since L2 is complete it follows that ∃u, g ∈ L2(I) such that un → u in L2, u′n → g in

L2. Now, by definition, (un, ϕ
′) = −(u′n, ϕ) ∀ϕ ∈ C1

c (I) for n = 1, 2, 3, . . ..

Since ∀ϕ ∈ C1
c (I)

|(un, ϕ ′)− (u, ϕ ′)| ≤ ∥un − u∥∥ϕ ′∥ → 0, n→ ∞

and

|(u′n, ϕ)− (g, ϕ)| ≤ ∥u′n − g∥∥ϕ∥ → 0, n→ ∞,

it follows that (u, ϕ ′) = −(g, ϕ) ∀ϕ ∈ C1
c (I), i.e. that u ∈ H1(I) and u′ = g.

It remains to show that un → u as n→ ∞ in H1. But this follows from

∥un − u∥21 = ∥un − u∥2 + ∥u′n − u′∥2 = ∥un − u∥2 + ∥u′n − g∥2 → 0 as n→ ∞.

Hence ∃u ∈ H1(I) such that un → u in H1, i.e. H1(I) is complete. �
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Remark: Consider the map T : H1 → L2 × L2 given by Tu = [u, u′], u ∈ H1.

Equipping L2 × L2 with the norm ((u, u) + (v, v))1/2 we see that T is an isometry of

H1 onto a closed subspace of L2 × L2. It follows that H1 is separable, since L2 is.

The following theorem will be very important in sequel:

Theorem 2.2. If u ∈ H1(I), then ∃ ũ ∈ C(I) such that u = ũ a.e. in I and

ũ(x)− ũ(y) =

∫ x

y

u′(t) dt, ∀x, y ∈ I.

Before proving the theorem we make some comments on its content. Note first

that if u ∈ H1(I) and u = v a.e. on I, then v ∈ H1(I). Then Theorem 2.2 tells us

that in the equivalence class of an element u ∈ H1(I) there is one (and only one since

u, v ∈ C(I), u = v a.e. on I ⇒ u(x) = v(x) ∀x ∈ I) continuous “representative” of u,

denoted in the theorem by ũ. Hence, when there is need to do so, we shall use instead

of u its continuous representative ũ. For example as the value u(x) for some x ∈ I (not

well-defined if u ∈ L2) we mean the value of ũ at that x. Sometimes we shall replace u

by ũ with no special mention or by just noting that u is continuous, “upon modification

on a set of measure zero in I”. We emphasize that the statement “∃ ũ ∈ C(I) such

that u = ũ a.e. in I” is different from the statement that “u is continuous a.e. in I”.

For the proof of Theorem 2.2 we shall need two lemmata.

Lemma 2.5. Let f ∈ L1
loc(I) such that∫

I

fϕ ′ = 0 ∀ϕ ∈ C1
c (I).

Then, there exists a constant C such that f = C a.e. in I.

Proof. Let ψ be a fixed function in Cc(I) such that
∫
I
ψ = 1. We shall show that,

given w ∈ Cc(I), there exists ϕ ∈ C1
c (I), such that ϕ ′ = w−(

∫
I
w)ψ. Indeed, given w ∈

Cc(I), consider h(x) = w(x)− (
∫
I
w)ψ(x). Clearly h ∈ Cc(I). Put ϕ(x) =

∫ x

a
h(x) dx.

Let supph ⊂ [c, d] ⊂ (a, b) = I. Clearly, for a < y < c, ϕ(y) =
∫ y

a
h(x) dx = 0,

and for d < z < b

ϕ(z) =

∫ z

a

h(x) dx =

∫ b

a

h(x) dx =

∫
I

h =

∫
I

(
w − (

∫
I

w)ψ

)
=

∫
I

w − (

∫
I

w)(

∫
I

ψ) =

∫
I

w −
∫
I

w = 0.
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It follows that ϕ ∈ Cc(I). Also ϕ ′(x) = h(x) ∈ Cc(I), i.e. ϕ ∈ Cc(I), and ϕ
′ = h =

w − (
∫
I
w)ψ. Now, by hypothesis,

∫
I
fϕ ′ = 0 ∀ϕ ∈ C1

c (I). In particular, for each

w ∈ Cc(I),∫
I

f

(
w − (

∫
I

w)ψ

)
= 0 ⇒

∫
I

fw −
∫
I

fψ

∫
I

w = 0 ⇒
∫
I

fw −
∫
I

(

∫
I

fψ)w = 0

⇒
∫
I

(
f −

∫
I

fψ

)
w = 0.

By Lemma 2.1 we conclude that f(x) =
∫
I
fψ a.e. on I. i.e. f(x) = C ≡

∫
I
fψ a.e.

on I. �

Lemma 2.6. Let g ∈ L1
loc(I). For y0 ∈ I fixed, put

v(x) =

∫ x

y0

g(t) dt, x ∈ I.

Then v ∈ C(I) and ∫
I

vϕ ′ = −
∫
I

gϕ ∀ϕ ∈ C1
c (I).

Proof. That v ∈ C(I) when g ∈ L1
loc(I), is a well–known fact from measure theory.

y
0

y
0

t

xa

a

t=x

A

We now have for ϕ ∈ C1
c (I) that∫

I

vϕ ′ =

∫
I

(∫ x

y0

g(t) dt

)
ϕ ′(x) dx

= −
∫ y0

a

dx

(∫ y0

x

g(t) dt

)
ϕ ′(x) +

∫ b

y0

dx

(∫ x

y0

g(t) dt

)
ϕ ′(x).
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Now

−
∫ y0

a

dx

(∫ y0

x

g(t) dt

)
ϕ ′(x) = −

∫ y0

a

dx

∫ y0

x

dt(g(t)ϕ ′(x))

= (since g(t)ϕ ′(x) is integrable on A)

= −
∫
A

g(t)ϕ ′(x) dxdt = −
∫ y0

a

dt

∫ t

a

dxg(t)ϕ ′(x)

= −
∫ y0

a

g(t) dt

∫ t

a

ϕ ′(x) dx = −
∫ y0

a

g(t)ϕ(t) dt.

Similarly we may prove that∫ b

y0

dx

(∫ x

y0

g(t) dt

)
ϕ ′(x) = −

∫ b

y0

g(t)ϕ(t) dt.

We conclude that∫
I

vϕ ′ = −
∫ y0

a

gϕ−
∫ b

y0

gϕ = −
∫
I

gϕ ∀ϕ ∈ C1
c (I).

�
Proof of Theorem 2.2. Fix y0 ∈ I. Note that since u ∈ H1(I) ⇒ u′ ∈ L2(I) ⇒ u′ ∈

L1
loc(I). Put

ū(x) =

∫ x

y0

u′(t) dt.

By Lemma 2.6 ū ∈ C(I) and
∫
I
ūϕ ′ = −

∫
I
u′ϕ ∀ϕ ∈ C1

c (I). But by definition of u′,

−
∫
I
u′ϕ =

∫
I
uϕ ′ ∀ϕ ∈ C1

c (I). Therefore∫
I

(ū− u)ϕ ′ = 0 ∀ϕ ∈ C1
c (I).

By Lemma 2.5, we conclude that there exists a constant C such that ū − u = C a.e.

on I. Define now ũ(x) = ū(x) − C. It follows that ũ ∈ C(I) and ũ = u a.e. on I.

Moreover for x, y ∈ I,

ũ(x)− ũ(y) = ū(x)− ū(y) =

∫ x

y0

u′ −
∫ y

y0

u′

=

∫ x

y0

u′ +

∫ y0

y

u′ =

∫ x

y

u′(t) dt

�
Remark: Lemma 2.6 gives in particular that the primitive (antiderivative) v of a

function g ∈ L2(I) is in H1(I) provided v ∈ L2(I). (The latter fact is always true if I

is bounded).

The following theorem gives a technical tool that will be often used in sequel.
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Theorem 2.3 (Extension operator). There exists an extension operator

E : H1(I) → H1(R),

linear and continuous, such that

(i) Eu|I = u ∀u ∈ H1(I), (f |I denotes the restriction of f to I).

(ii) ∥Eu∥L2(R) ≤ C∥u∥L2(I) ∀u ∈ H1(I).

(iii) ∥Eu∥H1(R) ≤ C∥u∥H1(I) ∀u ∈ H1(I).

(In (ii) we can take C = 2
√
2 and in (iii) C = C0(1+1/µ(I)), where C0 some constant,

independent of u and I, and µ(I) the length of I – possibly µ(I) = ∞).

Proof. We begin with the case I = (0,∞). We will show that the extension

operator defined by even reflection about x = 0, i.e. by

(Eu)(x) ≡ u∗(x) =

 u(x) if x ≥ 0

u(−x) if x < 0,

u ∈ H1(I), solves the problem. Indeed

∥u∗∥2L2(R) =

∫ 0

−∞
(u(−x))2 dx+

∫ ∞

0

(u(x))2 dx = 2∥u∥L2(I).

So (ii) is satisfied. (Obviously E is linear and satisfies (i)). Now put

v(x) =

 u′(x) if x > 0

−u′(−x) if x < 0.

Clearly v ∈ L2(R) since ∥v∥2L2(R) = 2∥u′∥2L2(I). By Theorem 2.2 we also have that

u∗(x)− u(0) =

∫ x

0

u′(t) dt =

∫ x

0

v(t) dt for x ≥ 0.

Also, for x < 0,

u∗(x)− u(0) =

∫ −x

0

u′(t) dt =

∫ x

0

−u′(−t) dt =
∫ x

0

v(t) dt.

Hence, u∗(x) − u(0) =
∫ x

0
v(t) dt, x ∈ R. Since u∗ ∈ L2(R) and v ∈ L2(R), it follows

by Lemma 2.6 (see remark after end of proof of Theorem 2.2) that u∗ ∈ H1(R) and

(u∗)′ = v. Hence

∥u∗∥2H1(R) = ∥u∗∥2L2(R) + ∥v∥2L2( re) = 2
(
∥u∥2L2(I) + ∥u′∥2L2(I)

)
= 2∥u∥2H1(I).
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Hence in the case I = (0,∞), with Eu = u∗, (ii) and (iii) are satisfied (as equalities)

with C =
√
2. (The proof holds for any unbounded interval of the form (a,∞) or

(−∞, a), a ∈ R. For example, for u ∈ H1((a,∞)), define Eu by reflection evenly

about x = a, i.e. as

(Eu)(x) =

 u(x) if x > a

u(2a− x) if x ≤ a,

and the proof follows – with the same constants C – mutatis mutandis).

We now go to the case of a bounded interval. It suffices to consider the case of

I = (0, 1). Consider a fixed function η ∈ C1(R), 0 ≤ η(x) ≤ 1 ∀x ∈ R such that

η(x) =

 1 if x < 1
4

0 if x > 3
4
,

and for every f defined on (0, 1) denote by f̃ its extension by zero to (0,∞), i.e. put

f̃(x) =

 f(x) if x ∈ (0, 1)

0 if x ≥ 1.

Now if u ∈ H1(I) it follows that ηũ ∈ H1((0,∞)) and that (ηũ)′ = η′ũ + ηũ′, where

by ũ′ we mean the extension by zero to (0,∞) of u′ ∈ L2((0, 1)). To see this, note first

that ηũ ∈ L2((0,∞)) since∫ ∞

0

η2(ũ)2 ≤
∫ 3

4

0

u2 ≤ ∥u∥2L2((0,1)).

Moreover, for any ϕ ∈ C1
c ((0,∞)) we have that∫ ∞

0

ηũϕ ′ =

∫ 1

0

uηϕ ′ =

∫ 1

0

u ((ηϕ)′ − η′ϕ) =

∫ 1

0

u(ηϕ)′ −
∫ 1

0

uη′ϕ

=
(
since ϕ ∈ C1

c ((0,∞)) ⇒ ηϕ ∈ C1
c ((0, 1)), and u ∈ H1((0, 1))

)
= −

∫ 1

0

u′(ηϕ)−
∫ 1

0

uη′ϕ = −
∫ 1

0

(u′η + uη′)ϕ =

∫ ∞

0

gϕ,

where

g(x) =

 u′η + uη′ if x ∈ (0, 1)

0 if x ≥ 1.

Now g ∈ L2((0,∞)) since

∥g∥2L2((0,∞)) =

∫ 1

0

(u′η + uη′)2 ≤ 2

(∫ 1

0

η2(u′)2 +

∫ 1

0

(η′)2u2
)

≤ 2

(∫ 1

0

(u′)2 + max
0≤x≤1

|η′(x)| 2
∫ 1

0

u2
)

≤ C1∥u∥2H1(I).
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(Note that we can easily arrange that max0≤x≤1 |η′(x)| be equal to e.g. 2.5). Moreover

g = η′ũ + ηũ′. It follows that ηũ ∈ H1((0,∞)) and (ηũ)′ = g = η′ũ + ηũ′. Returning

to the proof of the theorem, for u ∈ H1(I), I = (0, 1), write u as

u = ηu+ (1− η)u, η as above.

The function ηu can be extended to (0,∞) by ηũ as before. Clearly ηũ ∈ H1((0,∞))

and ∥ηũ∥2L2((0,∞)) ≤ ∥u∥2L2((0,1)). Also, as above

∥(ηũ)′∥2L2((0,∞)) =

∫ ∞

0

g2 ≤ 2

(
∥u′∥2L2(I) + max

0≤x≤1
|η′(x)| 2∥u∥2L2((0,1))

)
≤ C1∥u∥2H1(I).

It follows that

∥ηũ∥2H1((0,∞)) ≤ C2∥u∥H1(I).

Now, extend ηũ ∈ H1((0,∞)) as in the first part of the proof to a function v1(x) ∈

H1(R) by even reflection about x = 0. It follows that

∥v1∥L2(R) =
√
2∥ηũ∥L2((0,∞)) ≤

√
2∥u∥L2(I)

and that

∥v1∥H1(R) =
√
2∥ηũ∥H1((0,∞)) ≤

√
2C2∥u∥H1(I).

(It is clear that v1|I = ηu and that the operation ηu 7→ v1 is linear in u).

Analogously the function (1− η)u (for which (1− η)u = 0 for 0 ≤ x ≤ 1/4), can be

extended to (−∞, 1) by (1− η)˜̃u where

˜̃u(x) =

 u(x) if 0 < x < 1

0 if −∞ < x ≤ 0.

We obtain again (1− η)˜̃u ∈ H1((−∞, 1)) with

∥(1− η)˜̃u∥L2((−∞,1)) ≤ ∥u∥L2(I)

and

∥(1− η)˜̃u∥H1((−∞,1)) ≤ C2∥u∥H1(I).

Extend now (1 − η)˜̃u to a function v2 ∈ H1(R) by (even) reflection about x = 1. It

follows that

∥v2∥L2(R) =
√
2∥(1− η)˜̃u∥L2((−∞,1)) ≤

√
2∥u∥L2(I)

40



and that

∥v2∥H1(R) =
√
2∥(1− η)˜̃u∥H1((−∞,1)) ≤

√
2C2∥u∥H1(I),

that v2|I = (1− η)u and that (1− η)u 7→ v2 is linear.

We define now the operator E as Eu = v1+ v2. Clearly E satisfies (i) and is linear;

(ii) and (iii) follow by the above and the triangle inequality. (Note that when I = (a, b),

η must be redefined as

ηa,b(x) = η(
x− a

x− b
),

so that

η′a,b(x) =
1

b− a
η′(
x− a

x− b
).)

�
The following result is a basic density theorem for H1(I) and will be used very often

in sequel.

Theorem 2.4. Let u ∈ H1(I). There exists a sequence {un}n=1,2,... of functions in

C∞
c (R) such that

un|I → u in H1(I), n→ ∞.

Comment: The theorem asserts that if I = R, then C∞
c (R) is dense in H1(R).

Otherwise, C∞
c (I) is not dense in H1(I) – in fact we shall see later that the closure of

C∞
c (I) in H1(I) is the space

0

H1consisting of those functions of H1(I) which are zero

at the boundary of I. If I is bounded, Theorem 2.4 asserts that there is a sequence of

functions un ∈ C∞(I) such that un → u in H1(I).

Proof of Theorem 2.4. First note that it suffices to consider the case I = R. For

suppose that the result holds for R. If I ⊂ R extend u to Eu in H1(R) as in Theorem

2.3. Then there exists a sequence un ∈ C∞
c (R) such that ∥un−Eu∥H1(R) → 0, n→ ∞.

But then

∥un|I − u∥H1(I) = ∥un − Eu∥H1(I) ≤ ∥un − Eu∥H1(R) → 0, n→ ∞,

i.e. the result holds for I.

Hence consider the case I = R. The approximating sequence is constructed by

regularization and truncation as un = ζn(ρn ∗ u). Here {ρn}, n = 1, 2, . . . is the
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regularizing sequence defined in Def. 2.1 and ζn = ζn(x) ∈ C∞
c (R) is a truncation

function, defined for n = 1, 2, . . . by

ζn(x) = ζ
(x
n

)
,

where ζ(x) is a fixed function in C∞
c (R) such that

ζ(x) =

 1 if |x| ≤ 1

0 if |x| ≥ 2.

Hence ζn(x) = 1 for |x| ≤ n and ζn(x) = 0 for |x| ≥ 2n. Moreover,

|ζ ′n(x)| =
1

n
|ζ ′
(x
n

)
| ≤ C

n
, where C = max

x∈R
|ζ ′(x)|.

Note, by Lebesgue’s dominated convergence theorem, that we have ζnf → f as n→ ∞

in L2 for every f ∈ L2(R). Let now un = ζn(ρn ∗ u). Clearly un ∈ C∞
c (R) since

ζn ∈ C∞
c (R) and ρn ∗ u ∈ C∞(R), cf. Lemma 2.3. We have

un − u = ζn(ρn ∗ u)− u = ζn[(ρn ∗ u)− u] + (ζnu− u).

It follows that

∥un − u∥L2(R) ≤ ∥ζn[(ρn ∗ u)− u]∥L2(R) + ∥ζnu− u∥L2(R)

≤ ∥ρn ∗ u− u∥L2(R) + ∥ζnu− u∥L2(R) → 0, n→ ∞

by the above and Lemma 2.3(iii). Now u′n = ζn(ρn ∗ u)′ + ζ ′n(ρn ∗ u). (Note that for

u ∈ H1(R), ρn ∗ u ∈ H1(R) and (ρn ∗ u)′ = ρn ∗ u′: The interested reader may verify

that for ϕ ∈ C1
c (R) the following equalities hold∫ ∞

−∞
(ρn ∗ u)ϕ ′ =

∫ ∞

−∞
u(ρn(−x) ∗ ϕ ′) =

∫ ∞

−∞
u(ρn(−x) ∗ ϕ)′ = −

∫ ∞

−∞
u′(ρn(−x) ∗ ϕ)

= −
∫ ∞

−∞
(ρn ∗ u′)ϕ.)

Hence, since u′n − u′ = ζn(ρn ∗ u′) + ζ ′n(ρn ∗ u)− u′, we have

∥u′n − u′∥L2(R) ≤ ∥ζ ′n(ρn ∗ u)∥L2(R) + ∥ζn[(ρn ∗ u′)− u′]∥L2(R)

+ ∥ζnu′ − u′∥L2(R) ≤ max
x∈R

|ζ ′n(x)| ∥ρn ∗ u∥L2(R)

+ ∥ρn ∗ u′ − u′∥L2(R) + ∥ζnu′ − u′∥L2(R) → 0 as n→ ∞,

by Lemma 2.3, since ∥ρn ∗ u∥L2(R), n = 1, 2, 3, . . . is bounded. �
We are able now to prove Sobolev’s imbedding theorem for H1(I).
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Theorem 2.5. There exists a constant C (depending only on µ(I) ≤ ∞) such that

∥u∥L∞(I) ≤ C ∥u∥H1(I) ∀u ∈ H1(I). (2.1)

(We say that H1(I) ⊂ L∞(I), i.e. that H1(I) ⊂ C(I) – in view of Theorem 2.2 – if I

bounded, with continuous imbedding).

Proof. Again it suffices to prove the result for I = R. (For suppose it holds for R

and let u ∈ H1(I). Extend u to Eu in H1(R) as in Theorem 2.3. Then

∥u∥L∞(I) ≤ ∥Eu∥L∞(R) ≤ C ∥Eu∥H1(R) ≤ C ′ ∥u∥H1(I),

using (iii) in Theorem 2.3 and (2.1) for I = R). Suppose first that v ∈ C∞
c (R). Then

for every x ∈ R:

v2(x) =

∫ x

−∞
(v2)′ = 2

∫ x

−∞
vv′ ≤ 2∥v∥L2(R)∥v′∥L2(R)

≤ ∥v∥2L2(R) + ∥v′∥2L2(R) = ∥v∥2H1(R).

Hence ∥v∥L∞(R) ≤ ∥v∥H1(R) ∀v ∈ C∞
c (R), i.e. (2.1) holds on C∞

c (R). Now given

u ∈ H1(R), since C∞
c (R) is dense in H1(R) (Theorem 2.4), we can find a sequence

{un}n=1,2,... in C
∞
c (R) such that un → u in H1(R). It follows that un → u in L2(R).

Therefore there is a subsequence of un (denote it again by un, i.e. consider that

subsequence to be the original sequence) such that un(x) → u(x) a.e. on R as n→ ∞.

By (2.1), which was established on C∞
c (R), we have that un is Cauchy in L∞(R) (since

it is Cauchy in H1(R)). Therefore it converges in L∞ to some element ũ ∈ L∞(R).

It follows that u = ũ a.e. on R, i.e. that u ∈ L∞(R). Taking limits in ∥un∥L∞(R) ≤

∥un∥H1(R) we obtain (2.1). �

Remarks.

(i) If I is bounded, the imbedding H1(I) ⊂ C(I) is compact. This follows from

Theorem 2.2: If u ∈ N (=the unit ball in H1(I) with center zero), we have

|u(x)− u(y)| = |
∫ x

y

u′(t) dt| ≤ ∥u′∥L2(I)|x− y|
1
2 ∀x, y ∈ I.

Hence ∀u ∈ N , |u(x) − u(y)| ≤ |x − y|1/2 and the conclusion follows from the

Arzela–Ascoli theorem.
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(ii) (2.1) for I = R implies that if u ∈ H1(R), then

lim
|x|→∞

u(x) = 0.

For if C∞
c (R) ∋ un → u in H1(R), then ∥un − u∥L∞(R) → 0, n → ∞. Hence

∀ϵ > 0 ∃N such that ∥uN − u∥L∞(R) < ϵ ⇒ |u(x)| < ϵ for |x| sufficiently large,

since uN ∈ C∞
c (R), i.e. lim|x|→∞ u(x) = 0.

The following two propositions follow from Theorem 2.5 and they are useful in the

applications.

Proposition 2.1. Let u, v ∈ H1(I). Then uv ∈ H1(I) and (uv)′ = u′v+uv′. Moreover

we can integrate by parts:∫ x

y

u′v = u(x)v(x)− u(y)v(y)−
∫ x

y

uv′ ∀x, y ∈ I.

Proof. Since u ∈ H1(I)
Th.2.5
=⇒ u ∈ L∞(I). Hence v ∈ L2(I) ⇒ uv ∈ L2(I). Now let

un, vn, n = 1, 2, . . . be sequences in C∞
c (R) such that un|I → u in H1(I) and vn|I → v

in H1(I) as n→ ∞ (Theorem 2.4). It follows by Theorem 2.5 that un|I → u in L∞(I)

and vn|I → v in L∞(I). Now

∥unvn − uv∥L2(I) ≤ ∥unvn − unv∥L2(I) + ∥unv − uv∥L2(I)

≤ ∥un∥L∞(I)∥vn − v∥L2(I) + ∥v∥L∞(I)∥un − u∥L2(I)
n→∞−→ 0.

Hence unvn|I → uv in L2(I).

In addition (unvn)
′ = u′nvn+unv

′
n → u′v+uv′ (∈ L2(I)) in L2(I). (To see this note

e.g. that

∥u′nvn − u′v∥L2(I) ≤ ∥u′nvn − u′vn∥L2(I) + ∥u′vn − u′v∥L2(I)

≤ ∥vn∥L∞(I)∥u′n − u′∥L2(I) + ∥u′∥L2(I)∥vn − v∥L∞(I)
n→∞−→ 0.

Similarly unv
′
n → uv′ in L2(I)).

We now have a sequence ϕn ≡ unvn|I in H1(I) such that ϕn
L2

→ ϕ ≡ uv, and such

that ϕ′
n

L2

→ ψ ≡ uv′+u′v, ψ ∈ L2(I). Hence ϕn is Cauchy in L2 and ϕ′
n is Cauchy in L2

⇒ ϕn is Cauchy in H1 ⇒ ϕn → w in H1. Hence ϕn → w in L2 ⇒ w = ϕ and ϕ′
n → w′

in L2 ⇒ w′ = ψ; thus ϕ ′ = (uv)′ = ψ = u′v + uv′. The integration by parts formula
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follows by integrating both members of (uv)′ = u′v + uv′ and using, since uv ∈ H1(I),

Theorem 2.2. �
Remark: It is well known that u, v ∈ L2(I) ̸⇒ uv ∈ L2(I). (Take e.g. I = (0, 1), u =

v = x−
1
4 ). Hence {L2(I), ∥ · ∥L2(I)} is not a Banach algebra whereas {H1(I), ∥ · ∥H1(I)}

is.

Proposition 2.2. Let G ∈ C1(R) such that G(0) = 0 and let u ∈ H1(I). Then

G(u) ∈ H1(I) and (G(u(x)))′ = G ′(u(x))u′(x).

Proof. Since u ∈ H1(I) ⇒ u ∈ L∞(I). Let M = ∥u∥L∞(I). Since G ∈ C1(R) and

G(0) = 0, by the mean value theorem, given s there exists θ : G(s) = G ′(θ)s. Hence,

given δ > 0, there exists a constant C = C(M,G, δ) such that

|G(s)| ≤ C|s| for s ∈ [−M − δ,M + δ]. (2.2)

Since |u(x)| ≤ ∥u∥L∞(I) a.e. on I, it follows that −M ≤ u(x) ≤ M a.e. on I, i.e. that

|G(u(x))| ≤ C|u(x)| a.e. on I. Since u ∈ L2(I) it follows that G(u) ∈ L2(I). Also by

(2.2) we have that |G ′(u(x))| ≤ C a.e. on I. It follows that |G ′(u)||u′| ≤ C|u′| a.e.

⇒ G ′(u)u′ ∈ L2(I) since u′ ∈ L2(I). It remains to show that∫
I

G(u)ϕ ′ = −
∫
I

G ′(u)u′ϕ ∀ϕ ∈ C1
c (I).

Since u ∈ H1(I), it follows by Theorem 2.4 that there exists a sequence {un} ∈ C∞
c (R)

such that un → u in H1(I). Moreover, by Theorem 2.5 we have that un → u in

L∞(I). By continuity, G(un) → G(u) in L∞(I). Since ∥un∥L∞(I) → ∥u∥L∞(I) it follows

that for n large enough, ∥un∥ ≤ M + δ. Hence (2.2) gives that for n large enough

|G(un)| ≤ C|un| ⇒ G(un) ∈ L2(I) and ∥G(un)∥L2(I) ≤ C ′∥u∥L2(I). By the dominated

convergence theorem it follows that G(un) → G(u) in L2(I). Hence ∀ϕ ∈ C1
c (I)∫

I
G(un)ϕ

′ →
∫
I
G(u)ϕ ′, as n→ ∞. Now

∥G ′(un)u
′
n −G ′(u)u′∥L2(I) ≤ ∥G ′(un)u

′
n −G ′(un)u

′∥L2(I) +

+∥G ′(un)u
′ −G ′(u)u′∥L2(I) ≤ ∥G ′(un)∥L∞(I)∥u′n − u′∥L2(I) +

+ ∥u′∥L2(I)∥G ′(un)−G ′(u)∥L∞(I).

Now, ∥u′n − u′∥L2(I) → 0 since un → u in H1(I). Also, for n large enough ∥un∥L∞(I) ≤

M + δ
2
and therefore ∥G ′(un)∥L∞(I) ≤ C. Since un → u in L∞(I), by continuity we
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have that G ′(un) → G ′(u) in L∞(I). It follows that G ′(un)u
′
n → G ′(u)u′ in L2(I);

hence −
∫
I
G ′(un)u

′
nϕ → −

∫
I
G ′(u)u′ϕ ∀ϕ ∈ C1

c (I). Since ϕ ∈ C1
c (I), un ∈ C∞

c (R) we

have that ∫
I

G(un)ϕ
′ = −

∫
I

G ′(un)u
′
nϕ, n = 1, 2, 3, . . . .

Letting n→ ∞ we obtain the desired equality∫
I

G(u)ϕ ′ = −
∫
I

G ′(u)u′ϕ.

�

2.4 The Sobolev spaces Hm(I), m = 2, 3, 4, . . .

In analogy to H1(I) we define for m ≥ 2 integer the space

Hm(I) = {u ∈ L2(I) : ∃ gi ∈ L2(I), i = 1, . . . ,m such that∫
I

uϕ(i) = (−1)i
∫
I

giϕ, 1 ≤ i ≤ m ∀ϕ ∈ C∞
c (I)}.

Here

ϕ(i) = (
d

dx
)iϕ.

It follows easily that Hm(I) ⊂ H1(I) and that g1 = u′, that u′ ∈ H1(I), and that

(u′)′ = g2 etc. . . , and that finally

u(m−1) = (((u ′)′)′ . . .′︸ ︷︷ ︸
m−1 times

) ∈ H1(I) and that u(m) = (u(m−1))′ = gm.

We call gi the (uniqueness easy) weak (generalized) derivative of order i (in the L2

sense) of u ∈ Hm(I) and define

Diu ≡ u(i) ≡ gi, 1 ≤ i ≤ m.

It follows easily that for m ≥ 1

Hm(I) = {u ∈ Hm−1(I) : u′ ∈ Hm−1(I)}.

Here H0(I) ≡ L2(I). We can easily construct examples of functions in Hm(I). For

example, on a bounded interval if u ∈ C1(I) with u′′ (classical derivative) piecewise

continuous on I, then u ∈ H2(I) and its weak second derivative coincides a.e. with u′′.
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We equip Hm(I) with the inner product (·, ·)m, where

(u, v)m =
m∑
j=0

(Dju,Djv), (u(0) ≡ D0u = u), ∀u, v ∈ Hm(I).

This inner product induces the norm

∥u∥m = (u, u)
1
2
m =

(
m∑
i=0

∥Diu∥2
) 1

2

.

An obvious modification of Theorem 2.1 shows that {Hm(I), (·, ·)m} is a Hilbert space.

By definition and Theorem 2.2, it follows that if u ∈ Hm(I), then there exists ũ ∈

Cm−1(I) such that u = ũ a.e. on I and

Diũ(x)−Diũ(y) =

∫ x

y

Di+1u(t) dt, ∀x, y ∈ I, i = 0, 1, 2, . . . ,m− 1.

Also, given u ∈ Hm(I), there exists a sequence {un} ∈ C∞
c (R) such that un|I → u in

Hm(I) (density) and that Hm(I) ⊂ Cm−1(I) with

m−1∑
j=0

∥Dju∥L∞(I) ≤ C∥u∥Hm(I), ∀u ∈ Hm(I).

If u, v ∈ Hm(I), then uv ∈ Hm(I) and

Dm(uv) =
m∑
j=0

m

j

DjuDm−jv , m ≥ 1 (Leibniz’s rule).

These results follow easily with techniques similar to the ones used in their H1 coun-

terparts.

We finally mention without proof the following interpolation result. If 1 ≤ j ≤ m−1,

then ∀ϵ > 0 ∃Cϵ = C(ϵ, µ(I) ≤ ∞) such that

∥Dju∥ ≤ ϵ∥Dmu∥+ Cϵ∥u∥ ∀u ∈ Hm(I).

It follows that the quantity ∥u∥+∥Dmu∥ for u ∈ Hm(I) is a norm on Hm(I), equivalent

to ∥u∥m.

2.5 The space
0

H1(I)

Definition We define
0

H1(I) to be the closure of C1
c (I) in H1(I), i.e. the (closed)

subspace of H1(I) whose elements are limits in H1(I) of sequences of functions in

C1
c (I).
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It follows that {
0

H1(I), (·, ·)1} is a complete Hilbert space (separable).

Remarks.

(i) If I = R, since C∞
c (R) ⊂ C1

c (R) ⊂ H1(R) and C∞
c (R) is dense in H1(R) (cf. The-

orem 2.4) it follows that C1
c (R) is dense in H1(R) ⇒

0

H1(R) = H1(R). However

if I ̸= R, then
0

H1(I) ⊂ H1(I). For example, on a bounded interval I consider

u(x) = c1e
x + c2e

−x ∈ C∞(I) for which u′′ = u. Hence

0 = (u′′ − u, ϕ) =

∫
I

(u′′ − u)ϕ = −
∫
I

u′ϕ ′ −
∫
I

uϕ = −(u, ϕ)1 ∀ϕ ∈ C1
c (I).

Hence u is orthogonal in H1(I) to C1
c (I), which therefore cannot be dense in

H1(I).

(ii) In fact C∞
c (I) is dense in

0

H1(I). To see this, let, for u ∈
0

H1(I), ϵ > 0, ϕ ∈ C1
c (I)

be such that ∥u−ϕ∥1 ≤ ϵ
2
. Now extending ϕ ∈ C1

c (I) by zero outside its support

to the whole of R, we have ϕ ∈ C1
c (R) and ρn ∗ ϕ ∈ C∞

c (I) for sufficiently large

n (cf. Lemma 2.3). Moreover, (cf. Remark (iii), p. 30) ∥ϕ− ρn ∗ ϕ∥H1(I) → 0 as

n→ ∞. Therefore choose n so that ∥ϕ− ρn ∗ϕ∥1 ≤ ϵ
2
, from which it follows that

∥u− ρn ∗ ϕ∥1 ≤ ϵ, i.e. that C∞
c (I) is dense in

0

H1(I).

(iii) Let us also remark that u ∈ H1(I) ∩ Cc(I) ⇒ u ∈
0

H1(I). In fact, if u ∈

H1(I) ∩ Cc(I), extending u by zero outside I to the whole of R, we have, by

Lemma 2.3, that, for n sufficiently large, ρn ∗ u ∈ C∞
c (I) and (cf. Proof of

Theorem 2.4), ∥u− ρn ∗ u∥1 → 0 as n→ ∞. Hence by (ii) above, u ∈
0

H1(I).

These remarks have prepared the ground for the following theorem which characterizes

the functions in
0

H1(I) in a very useful way.

Theorem 2.6. Let u ∈ H1(I). Then u ∈
0

H1(I) if and only if u = 0 on ∂I (= the

boundary of I).

Comments: Again for u ∈ H1(I) the statement “u = 0 on ∂I” is well understood,

in the sense of Theorem 2.2 – see the remarks there. Theorem 2.6 makes then
0

H1(I) a

very useful space, in which homogeneous (zero) boundary conditions are automatically

satisfied for u| ∂I , i.e. a space in which “weak” solutions of boundary–value problems

such as (∗), p. 25 may be naturally sought. Again assume I ̸= R, sinceH1(R) =
0

H1(R).

48



Proof. If u ∈
0

H1(I), then there exists a sequence {un} ∈ C1
c (I) such that un → u in

H1(I). By Sobolev’s Theorem 2.5 un → u in L∞(I), i.e., if ũ(x) ∈ C(I), ũ = u a.e. on

I ⇒ supx∈I |un(x)− ũ(x)| → 0, n→ ∞. Since un| ∂I = 0 ⇒ ũ| ∂I = 0 ⇔ u| ∂I = 0.

Suppose now that u ∈ H1(I) and u| ∂I = 0. We shall show that u ∈
0

H1(I).

First, let us examine the case of a bounded interval and take, with no loss of

generality, I = (0, 1). Consider the intervals

K1 =

(
−1

3
,
1

3

)
, I = (0, 1), K2 =

(
2

3
,
4

3

)
.

Then, we may find functions ϕ1 ∈ C∞
c (K1), ϕ0 ∈ C∞

c (I), ϕ2 ∈ C∞
c (K2) such that

0 ≤ ϕi ≤ 1 and (extending them by zero outside their intervals of definition) ϕ1(x) +

ϕ0(x) + ϕ2(x) = 1, ∀x ∈ I. (The functions ϕi form a partition of unity corresponding

to the open cover {K1, I,K2} of I, and can be constructed e.g. as follows:

It is clear that given any interval (a, b) we can find ψ ∈ C∞
c (a, b) such that (for δ > 0

ψ(x)

. .
a bδ δ δ δ

small enough) ψ(x) = 1 for a + 2δ ≤ x ≤ b − 2δ and ψ(x) = 0 for x ∈ (a, a + δ] and

x ∈ [b−δ, b). With the same δ (take any 0 < δ < 1
12
) construct such functions ψ1(x) for

(−1
3
, 1
3
), ψ0(x) for (0, 1), ψ2(x) for (

2
3
, 4
3
). It is clear then that ψ0(x)+ψ1(x)+ψ2(x) ≥ 1,

x ∈ [−1
3
+ 2δ, 4

3
− 2δ].

Let ω(x) be such a function (with the same e.g. δ) for the interval [−2δ, 1+2δ]. Then

ψ1 ψ2

ψ1 ψ2

ψ0ψ0

ψ1 ψ2

ψ0

−1/3 0 1/3 2/3 1 4/3

ω ω
ω

let

ϕi(x) =
ψi(x)∑
ψi(x)

ω(x), i = 0, 1, 2.

It is easily seen that the ϕi’s satisfy the desired properties).

Let now ui(x) = u(x)ϕi(x), i = 0, 1, 2, so that

u(x) =
2∑

i=0

ui(x), x ∈ I.
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Now u0(x) = u(x)ϕ0(x). Since u ∈ H1(I), ϕ0 ∈ C∞
c (I) ⇒ u0 ∈ H1(I) ∩ Cc(I)

(identifying u0 with its continuous representative). By Remark (iii) p. 46, u0 ∈
0

H1(I).

We consider now u1(x) = u(x)ϕ1(x). Extending ϕ1 by zero to the whole of I, we

see that u ∈ H1(I), ϕ1 ∈ C∞
c (−1

3
, 1) ⇒ u1 ∈ H1(I). By hypothesis we also have that

u 1

0 1/3 1

u1(0) = u(0)ϕ1(0) = 0 · ϕ1(0) = 0. Also suppu1 ⊂ [0, 1
3
). Extend now u1 by zero to R,

i.e. consider the function

ũ1(x) =

 u1(x) if x ∈ I

0 if x ̸∈ I.

This function belongs to H1(R), since, for any ϕ ∈ C∞
c (R),∫ ∞

−∞
ũ1ϕ

′ =

∫ 1

0

u1ϕ
′ Prop.2.1

= u1(1)︸ ︷︷ ︸
=0

ϕ(1)− u1(0)︸ ︷︷ ︸
=0

ϕ(0)−
∫ 1

0

u′1ϕ

= −
∫ ∞

−∞
ũ′1ϕ,

where ũ′1, the extension by zero outside I of u′1, is in L
2(R) since u1 ∈ H1(I).

Now, for any function f on R let for h > 0 τhf denote the right h–translate of f ,

u
~

1hτu
~

1

0 1/3 1h

(τhf)(x) ≡ f (x− h).

Since ũ1 ∈ H1(R) it follows that τhũ1 ∈ H1(R) and

lim
h→0

∥τhũ1 − ũ1∥H1(R) = 0.

(To see this, given ϵ > 0 let ϕ ∈ C∞
c (R) be such that ∥ũ1 − ϕ∥H1(R) <

ϵ
3
. It follows, for

any h > 0, that

∥τhũ1 − τhϕ∥H1(R) = ∥ũ1 − ϕ∥H1(R) <
ϵ

3
.
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But it is obvious, since ϕ, τhϕ ∈ C∞
c (R), that there exists h0 such that

0 ≤ h < h0 ⇒ ∥τhϕ− ϕ∥H1(R) ≤
ϵ

3
.

Hence, given ϵ > 0 ∃h0 such that

0 ≤ h < h0 ⇒ ∥τhũ1 − ũ1∥H1(R) < ϵ

by the triangle inequality). Now, the restriction τhũ1|I , for h sufficiently small, belongs

to H1(I) ∩ Cc(I) (possibly upon modification it on a set of measure zero). Hence, by

Remark (iii), p. 46, τhũ1|I ∈
0

H1(I). Therefore, given ϵ > 0 we have that ∃ϕ ∈ C∞
c (I)

such that ∥τhũ1 − ϕ∥H1(I) <
ϵ
2
. Since limh→0 ∥τhũ1 − ũ1∥H1(R) = 0 ⇒ ∃ h such that

∥τhũ1 − ũ1∥H1(R) = ∥τhũ1 − u1∥H1(I) <
ϵ

2
.

It follows that ∥u1 − ϕ∥H1(I) < ϵ, i.e. that u1 ∈
0

H1(I).

Entirely analogous considerations show that u2 ∈
0

H1(I). Since u = u0 + u1 + u2 it

follows that u ∈
0

H1(I) QED.

For a semi–infinite interval the proof follows in the analogous manner. Let I =

(0,∞), with no loss of generality. Construct ϕ1 ∈ C∞
c (−1

3
, 1
3
), ϕ0 ∈ C∞

c (0,∞) with

suppϕ0 ⊂ [α,∞), α > 0 sufficiently small, so that 0 ≤ ϕi ≤ 1 and so that (extending

ϕ1 by zero to [1
3
,∞)) ϕ1(x) + ϕ0(x) = 1 for x ∈ [0,∞). (This can be achieved as on p.

47, by taking ψ1 as before and extending ψ0(x) and w(x) by setting them equal to 1

for x ≥ 1
2
). Again with ui = uϕi we have as before that, since u0 = 0, u1 ∈

0

H1(0,∞).

Consider u0 = uϕ0. Extend it by zero to the whole of R, i.e. put

ũ0(x) =

 u0(x) if 0 ≤ x <∞

0 if −∞ < x < 0.

It is clear that ũ0 ∈ H1(R) (since u0 ∈ H1(I)). Since u0 it has support in [α,∞),

α > 0, it is not hard to see that for n sufficiently large, ρn ∗ ũ0, has support in [α′,∞),

α′ > 0, belongs to C∞(R) ∩H1(R) and, of course,

∥ũ0 − ρn ∗ ũ0∥H1(R) = ∥u0 − (ρn ∗ ũ0)|I∥H1(I) → 0 as n→ ∞.

Consider now the functions

u0,n = ζn|I(ρn ∗ ũ0)|I ,
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where ζn(x)|I is the restriction to I = [0,∞) of the truncation function ζn(x) introduced

in the proof of Theorem 2.4. It follows that for n sufficiently large, u0,n ∈ C∞
c (I). A

similar calculation to the one used in the proof of Theorem 2.4 shows finally that

∥u0,n − u0∥H1(I) → 0 as n→ ∞.

Hence u0 ∈
0

H1(I). �
Remark: Essentially the proof above shows the following characterization of

0

H1(I)

which is of interest by itself. For u ∈ L2(I) let ũ(x) be its extension by zero to the

whole real line, i.e. let

ũ(x) =

 u(x) if x ∈ I

0 if x ∈ R− I.

Then, u ∈
0

H1(I) if and only if ũ ∈ H1(R).

We finally mention a result which will be very useful in the existence – uniqueness

theory of weak solutions of boundary–value problems.

Proposition 2.3 (Inequality of Poincaré–Friedrichs). Suppose that I is a

bounded interval. Then, there exists a constant C∗ (depending on µ(I)) such that

∥u∥1 ≤ C∗∥u′∥ ∀u ∈
0

H1(I), (2.3)

in other words, the quantity ∥u′∥ is a norm on
0

H1(I), equivalent to ∥u∥1.

Proof. If u ∈
0

H1(I) ≡
0

H1(a, b) we have, by Theorems 2.2 and 2.6 that for x ∈ I

|u(x)| = |
∫ x

a

u′(t) dt| ≤
∫ b

a

|u′(t)| dt ≤ (b− a)
1
2∥u′∥.

Hence

∥u∥2 =

∫ b

a

u2(t) dt ≤ (b− a)2∥u′∥2,

and (2.3) holds with C∗ = (1 + (b− a)2)1/2. �
Remarks:

(i) It follows that on
0

H1(I), I bounded, the expression (u′, v′) defines an inner prod-

uct.
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(ii) Entirely analogously one may define, for m ≥ 2 integer, the spaces
0

Hm(I) as

completions of C∞
c (I) in Hm(I). One may show that

0

Hm(I) = {u ∈ Hm(I) : u = Du = · · · = Dm−1u = 0 on ∂I}.

We should keep in mind the distinction between e.g.

0

H2(I) = {u ∈ H2(I) : u = Du = 0 on ∂I}

and

H2(I) ∩
0

H1(I) = {u ∈ H2(I) : u = 0 on ∂I}.

2.6 Two–point boundary–value problems

We return now to the two–point boundary–value problem (∗) (p. 25) (also called a

Sturm–Liouville problem). We shall mainly discuss homogeneous (zero) Dirichlet and

Neumann boundary conditions and follow the “variational method” outlined in 2.1.

2.6.1 Zero Dirichlet boundary conditions.

We let I = (a, b) be a bounded interval. We consider the problem of finding u(x),

x ∈ [a, b] such that

−(pu′)′ + qu = f in (a, b), (2.4)

u(a) = u(b) = 0, (2.5)

where p, q, f are given functions on I such that p ∈ C1(I), p(x) ≥ α > 0 ∀x ∈ I,

q ∈ C(I) such that q(x) ≥ 0 ∀x ∈ I and where we shall assume f ∈ C(I) (sometimes

just f ∈ L2(I)). Based on the discussion on p. 26 we make the following

Definition Let f ∈ C(I). Then a classical solution of (2.4), (2.5), is a function

u(x) ∈ C2(I) which satisfies the D.E. (2.4) in the usual sense for each x ∈ I and which

also satisfies the b.c. (2.5) in the usual sense. (We shall say that “u satisfies (2.4)

and (2.5) in the usual sense”). If f ∈ L2(I), then a weak solution of (2.4), (2.5), is a

function u ∈
0

H1(I) which satisfies∫
I

pu′v′ +

∫
I

quv =

∫
I

fv ∀ v ∈
0

H1(I). (2.6)
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Following the program outlined on pp. 25–26 we prove a series of results:

(i) A classical solution of (2.4), (2.5) is a weak solution of (2.4), (2.5) as

well.

Let u satisfy (2.4), (2.5) classically. Since u ∈ C2(I) and u(a) = u(b) = 0 ⇒ u ∈

H2(I) ∩
0

H1(I). We multiply the D.E. (2.4) by any v ∈
0

H1(I) and integrate on I. By

Proposition 2.1, p. 42, since pu′ ∈ H1 we can integrate by parts and obtain∫
I

fv = −
∫
I

(pu′)′v +

∫
I

quv = −pu′v|ba +
∫
I

pu′v′ +

∫
I

quv

=

∫
I

pu′v′ +

∫
I

quv,

since v ∈
0

H1 =
0

H1(I) (we suppress I from the symbols of the function spaces). Hence

u is a weak solution.

(ii) Existence and uniqueness of the weak solution.

Let f ∈ L2(I) and let B(v, w) =
∫
I
pv′w′ +

∫
I
qvw. Clearly, by our hypotheses B(·, ·)

is a bilinear, symmetric form on
0

H1 ×
0

H1 (i.e. on H1 ×H1). Moreover, for v, w ∈ H1

we have

|B(v, w)| ≤
∫
I

|p||w′||v′|+
∫
I

|q||w||v|

≤ max
x∈I

|p(x)| ∥w′∥ ∥v′∥+max
x∈I

|q(x)| ∥w∥ ∥v∥

≤ c1∥v∥1 ∥w∥1, (2.7)

where c1 = maxx∈I |p(x)|+maxx∈I |q(x)|. Hence B is continuous on H1 ×H1.

Now, for v ∈
0

H1 we have, by our hypotheses on p and q that

B(v, v) =

∫
I

p(v′)2 +

∫
I

qv2 ≥ α

∫
I

(v′)2 ≥ c2∥v∥21, (2.8)

where c2 = α/C2
∗ , with C∗ being the constant in the Poincaré–Friedrichs inequality,

which was used (since v ∈
0

H1) in the last step.

Hence the bilinear form B satisfies, on the Hilbert space {
0

H1, ∥·∥1}, the hypotheses

(i) and (ii) of the Lax–Milgram theorem (p. 19). In addition it is straightforward to

see that in the R.H.S. of (2.6), F (v) =
∫
I
fv is a continuous, linear functional on

0

H1 since |F (v)| ≤ ∥f∥∥v∥ ≤ ∥f∥∥v∥1 ∀v ∈
0

H1. (Note that |||F ||| ≤ ∥f∥ where by

|||F ||| we denote the norm of the b.l.f. F on
0

H1, i.e. the sup
0̸=v∈

0

H1

|F (v)|
∥v∥

1

). Hence the

54



Lax–Milgram theorem applies and shows that the problem∫
I

pu′v′ + quv =

∫
I

fv , i.e. B(u, v) = F (v) ∀v ∈
0

H1 ,

has a unique solution u ∈
0

H1. Moreover

∥u∥1 ≤
1

c2
∥f∥. (2.9)

Since a classical solution is a weak solution and we have shown now uniqueness of the

weak solution, it follows that there is at most one classical solution.

(iii) Regularity of the weak solution.

Let f ∈ L2(I). Then (2.6) gives that if u is the weak solution, then∫
I

pu′v′ =

∫
I

(f − qu)v ∀v ∈
0

H1.

Hence ∫
I

pu′ϕ ′ =

∫
I

(f − qu)ϕ ∀ϕ ∈ C∞
c (I),

which shows that pu′ ∈ H1, since pu′ ∈ L2 and since there exists g (= qu− f), g ∈ L2

such that
∫
I
pu′ϕ ′ = −

∫
I
gϕ ∀ϕ ∈ C∞

c (I). It follows that pu′ ∈ H1 and (pu′)′ = qu−f .

i.e. −(pu′)′ + qu = f holds in L2.

Now, since p(x) ≥ α > 0, x ∈ I, p ∈ C1(I), it follows that 1
p(x)

∈ C1(I). Hence

u′ = 1
p
(pu′) ∈ H1, since pu′ ∈ H1 and p−1 ∈ H1. It follows that the weak solution

u (shown to be in
0

H1 by the Lax–Milgram theorem) actually belongs to H2 ∩
0

H1.

Moreover, since −(pu′)′ + qu = f in L2, we have now pu′′ = −p′u′ + qu− f . Hence

α∥u′′∥ ≤ max
x∈I

|p′(x)|∥u′∥+max
x∈I

|q(x)|∥u∥+ ∥f∥.

This estimate coupled with (2.9) (∥u∥1 ≤ c−1
2 ∥f∥), shows that there exists a constant

c3 = c3(p, q, I), such that for the weak solution u ∈ H2∩
0

H1 of (2.4), (2.5) we also have

∥u∥2 ≤ c3∥f∥. (2.10)

(Estimates such as (2.10)are called “elliptic regularity” estimates (H2 – L2) for equation

(2.4)).

Now, let f ∈ C(I). We shall show now that the weak solution u is in C2(I)

(u ∈
0

H1(I) guarantees that u(a) = u(b) = 0 in the sense of Sobolev’s theorem). Since
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u ∈ H2(I) ⇒ u′ ∈ C(I) (take the continuous representative of u′). Hence u ∈ C1(I).

But pu′′ = −p′u′+qu−f (in L2). Since f ∈ C(I), the R.H.S. is continuous⇒ u′′ ∈ C(I)

by our hypotheses on p(x). Hence u ∈ C2(I).

(iv) If f ∈ C(I), the weak solution is a classical solution.

Since f ∈ C(I) the above shows that u ∈ C2(I). Now (2.6) gives that∫
I

(pu′)ϕ ′ +

∫
I

quϕ =

∫
I

fϕ ∀ϕ ∈ C∞
c (I).

Integrating by parts, since u ∈ C2(I), we have that∫
I

(−(pu′)′ + qu− f)ϕ = 0 ∀ϕ ∈ C∞
c (I).

Since C∞
c (I) is dense in L2(I) ⇒ −(pu′)′ + qu − f = 0 a.e. on I. (This also follows

from the fact that −(pu′)′+ qu−f = 0 in L2). But −(pu′)′+ qu−f ∈ C(I). Therefore

−(pu′)′ + qu = f ∀x ∈ I. Since u(a) = u(b) = 0 as well, it follows that for f ∈ C(I)

the weak solution is also classical.

Remarks

(i) Since B(u, v) is symmetric, the weak solution of (2.4), (2.5), i.e. the solution of

the variational problem

B(u, v) = (f, v) ∀v ∈
0

H1 ,

may be characterized as the (unique) solution of the minimization problem

J(u) = min

v∈
0

H1

J(v),

where J is the energy functional

J(v) =
1

2
B(v, v)− F (v) =

1

2

∫
I

p(v′)2 + qv2 −
∫
I

fv.

This follows from the Rayleigh–Ritz Theorem 1.5 and is known in the present

context as Dirichlet’s principle.

(ii) It is evident that the weak solution of (2.4), (2.5), i.e. the solution of (2.6), exists

under much weaker conditions on p and q than those assumed. For example, the

two integrals appearing in the definition of B(v, w) exist if e.g. p, q ∈ L∞(I).
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Similarly (2.7) and (2.8) hold only under the additional assumptions p ≥ α > 0,

q ≥ 0 a.e. on I. Moreover the right–hand side F (v) makes sense (interpreting

(f, v) properly) as a bounded linear functional on
0

H1 with much more general

f (than f ∈ L2). More precisely, f may belong to the dual of
0

H1, the so called

“negative” Sobolev space H−1(I); e.g. the delta function is an H−1 “function” in

1 dimension. It is evident that such weak conditions guarantee only existence–

uniqueness of u in
0

H1. To obtain more smoothness for u, i.e. to show that u ∈ H2

or that u ∈ C2(I), it is clear that one has to assume more smoothness for the

coefficients p, q and f . In the same vein of thought one may allow q(x) to take

on negative values as long as q(x) ≥ β, ∀x ∈ I, where β is such that in (2.8),

B(v, v) ≥ c2∥v∥21 for some c2 > 0. (A lower bound on β may be easily found

in terms of 0 < α = minx∈I p(x) and the constant µ of Poincaré’s inequality∫
I
v2 ≤ µ

∫
I
(v′)2. It is not hard to see that the best such constant µ is equal

to 1
λ1
, where λ1 is the smallest eigenvalue of the problem −u′′ = λu with zero

Dirichlet b.c. at a and b, i.e. λ1 =
π2

(b−a)2
).

(iii) Using (2.9) and Sobolev’s inequality we have that under our hypotheses the weak

solution u belongs to L∞(I) and that ∥u∥L∞ ≤ c∥f∥. Using the elliptic regularity

(2.10) and Sobolev’s inequality we can conclude that u′ ∈ L∞ and ∥u′∥L∞ ≤ c∥f∥.

Finally, using the equation we conclude that ∥u′′∥L∞ ≤ c∥f∥, i.e. that the weak

solution u ∈ H2 ∩
0

H1 actually belongs to a space of functions with bounded

generalized derivatives. For u ∈ C2(I), the classical solution, we then have

max
x∈I

(|u|+ |u′|+ |u′′|) ≤ cmax
x∈I

|f |.

(iv) Consider again the weak solution, i.e. u ∈
0

H1 solving B(u, v) = (f, v) ∀v ∈
0

H1

for f ∈ L2. The map f 7→ u is linear; let us denote it by Tf = u. T , the “solution

operator” of the problem (2.6), is, by the above, a bounded linear operator from

L2 into H2 ∩
0

H1: we interpret (2.10) as ∥Tf∥2 ≤ c3∥f∥. T is then the inverse

of the “elliptic” operator Lu = −(pu′)′ + qu defined on H2 ∩
0

H1. Note that T is

defined by

B(Tf, v) = (f, v), ∀v ∈
0

H1
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for each f ∈ L2. T is actually a bounded, self–adjoint operator from L2 into L2;

that it is bounded follows from (2.10). To see that it is self–adjoint, note that

for f , g ∈ L2, Tg ∈ H2 ∩
0

H1 and

(f, Tg) = B(Tf, Tg) = B(Tg, Tf) = (g, Tf) = (Tf, g).

Note that TL = I on H2 ∩
0

H1 and LT = I on L2 (I = identity). Note also that

(Tf, f) = B(Tf, Tf) ≥ c2∥Tf∥21. If Tf = 0 ⇒ u = 0 ⇒ f = 0, i.e. T is positive

definite.

(v) The case of the b.v.p. with non homogeneous Dirichlet boundary conditions

u(a) = a1, u(b) = a2 easily reverts to the problem (2.4), (2.5). Let ψ(x) be a

linear function (or any other function in C2(I)) such that ψ(a) = a1, ψ(b) = a2.

Then if u is the solution of the nonhomogeneous b.v.p., the function v = u − ψ

satisfies the homogeneous b.c. v(a) = v(b) = 0 and the D.E.

−(pv′)′ + qv = g := f − Lψ = f + (pψ′)′ − qψ,

i.e. a D.E. of the same form with new R.H.S. g = f − Lψ ∈ C(I).

2.6.2 Neumann boundary conditions.

We now consider the problem

−(pu′)′ + qu = f in (a, b), (2.11)

u′(a) = u′(b) = 0, (2.12)

i.e. the (homogeneous) Neumann b.c. problem. Again we let p ∈ C1(I), p(x) ≥ α > 0

∀x ∈ I, f ∈ C(I) (or f ∈ L2(I)), but now we assume that q ∈ C(I) witht q(x) ≥ β > 0

∀x ∈ I. (Note possible nonuniqueness if q = 0: e.g. consider p = 1, f = 0, q = 0, i.e.

−u′′ = 0, u′(a) = 0, u′(b) = 0, which has any constant as its solution). It is not hard

to motivate the following

Definition Let f ∈ C(I). Then a classical solution of the Neumann b.v.p. (2.11),

(2.12), is a function u(x) ∈ C2(I) which satisfies (2.11), (2.12) in the usual sense. If

f ∈ L2(I), then a weak solution of (2.11), (2.12), is a function u ∈ H1(I) such that∫
I

pu′v′ +

∫
I

quv =

∫
I

fv ∀ v ∈ H1(I). (2.13)
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Following the steps of the Dirichlet b.c. case we have:

(i) A classical solution of (2.11), (2.12) is a weak solution as well.

Proof obvious as before (now multiply by v ∈ H1 and use the “natural” b.c. u′(a) =

u′(b) = 0 on u; (2.13) follows).

(ii) Existence and uniqueness of the weak solution.

Let f ∈ L2(I) and B(v, w) =
∫
I
pv′w′ +

∫
I
qvw. By our hypotheses B(·, ·) is a bilinear,

symmetric form on H1 ×H1. (2.7) holds with the same constant c1 as on p. 52. For

v ∈ H1 we have

B(v, v) =

∫
I

p(v′)2 +

∫
I

qv2 ≥ α

∫
I

(v′)2 + β

∫
I

v2 ≥ c2∥v∥21, (2.14)

where c2 = min{α, β} > 0. Since F (v) =
∫
I
fv is a b.l.f. on H1 there follows, from

the Lax–Milgram theorem that there exists a weak solution u ∈ H1 of (2.13) and that

∥u∥1 ≤ 1
c2
∥f∥. (Note that since u ∈ H1 we cannot give meaning to the point values

u′(a), u′(b) unless we prove that the weak solution is in H2, something that we do in

the next step).

(iii) Regularity of the weak solution.

For f ∈ L2(I) the weak solution u satisfies∫
I

pu′v′ =

∫
I

(f − qu)v ∀v ∈ H1.

Hence, a fortiori, ∫
I

pu′ϕ ′ =

∫
I

(f − qu)ϕ ∀ϕ ∈ C∞
c (I).

It follows, as on p. 53, that pu′ ∈ H1 and that −(pu′)′ + qu = f holds in L2. Since

u′ = 1
p
(pu′), it follows , as on p. 53, that u ∈ H2. Returning now to∫

I

pu′v′ =

∫
I

(f − qu)v ∀v ∈ H1,

since pu′ ∈ H1 and v ∈ H1, integration by parts gives (note that we can assign meaning

to the values u′(a), u′(b) ≡ the values of the continuous representative of u′ ∈ H1 at

a, b) that ∫
I

(−(pu′)′v + quv − fv) dx+ p(b)u′(b)v(b)− p(a)u′(a)v(a) = 0

holds, for each v ∈ H1. Since we already saw that −(pu′)′ + qu = f in L2, it follows

that p(b)u′(b)v(b) − p(a)u′(a)v(a) = 0 ∀v ∈ H1 ⇒ u′(b) = 0, u′(a) = 0. (Choose e.g.
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v(x) = x − a or v(x) = x − b). Hence the weak solution (2.11), (2.12), which exists

uniquely by Lax–Milgram in H1, actually belongs to H2, satisfies −(pu′)′ + qu = f in

L2 and u′(a) = u′(b) = 0. Moreover, exactly as before we obtain ∥u∥2 ≤ c∥f∥ (“elliptic

regularity”).

Assume now f ∈ C(I). Then exactly as in the Dirichlet b.c. case, use of Sobolev’s

theorem gives that u ∈ C2(I) for the weak solution.

(iv) If f ∈ C(I), the weak solution is classical.

The proof that −(pu′)′ + qu = f a.e. ⇒ −(pu′)′ + qu = f everywhere in I, i.e. that

the weak solution (which is C2 if f ∈ C(I)) is classical, is identical to the one of the

Dirichlet b.c. case. Of course u′(a) = u′(b) = 0 already for the weak solution (in H2).
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Remarks.

(i) The weak solution is characterized now (by the Rayleigh–Ritz theorem) as the

solution of the minimization problem

J(u) = min
v∈H1

J(v), J(v) =
1

2

∫
I

p(v′)2 + qv2 −
∫
I

fv, v ∈ H1.

This follows from the symmetry of B.

(ii) Analogous remarks to the Dirichlet b.c. remarks (ii)–(v) follow, mutatis mutan-

dis.

(iii) We can consider of course other homogeneous b.v. problems for the equation

−(pu′)′ + qu = f on (a, b) as well. For example the problem with b.c. (assume

Dirichlet b.c. assumptions on p, q)

u(a) = 0, u′(b) = 0, (“mixed” b.c.)

has the following weak formulation: Let

0

Ha ≡ {v ∈ H1(I) : v(a) = 0}.

Clearly {
0

Ha, ∥ · ∥1} is a Hilbert space (a closed subspace of H1(I) that includes
0

H1). We then seek u ∈
0

Ha such that

B(u, v) ≡
∫
I

pu′v′ +

∫
I

quv =

∫
I

fv holds ∀v ∈
0

Ha .

The Lax–Milgram theorem shows existence–uniqueness of the weak solution since

B(·, ·) is bilinear, bounded and coercive on
0

Ha ×
0

Ha. The rest (f ∈ C(I) ⇒ u

classical etc.) follows easily.

The problem with b.c.

u′(a)− k u(a) = 0 (k const.), u(b) = 0

has the following weak formulation on
0

Hb ≡ {v ∈ H1(I) : v(b) = 0}:

Seek v ∈
0

Hb such that

Bk(u, v) ≡
∫
I

pu′v′ +

∫
I

quv + p(a)k u(a)v(a) =

∫
I

fv ∀v ∈
0

Hb .
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It is straightforward to see that Bk(·, ·) is bilinear, symmetric, continuous on
0

Hb ×
0

Hb (by Sobolev’s theorem) and coercive, provided k ≥ 0 (or k < 0 with |k|

sufficiently small). Hence a weak solution u ∈
0

Hb exists and its classical analog

follows.

The periodic boundary condition problem, i.e. the problem with b.c.’s

u(a) = u(b), u′(a) = u′(b)

may be similarly treated with the following weak formulation: Seek u ∈ H1
π

(assume p(a) = p(b)) ∫
I

(pu′v′ + quv) =

∫
I

fv , ∀v ∈ H1
π ,

where H1
π ≡ {v ∈ H1(I) : v(a) = v(b)}, the so called “periodic” H1.

Let us also remark here that with the machinery already developed in this section

(and the added fact that the injection ofH1(I) ↪→ L2(I) is compact – for bounded

I – ) we can use the spectral theorem for the bounded, self–adjoint, positive

definite operator T (cf. remark (iv), p. 55) – T is compact, as an operator from

L2 into L2 – to prove e.g. theorems about Sturm–Liouville eigenproblems. For

example, we may thus prove that, with p ∈ C1(I), p(x) ≥ α > 0, q ∈ C(I),

there exists a sequence of reals {λn}∞n=1 such that λn → ∞ when n → ∞, and a

complete orthonormal system {ϕn}∞n=1 in L2(I), such that ϕn ∈ C2(I) and such

that for n = 1, 2, 3, . . .  −(pϕ ′
n)

′ + qϕn = λnϕn, in I

ϕn(a) = ϕn(b) = 0.

The numbers λn are called the eigenvalues and the functions ϕn(x) the eigenfunc-

tions of the Sturm–Liouville operator L(·) ≡ − d
dx

(
p d
dx
(·)
)
+q·, with homogeneous

Dirichlet boundary conditions.
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Chapter 3

Galerkin Finite Element Methods

for Two–Point Boundary–Value

Problems

3.1 Introduction

We consider again the two–point boundary–value problem on a bounded interval (a, b)

with homogeneous Dirichlet b.c.’s:

−(pu′)′ + qu = f in (a, b) ≡ I, (3.1)

u(a) = u(b) = 0, (3.2)

for which we assume, as in §2.6, that p ∈ C1(I), p(x) ≥ α > 0 in I, q ∈ C(I), q(x) ≥ 0

on I. We recall that if f ∈ L2(I), there exists a unique weak solution of (3.1), (3.2)

satisfying

u ∈
0

H1(I), B(u, v) = (f, v) ∀v ∈
0

H1(I) , (3.3)

where

B(v, w) =

∫ b

a

(pv′w′ + qvw), v, w ∈ H1(I), (v, w) =

∫ b

a

vw.

In fact, u ∈ H2 ∩
0

H1 (suppress the I in the notation
0

H1(I) etc.) and we have the

elliptic regularity estimate

∥u∥2 ≤ C ∥ f ∥, (3.4)
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where C is a nonnegative constant independent of u and f . If f ∈ C(I), then the

(unique) weak solution is in fact in C2(I) and solves (3.1), (3.2) in the classical sense.

The Galerkin method for the approximation of the weak solution, i.e. of the solution

of (3.3), follows the abstract framework of §1.9. We note that B satisfies (see §2.6)

|B(v, w)| ≤ C1∥v∥1 ∥ w ∥1 ∀ v, w ∈ H1(I), (3.5)

B(v, v) ≥ C2∥v∥21 ∀v ∈
0

H1, (3.6)

where in fact e.g. C1 =∥ p ∥∞ + ∥ q ∥∞, C2 = α/C2
∗ , where C∗ is the constant

in the Poincaré–Friedrichs inequality. Hence, if Sh, 0 < h ≤ 1, is a family of finite–

dimensional subspaces of
0

H1, Galerkin’s Theorem 1.4 gives that for each h, there exists

a unique element uh ∈ Sh, the Galerkin approximation of u in Sh satisfying

B(uh, vh) = (f, vh) ∀vh ∈ Sh. (3.7)

Moreover, uh satisfies the H1–error estimate

∥ u− uh ∥1≤
C1

C2

inf
ϕ∈Sh

∥ u− ϕ ∥1 . (3.8)

The discrete problem (3.7) (discrete version of (3.3)) is equivalent to a linear system of

equations. Let N = Nh = dimSh and {ϕi}Ni=1 be a basis of Sh. Then, as we saw in Ch.

1, the coefficients {ci} of uh with respect to the basis ϕi, i.e. the numbers ci:

uh(x) =
N∑
i=1

ciϕi(x) (3.9)

satisfy the linear system

Ac = fh (3.10)

where A is the N × N matrix with elements Aij = B(ϕj, ϕi) =
∫ b

a
(pϕ′

jϕ
′
i + qϕjϕi),

1 ≤ i, j ≤ N , c = [c1, . . . , cN ]
T , fh = [(f, ϕ1), . . . , (f, ϕN)]

T . The matrix A is symmetric

and positive definite on RNdue to our assumptions on B (i.e. on p and q).

The question is, of course, how to choose the finite–dimensional subspace Sh of
0

H1(I). The choice should be such that

• infϕ∈Sh
∥ u− ϕ ∥1 is small (cf. (3.8)), i.e. that we can approximate well elements

u of H2 ∩
0

H1 by elements of Sh.
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• The system (3.10) is easy to solve.

A classical choice (Ritz, Galerkin, “spectral methods”) is to let Sh ≡ SN be the span

of the first N eigenfunctions ϕj of the S–L operator Lu = −(pu′)′ + qu with zero b.c.’s

at x = a and x = b. If λn, ϕn are the eigenvalues, resp. eigenfunctions, of this problem

(cf. concluding remarks of Ch. 2 ), then the system (3.10) may be solved explicitly by

ci =
(f, ϕi)

λi
, 1 ≤ i ≤ N ,

and the Galerkin approximation uh ≡ uN =
∑N

i=1 ciϕi(x) has good approximation

properties; in particular

inf
ϕ∈SN

∥ u− ϕ ∥1→ 0, as N → ∞ for u ∈ H2 ∩
0

H1.

The difficulty in this approach is of course that it requires the explicit knowledge of

the eigenpairs (λi, ϕi), 1 ≤ i ≤ N , which are, in general, not easy to find analytically.

Another obvious choise that will also guarantee good approximation properties is

to choose Sh as the vector space of the polynomials of a fixed degree that vanish at

the endpoints. The problem with this approach is that, in general, the condition of the

linear system (3.10) will be bad. Moreover, the matrix A will be, in general, full, since

the polynomial basis functions ϕj will not be of small support in I. Since we expect N

to be large for approximability, we conclude that, in general, the system (3.10) will be

very hard to solve accurately. Moreover, since N ∼ degree of polynomials in Sh, we

will run into problems trying to compute uh as a polynomial function of large degree.

A good choice turns out to be piecewise polynomial functions (consisting of polyno-

mials – of small degree – on each subinterval of a partition of I) continuous on I and

endowed with basis functions of small support. In this way, we obtain various finite

element subspaces Sh of
0

H1(I).

3.2 The Galerkin–finite element method with piece-

wise linear, continuous functions

Let a = x0 < x1 < x2 < . . . < xN < xN+1 = b define an arbitrary partition of [a, b] with

N interior points xi, 1 ≤ i ≤ N . Let hi = xi+1 − xi, 0 ≤ i ≤ N and put h = maxi hi.
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(For uniform partitions h = hi = (b−a)/N+1). Let Sh be the vector space of functions

defined by

Sh = {ϕ : ϕ ∈ C[a, b], ϕ(a) = ϕ(b) = 0, ϕ is a linear

polynomial on each (xi, xi+1), 0 ≤ i ≤ N} (3.11)

(we write the last condition as ϕ |(xi,xi+1)∈ P1).

It is not hard to see that Sh is a finite dimensional subspace of
0

H1 and that dimSh =

N . The latter follows e.g. from the fact that the set of functions {ϕi}Ni=1 defined by

{ϕi ∈ Sh, ϕi(xj) = δij},

or, explicitly, for 1 ≤ i ≤ N , as

ϕi(x) =


x−xi−1

xi−xi−1
, if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi

, if xi ≤ x ≤ xi+1

0, if x ∈ I \ (xi−1, xi+1)

(3.12)

forms a basis of Sh: Obviously ϕi ∈ Sh.

N+1x = bxNxN−1x i−1 x i x i+1x0a = x1 x2

φ1 φi φN

1 1 1

Moreover, if
∑N

i=1 ciϕi(x) = 0 ∀x ∈ I, putting x = xj, 1 ≤ j ≤ N , we see that

cj = 0, i.e. that {ϕi} are linearly independent. In addition, since for each ϕ ∈ Sh,

ϕ(x) =
N∑
i=1

ciϕi(x), where ci = ϕ(xi),

i.e. since each ϕ in Sh is uniquely determined by its nodal values ϕ(xi), 1 ≤ i ≤ N , we

conclude that {ϕi} spans Sh.

N+1x = bxNx i−1 x i x i+1x0a = x1 x2

(x  ) = ci iφ
(x)φ

66



Evaluating the elements Aij =
∫ b

a
(pϕ′

jϕ
′
i + qϕjϕi) of the matrix A of the system

(3.10) yields that (since suppϕi = [xi−1, xi+1]) Aii ̸= 0, 1 ≤ i ≤ N , Ai,i+1 ̸= 0,

Ai+1,i ̸= 0, 1 ≤ i ≤ N − 1, while all other Aij = 0. Hence, due to the small support

of the basis functions, the matrix A is sparse; in this case tridiagonal. Since it is also

symmetric and positive definite, the system (3.10) may be efficiently solved e.g. by a

banded (tridiagonal) Cholesky algorithm. In the special case p = q = 1 and a uniform

partition of I = (0, 1) with h = 1/(N + 1), A is the sum of the stiffness matrix S,

where Sij =
∫ 1

0
ϕ′
jϕ

′
i, and the mass matrix M , where Mij =

∫ 1

0
ϕjϕi. Indeed, S and M

are then the tridiagonal, symmetric and positive definite matrices

S =
1

h



2 −1 0

−1 2 −1
. . . . . . . . .

0 −1 2 −1

−1 2


, M =

h

6



4 1 0

1 4 1
. . . . . . . . .

0 1 4 1

1 4


.

We now return to the error estimate (3.8). As h → 0, i.e. as dimSh → ∞, we would

like to prove that infϕ∈Sh
∥u − ϕ∥1 → 0, where u ∈ H2 ∩

0

H1 is the weak solution of

(3.1), (3.2). In fact, we shall prove that there is a constant C, independent of h and v,

such that infϕ∈Sh
∥v − ϕ∥1 ≤ C h ∥v′′∥ for any v ∈ H2 ∩

0

H1.

A simple and convenient way to do this is to study the properties of the interpolant

of v in the space Sh.

The interpolant (Ihv)(x) of a continuous function v(x) (such that v(a) = v(b) = 0)

in the space Sh is defined as the (unique) element of Sh satisfying

(Ihv)(xi) = v(xi), 1 ≤ i ≤ N, (3.13)

N+1x = bxNx i−1 x i x i+1x0a = x1 x2

I  vh

v

i.e. as the element (Ihv)(x) =
∑N

i=1 v(xi)ϕi(x) of Sh. Hence Ih :
0

H1 → Sh is a linear

operator on
0

H1 (the interpolation operator onto Sh).
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Lemma 3.1. Let v ∈
0

H1. Then Ihv satisfies

(i) ((Ihv − v)′, φ′) = 0 ∀φ ∈ Sh , (3.14)

(ii) ∥v − Ihv∥ ≤ C h ∥(v − Ihv)
′∥ (3.15)

for some constant C independent of h and v.

Proof. (i) Let φ ∈ Sh. Then

((Ihv − v)′, φ′) =

∫ b

a

(Ihv − v)′ φ′ dx =
N∑
i=0

∫ xi+1

xi

(Ihv − v)′ φ′ dx =

=
N∑
i=0

{
[(Ihv − v)φ′]

xi+1

x=xi
−
∫ xi+1

xi

(Ihv − v)φ′′ dx

}
= 0,

since (Ihv)(xi) = v(xi), 0 ≤ i ≤ N + 1, and φ′′ |[xi,xi+1]= 0.

(ii) Since (Ihv − v)(xi) = 0, 0 ≤ i ≤ N + 1, Ihv − v ∈
0

H1(xi, xi+1) for each

i = 0, 1, . . . , N . By the proof of Proposition 2.3 (the Poincaré–Friedrichs inequality),

we conclude that there is a constant C, independent of the xi or v such that

∥Ihv − v∥L2(xi,xi+1) ≤ C (xi+1 − xi) ∥(Ihv − v)′∥L2(xi,xi+1)

for all i (in fact the best value of C is 1/π). We conclude that

∥Ihv − v∥2 =
N∑
i=0

∥Ihv − v∥2L2(xi,xi+1)
≤ C2 h2

N∑
i=0

∥(Ihv − v)′∥2L2(xi,xi+1)
=

= C2 h2 ∥(Ihv − v)′∥2 q.e.d.

�
Using Lemma 3.1 we may now prove the following approximation properties of the

interpolant Ihv:

Proposition 3.1. There is a constant C independent of h such that

(i) ∥v − Ihv∥+ h∥(v − Ihv)
′∥ ≤ C h ∥v′∥ ∀ v ∈

0

H1, (3.16)

(ii) ∥v − Ihv∥+ h∥(v − Ihv)
′∥ ≤ C h2 ∥v′′∥ ∀v ∈ H2 ∩

0

H1. (3.17)

Proof: (i) For v ∈
0

H1, ∥(v−Ihv)′∥ ≤ ∥v′∥+∥(Ihv)′∥. But, by (3.14), ((Ihv)
′, φ′) =

(v′, φ′) ∀φ ∈ Sh. Put φ = Ihv and obtain

∥(Ihv)′∥2 = (v′, (Ihv)
′) ≤ ∥v′∥∥(Ihv)′∥, i.e. ∥(Ihv)′∥ ≤ ∥v′∥.
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We conclude that ∥(v − Ihv)
′∥ ≤ 2∥v′∥. Hence, by (3.15)

∥v − Ihv∥ ≤ C h ∥(v − Ihv)
′∥ ≤ 2C h ∥v′∥,

proving (3.16).

(ii) Let now v ∈ H2 ∩
0

H1. Then,

∥(v − Ihv)
′∥ ≤ C h ∥v′′∥ (3.18)

for some constant C independent of h and v. To see this, we have

∥(v − Ihv)
′∥2 = ((v − Ihv)

′, (v − Ihv)
′) = (v′, (v − Ihv)

′) (why?)

=

∫ b

a

v′ (v − Ihv)
′ = [v′ (v − Ihv)]

b
a −

∫ b

a

v′′ (v − Ihv)

( since v′ ∈ H1, v − Ihv ∈ H1)

= −
∫ b

a

v′′ (v − Ihv) ≤ ∥v′′∥∥v − Ihv∥
by(3.15)

≤ C h ∥v′′∥∥(v − Ihv)
′∥.

We conclude therefore that ∥(v − Ihv)
′∥ ≤ C h ∥v′′∥. This gives, in view of (3.15),

∥v − Ihv∥ ≤ C h2 ∥v′′∥. Hence (3.17) holds q.e.d. �
In view of Proposition 3.1, we now have, since

inf
ϕ∈Sh

(∥v − ϕ∥+ h ∥(v − ϕ)′∥) ≤ ∥v − Ihv∥+ h ∥(v − Ihv)
′∥,

that

inf
ϕ∈Sh

(∥v − ϕ∥+ h ∥(v − ϕ)′∥) ≤ Ck h
k ∥Dkv∥ (3.19)

for k = 1, 2 if v ∈ Hk ∩
0

H1.

Hence,

inf
ϕ∈Sh

∥v − ϕ∥1 ≤ C h ∥v′′∥ (3.20)

for v ∈ H2 ∩
0

H1.

We are now ready to prove error estimates in the H1 and the L2 norms for the error

u− uh of the Galerkin approximation uh ∈ Sh of u, the weak solution of (3.1), (3.2).

Theorem 3.1. Let u be the weak solution of (3.1), (3.2) and uh ∈ Sh its Galerkin

approximation in Sh. Then,

∥u− uh∥1 ≤ C h ∥u′′∥ (3.21)

and ∥u− uh∥ ≤ C h2 ∥u′′∥ (3.22)

for some constant C independent of h and u.
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Proof: (3.21) follows from (3.8) and (3.20). The proof of (3.22) follows from the

following duality argument (Nitsche trick). Set e = u−uh ∈
0

H1. Let ψ be the solution

of the problem

B(ψ, v) = (e, v) ∀v ∈
0

H1, (3.23)

i.e. the weak solution of the problem −(pψ′)′ + qψ = e in (a, b), ψ(a) = ψ(b) = 0.

We know that ψ exists uniquely in
0

H1 and in fact ψ ∈ H2 ∩
0

H1 and that it satisfies

(elliptic regularity)

∥ψ∥2 ≤ C ∥e∥. (3.24)

Put v = e in (3.23); then

∥e∥2 = (e, e) = B(ψ, e) = B(e, ψ) = B(u− uh, ψ) = B(e, ψ − χ)

for any χ ∈ Sh (why?). Take χ = Ihψ. Then

∥e∥2 = B(e, ψ − Ihψ) ≤ C1 ∥e∥1 ∥ψ − Ihψ∥1
by(3.17)

≤

C1 ∥e∥1C h ∥ψ′′∥ ≤ C ′ h ∥e∥1 ∥e∥, (by (3.24)).

Hence, ∥e∥ ≤ C ′ h ∥e∥1 and (3.22) follows from (3.21). �
Remarks:

1. Property (3.14) characterizes uniquely the interpolant as an element of Sh. I.e. the

equation

((vh − v)′, φ′) = 0 ∀φ ∈ Sh (3.25)

(given v ∈
0

H1), has a unique solution vh ∈ Sh, which, by Lemma 3.1 (i), coincides

with the interpolant Ihv of v. To prove uniqueness, note that (3.25) may be written

as (v′h, φ
′) = (v′, φ′) ∀φ ∈ Sh. Hence, if there existed two such elements vih, we would

have

((v1h − v2h)
′, φ′) = 0 ∀φ ∈ Sh

φ=v1h−v2h=⇒ ∥(v1h − v2h)
′∥ = 0 ⇒ v1h = v2h

by the Poincaré–Friedrichs inequality.

Equation (3.25) also states that in our case, Ihv is the projection of v on Sh with

respect to the inner product (u′, v′) on
0

H1. We conclude that

∥(Ihv − v)′∥ = inf
φ∈Sh

∥v′ − φ′∥.
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Hence, by Poincaré–Friedrichs

∥Ihv − v∥1 ≤ C ∥(Ihv − v)′∥ ≤ C inf
φ∈Sh

∥v − φ∥1.

Since, obviously, infφ∈Sh
∥v − φ∥1 ≤ ∥Ihv − v∥1, we finally obtain that

inf
φ∈Sh

∥v − φ∥1 ≤ ∥Ihv − v∥1 ≤ C inf
φ∈Sh

∥v − φ∥1,

i.e. that Ihv is a quasi–optimal approximation of v in Sh (just as the Galerkin solution

uh is a quasi–optimal approximation of u in Sh). Hence, nothing essentially was lost

by using the upper bound ∥Ihu−u∥1 of infφ∈Sh
∥u−φ∥1 in (3.8) – which led to (3.21).

2. It may be proved that the exponents of h in the estimates (right hand sides)

∥Ihu− u∥1 ≤ C1 h ∥u′′∥

∥Ihu− u∥ ≤ C2 h
2 ∥u′′∥

∥uh − u∥1 ≤ C ′
1 h ∥u′′∥

∥uh − u∥ ≤ C ′
2 h

2 ∥u′′∥,

i.e. the powers 1 (for H1 norms) and 2 (for L2 norms) in the errors of Ihu and uh

(viewed as approximations of u ∈ H2 ∩
0

H1) are optimal, i.e. they cannot be increased

in general.

We may also derive error estimates in other norms. For example, if the solution u

of (3.1), (3.2) belongs to C2[a, b] (if it is a classical solution, that is), we may prove

that there exists a constant C, independent of h and u such that

∥uh − u∥∞ + h∥u′h − u′∥∞ ≤ C h2 ∥u′′∥∞.

(Again, the interpolant satisfies a similar estimate. E.g. it is obvious (Lagrange inter-

polation) that ∥Ihu− u∥∞ ≤ (h2/8) ∥u′′∥∞).

3. Other boundary conditions. Let us consider for example (3.1) with the Neu-

mann b.c.

u′(a) = u′(b) = 0, (3.26)

where we assume now q(x) ≥ β > 0, x ∈ [a, b] for uniqueness. As the space in which

the weak solution lies now is H1, we consider subspaces of H1 in which we seek the

Galerkin approximation uh of u.
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Let a = x0 < x1 < . . . < xN+1 = b be an arbitrary partition of [a, b] and let

h = maxi(xi+1 − xi) as before. The finite–dimensional space

S̃h = {ϕ : ϕ ∈ C[a, b], ϕ |(xi,xi+1)∈ P1}

is a subspace of H1 and has the basis {ϕi}N+1
i=0 consisting of the “hat” functions ϕi,

1 ≤ i ≤ N , that were defined by (3.12), plus the end–point “half–hat” functions ϕ0,

ϕN+1

N+1x = bxNxN−1x i−1 x i x i+1x0a = x1 x2

φ
N+1

φ1 φi φNφ0

1 1 11 1

defined as follows:

ϕ0 ∈ S̃h, ϕ0(x0) = 1, ϕ0(xj) = 0, j ̸= 0, ϕN+1(xN+1) = 1, ϕN+1(xj) = 0, j ̸= N + 1.

Hence, dimS̃h = N + 2.

Defining again the interpolant Ĩhv of a continuous function v on [a, b] by the formula

(Ĩhv)(x) =
N+1∑
i=0

v(xi)ϕi(x),

i.e. as the unique element of S̃h that satisfies

(Ĩhv)(xi) = v(xi), 0 ≤ i ≤ N + 1,

we may prove again that:

(i) ((Ĩhv)
′, ϕ′) = (v′, ϕ′) ∀v ∈ H1, ϕ ∈ S̃h. (3.27)

(The proof is identical to that of Lemma 3.1 (i))

(ii) ∥(Ĩhv)′∥2 + ∥(v − Ĩhv)
′∥2 = ∥v′∥2 ∀v ∈ H1. (3.28)

(This follows from (i) by putting ϕ = Ĩhv)

With these in mind we may now see that

∥(v − Ĩhv)
′∥ ≤ ∥v′∥ , ∀v ∈ H1. (3.29)
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(A simple consequence of (3.28)). Since for each i, v − Ĩhv ∈
0

H1((xi, xi+1)), we have

again, as in Lemma 3.1, that

∥v − Ĩhv∥ ≤ h ∥(v − Ĩhv)
′∥ ∀v ∈ H1. (3.30)

As a consequence of (3.29) and (3.30),

∥v − Ĩhv∥ ≤ h ∥v′∥ ∀v ∈ H1. (3.31)

Now, we have that for v ∈ H2,

∥(v − Ĩhv)
′∥2 = − (v − Ĩhv, v

′′). (3.32)

The proof of (3.32) is identical to that given for Ih after the estimate (3.18).

As a consequence of (3.32), we have

∥v′ − (Ĩhv)
′∥2 ≤ ∥v − Ĩhv∥ ∥v′′∥,

which, when combined with (3.30) yields

∥v′ − (Ĩhv)
′∥ ≤ h ∥v′′∥ ∀v ∈ H2. (3.33)

Using (3.33) in (3.30) we see that for v ∈ H2

∥v − Ĩhv∥ ≤ h2 ∥v′′∥. (3.34)

We conclude therefore that

∥v − Ĩhv∥+ h ∥(v − Ĩhv)
′∥ ≤ C1 h ∥v′∥ ∀v ∈ H1 (3.35)

and

∥v − Ĩhv∥+ h ∥(v − Ĩhv)
′∥ ≤ C2 h

2 ∥v′′∥ ∀v ∈ H2. (3.36)

These inequalities are the analogs of (3.16) and (3.17) and lead e.g. to the estimate

inf
ϕ∈Sh

∥v − ϕ∥1 ≤ ∥v − Ĩhv∥1 ≤ C h ∥v′′∥, v ∈ H2. (3.37)

The Galerkin approximation uh of u in S̃h is defined again as the (unique) element of

S̃h that satisfies

B(uh, ϕ) = (f, ϕ) ∀ϕ ∈ S̃h,
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and may be found again in the form uh =
∑N+1

i=0 ciϕi, where c = [c0, . . . , cN+1]
T is

the solution of the linear system Ac = fh, where the (N + 2) × (N + 2) (symmetric,

positive definite) tridiagonal matrix A is given by Aij = B(ϕj, ϕi), and fh is the vector

[(f, ϕ0), . . . , (f, ϕN+1)]
T . As before, if u is the weak solution of (3.1), (3.26), then

∥u− uh∥1 ≤ C inf
ϕ∈Sh

∥u− ϕ∥1,

which yields, in view of (3.37) the H1–error estimate

∥u− uh∥1 ≤ C h ∥u′′∥, (3.38)

since u ∈ H2. The error bound (O(h)) is of optimal rate.

The L2 error estimate (of optimal rate as well)

∥u− uh∥ ≤ C h2 ∥u′′∥ (3.39)

follows again by a duality argument, exactly as in the proof of (3.22) in Theorem 3.1.

(Use is made of the elliptic regularity inequality for the Neumann problem).

Analogously, we may approximate the solution of other two–point boundary–value

problems with (3.1) as the underlying differential equation. For example, with the

boundary conditions u(a) = 0, u′(b) = 0 we use the finite element space (defined on

our usual partition):

{ϕ ∈ C[a, b], ϕ(a) = 0, ϕ |(xi,xi+1)∈ P1},

which is a finite–dimensional subspace of the Hilbert space {v : v ∈ H1(a, b), v(a) = 0}

etc.

4. A note on implementation. (From Brenner–Scott, pp. 10-12)

A basic computational problem in the finite element method is the evaluation, or

assembly, of the matrix and the right–hand side of the system Ac = fh of the Galerkin

equations, and in general, of the inner product (f, v) and the bilinear form

B(v, w) =

∫ b

a

(p(x)v′(x)w′(x) + q(x)v(x)w(x)) dx

given v, w ∈ Sh. We will discuss this problem in its present simple 1–dimensional

context; the strategy extends in a natural way to the multidimensional case.
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Given the partition a = x0 < x1 < x2 < . . . < xN < xN+1 = b of [a, b] we will

simply refer to a subinterval Ik = [xk−1, xk] as an element. Hence in our problem we

have N + 1 elements,

N+1x = bxNx0a = x1 x2

I1 I2 Ie IN+1

xe−1 xe

the subintervals Ie = [xe−1, xe], e = 1, 2, . . . , N + 1. Each element Ie

Ie

j=0 j=1

has two nodes, its endpoints, corresponding to the values of the local node index j = 0

(for the left endpoint xe−1) and j = 1 (for the right endpoint xe). The element number

e and the local index j determine the global index i for the node xi. In our case we

have

i = i(e, j) = e+ j − 1, e = 1, 2, . . . , N + 1, j = 0, 1.

Thus the left endpoint of the element I15 has global index i = 15 + 0− 1 = 14, i.e. it

is the node x14, which of course coincides with the right endpoint of the element I14

(given by e=14, j=1).

Let us consider the basis {φi}N+1
i=0 of “hat” functions, introduced as basis of the

subspace S̃h used for the Neumann problem, i.e. the basis for the finite element space

of piecewise linear, continuous functions with no boundary conditions imposed. Each

function v(x) in this subspace may be written as

v(x) =
N+1∑
i=0

v(xi)φi(x) =
N+1∑
i=0

viφi(x), vi ≡ v(xi).

There is a particularly effective way of describing v(x) (for the purposes of efficient

assembly of (f, v) and B(v, w)) in terms of its nodal values v(xi) and the “local” basis

functions φe
j , j = 0, 1. The latter are simply the restrictions on [xe−1, xe] of the basis

functions φe−1(x), φe(x), respectively, and may be described in terms of two fixed

75



xexe−1 Ie

ve−1 ve

φe

1
φe

0

x

functions Φ0, Φ1 on the “reference” element [0,1], as follows: First define Φ0, Φ1 as

Φ0(y) =

 1− y if 0 ≤ y ≤ 1

0 otherwise
, Φ1(y) =

 y if 0 ≤ y ≤ 1

0 otherwise.

Associated with Ie = [xe−1, xe] (defined by the affine transformation x = hey + xe−1,

0 ≤ y ≤ 1, where he = xe − xe−1, that maps the reference element [0,1] onto Ie), define

the local basis functions φe
0, φ

e
1 as

φe
0(x) = Φ0(y), φ

e
1(x) = Φ1(y), whenever x = hey + xe−1,

i.e. as

φe
j(x) = Φj

(
x− xe−1

he

)
, j = 0, 1.

(Consequently, φe
j(x) = 0 for x ̸∈ Ie).

A function v(x) in the finite element subspace may be described now as

v(x) =
N+1∑
e=1

1∑
j=0

vi(e,j) φ
e
j(x). (3.40)

If x ∈ (xe−1, xe) (3.40) reduces to

v(x) = ve−1φ
e
0(x) + veφ

e
1(x),

x 0 x 1 x 2

φ
0
1 φ

1
1 φ1

2φ
0
2

I1 I2
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which is the correct description of v(x) restricted to Ie. However, (3.40) is not a correct

expression at the nodes. For example, at x = x1, the right–hand side of (3.40) is equal

to

vi(1,1)φ
1
1(x1) + vi(2,0)φ

2
0(x1) = v1 + v1 = 2v1,

instead of correct value v1 = v(x1). This inconsistency will not affect the assembly of

B(v, w) or (f, v), which involve integrals over the Ie’s.

The assembly e.g. of B(v, w) (for v, w in the finite element subspace) is now done

as follows. We write

B(v, w) =
∑
e

Be(v, w), (3.41)

where Be(v, w), is a locally defined bilinear expression given by

Be(v, w) =

∫
Ie

pv′w′ + qvw =

∫ xe

xe−1

(p(x)v′(x)w′(x) + q(x)v(x)w(x)) dx

where ′ = d
dx
.

Using (3.40) we write

Be(v, w) =

∫ xe

xe−1

p(x)

(∑
j

vi(e,j)φ
e
j(x)

)′(∑
j

wi(e,j)φ
e
j(x)

)′

dx

+

∫ xe

xe−1

q(x)

(∑
j

vi(e,j)φ
e
j(x)

)(∑
j

wi(e,j)φ
e
j(x)

)
dx.

Using the map x 7→ y = (x−xe−1)/he we may transform the integrals above to integrals

over the reference element [0,1]:

Be(v, w) =
1

he

∫ 1

0

p(hey + xe−1)

(∑
j

vi(e,j)Φj(y)

)′(∑
j

wi(e,j)Φj(y)

)′

dy

+ he

∫ 1

0

q(hey + xe−1)

(∑
j

vi(e,j)Φj(y)

)(∑
j

wi(e,j)Φj(y)

)
dy,

where now the prime ′ denotes differentiation with respect to y. Letting p̃e(y) =

p(hey+xe−1), q̃e(y) = q(hey+xe−1) (p̃e and q̃e depend on e), we may rewrite the above

in matrix–vector form

Be(v, w) =
1

he
(vi(e,0), vi(e,1))Se

 wi(e,0)

wi(e,1)

+ he (vi(e,0), vi(e,1))Me

 wi(e,0)

wi(e,1)

 , (3.42)
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where Se is the 2× 2 local stiffness matrix given by

Se =

 ∫ 1

0
p̃e(Φ

′
0)

2
∫ 1

0
p̃eΦ

′
0Φ

′
1∫ 1

0
p̃eΦ

′
1Φ

′
0

∫ 1

0
p̃e(Φ

′
1)

2

 =

∫ 1

0

p̃e(y) dy

 1 −1

−1 1


and Me is the 2× 2 local mass matrix defined as

Me =

 ∫ 1

0
q̃eΦ

2
0

∫ 1

0
q̃eΦ0Φ1∫ 1

0
q̃eΦ1Φ0

∫ 1

0
q̃eΦ

2
1

 .

The formula (3.42) is quite effective for computing the local bilinear form Be(v, w). It

reduces to a few matrix – vector operations and the evaluation of the integrals in the

entries of Se andMe. These integrals are evaluated on the reference finite element [0, 1],

in practice by some numerical integration rule. For example, use of the trapezoidal rule∫ 1

0

f(y) dy ≈ f(0) + f(1)

2

yields an approximate local stiffness matrix S̃e given by

S̃e =
p(xe−1) + p(xe)

2
·

 1 −1

−1 1


and a diagonal (“lumped”) local mass matrix M̃e (why?)

M̃e =
1

2
·

 q(xe−1) 0

0 q(xe)

 .

(It may be proved that using e.g. the trapezoidal rule in computing the elements of the

matrix and the right–hand side of the Galerkin system Ac = fh, yields a new Galerkin

approximation ũh that satisfies again ∥ũh − u∥1 = O(h), ∥ũh − u∥ = O(h2), i.e. the

same type optimal–rate error estimates).

3.3 An indefinite problem

(After Schatz, Math. Comp. 28 (1974), 959-962).

Let k > 0 be a constant and f ∈ L2(a, b). Consider the model two–point boundary–

value problem for the “one–dimensional” Helmholtz equation, given by

−u′′ − k2u = f(x), a < x < b, (3.43)

u(a) = u(b) = 0. (3.44)
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The weak formulation of this problem is to find u ∈
0

H1 so that

(u′, v′)− k2(u, v) = (f, v) ∀ v ∈
0

H1 (3.45)

is satisfied. The corresponding Galerkin–finite element approximation is to seek uh ∈

Sh, where Sh a finite–dimensional subspace of
0

H1 (for definiteness let us take Sh as

the space of continuous, piecewise linear functions on the arbitrary partition a = x0 <

x1 < x2 < . . . < xN+1 = b, that vanish at x = a and b), satisfying

(u′h, ϕ
′)− k2(uh, ϕ) = (f, ϕ) ∀ϕ ∈ Sh. (3.46)

The bilinear form B(u, v) ≡ (u′, v′) − k2 (u, v) corresponding to this problem is still

continuous onH1×H1 but since B(v, v) = ∥v′∥2−k2 ∥v∥2, it is not coercive (elliptic) on

H1. Hence the Lax–Milgram theorem for the existence–uniqueness of the weak solution

of (3.43)–(3.44) cannot be used. In fact, a unique solution may even fail to exist. This

happens e.g. if f = 0 and k2 is one of the eigenvalues of − d2

dx2 with zero b.c. at x = a

and x = b, i.e. one of the numbers λn ≡ n2π2

(b−a)2
, n = 1, 2, 3, . . .. However if k2 ̸= λn

(equivalently if f = 0 ⇒ u = 0) we can easily see, by solving (3.43)–(3.44) using the

Green’s function integral representation of the solution, that a unique classical solution

exists. More generally, we can state the following lemma:

Lemma 3.2. Suppose that for f = 0, (3.45) has only the trivial solution u = 0 in
0

H1.

Then for each f ∈ L2, there exists a unique solution u ∈
0

H1 of (3.45), which, actually,

belongs to H2 ∩
0

H1 and satisfies

∥u∥2 ≤ C1(k) ∥f∥. (3.47)

�

(In the sequel we shall denote constants that depend on k by C1(k), C2(k), . . ..

Constants independent of k will be generically denoted by C.).

We proceed now to analyze the Galerkin approximation uh ∈ Sh of u. Because

the bilinear form B(·, ·) of the problem is indefinite, the bilinear system that must be

solved to determine uh in terms of its coefficients with respect to the usual hat function

basis {ϕi}Ni=1 may not have a unique solution (its marix is symmetric but indefinite).

We shall show however that if h is sufficiently small, then, provided that k2 ̸= λn,
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(3.46) has a unique solution uh ∈ Sh which converges to u at the optimal rates in
0

H1

and L2, as h→ 0. We will prove the following result:

Theorem 3.2. Suppose that f and u satisfy the conditions of Lemma 3.2. Then, there

exists a constant C2(k) such that if C2(k)h < 1, (3.46) has a unique solution uh ∈ Sh.

Moreover, for constants C3(k), C4(k) we have

∥u− uh∥1 ≤ C3(k)h ∥u′′∥ (3.48)

and ∥u− uh∥ ≤ C4(k)h
2 ∥u′′∥. (3.49)

Proof. Under our hypothesis, (3.45) has a unique solution u. Suppose for the

moment that (3.46) has a solution uh. Set e = u− uh ∈
0

H1. Then, subtracting (3.45)

and (3.46) yields

(e′, ϕ′)− k2(e, ϕ) = 0 ∀ϕ ∈ Sh. (3.50)

Now

∥e′∥2 − k2∥e∥2 = (e′, e′)− k2(e, e) = (e′, u′ − u′h)− k2(e, u− uh) = (by (3.50))

= (e′, u′)− k2(e, u).

Hence, by the Cauchy–Schwarz inequality we have

∥e′∥2 − k2∥e∥2 ≤ ∥e′∥∥u′∥+ k2∥e∥∥u∥.

Applying in the right hand side of the above, the elementary inequality αβ ≤ 1
2
α2 +

1
2
β2, we see that

∥e′∥2 − k2∥e∥2 ≤ 1

2
∥e′∥2 + 1

2
∥u′∥2 + k2

2
∥e∥2 + k2

2
∥u∥2,

from which we obtain that

∥e′∥2 − 3k2∥e∥2 ≤ ∥u′∥2 + k2∥u∥2. (3.51)

Now, still under the hypothesis that uh exists, by a duality argument we may prove

that there is a constant C̃(k) such that

∥e∥ ≤ C̃(k)h∥e′∥. (3.52)
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Indeed, let ψ ∈
0

H1 be the (unique) solution of the problem

(ψ′, v′)− k2(ψ, v) = (e, v) ∀v ∈
0

H1. (3.53)

By Lemma 3.2 ψ ∈ H2 ∩
0

H1 and

∥ψ∥2 ≤ C1(k)∥e∥. (3.54)

Putting v = e in (3.53) we see that

(e, e) = (ψ′, e′)− k2(ψ, e) = (e′, ψ′)− k2(e, ψ) = (see (3.50))

= (e′, ψ′ − (Ihψ)
′)− k2(e, ψ − Ihψ),

where Ihψ is the Sh–interpolant of ψ. By the estimates of §3.2 we see that

∥ψ − Ihψ∥ ≤ C h2 ∥ψ′′∥, ∥ψ′ − (Ihψ)
′∥ ≤ C h ∥ψ′′∥,

for a constant C independent of h and ψ (and k). Therefore, by the above

∥e∥2 ≤ C h ∥e′∥∥ψ′′∥+ k2 ∥e∥C h2 ∥ψ′′∥ ≤ C h ∥e′∥∥ψ′′∥ (1 + Ck2h),

where use was made of the Poincaré inequality. Hence by (3.54), assuming h < 1, we

have e.g.

∥e∥2 ≤ C C1(k) ∥e∥ (1 + Ck2) ∥e′∥h,

whence ∥e∥ ≤ C̃(k)h ∥e′∥, i.e. that (3.52) holds with C̃(k) = C(1 + Ck2)C1(k).

We combine now (3.51) and (3.52) and obtain

∥e′∥2 ≤ ∥u′∥2 + k2∥u∥2 + 3k2 (C̃(k))2h2∥e′∥2,

i.e. (
1− 3k2 C̃(k)2h2

)
∥e′∥2 ≤ ∥u′∥2 + k2∥u∥2. (3.55)

Let now C ′
2(k) =

√
3 k C̃(k). It follows from (3.55) that if h is sufficiently small, so

that C ′
2(k)h < 1, then

∥e′∥ ≤ 1

β′ (∥u
′∥2 + k2∥u∥2), (3.56)

where 0 < β′ ≡ 1− (C ′
2(k)h)

2.
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After all these preliminary estimates, we now prove that the linear system repre-

sented by the equations (3.46) has a unique solution. For this purpose, consider the

homogeneous system associated with (3.46), i.e. the equations

(u′h, ϕ
′)− k2(uh, ϕ) = 0 ∀ϕ ∈ Sh, (3.57)

and suppose that (3.57) has a solution uh ∈ Sh. Let f = 0. Then, by our hypothesis

that (3.45) has a unique solution, u = 0. Let h be sufficiently small so that C ′
2(k)h < 1,

i.e. β′ > 0. Then, since uh, a solution of (3.57), may be considered as a Galerkin

approximation of u, all estimates leading to (3.56) hold, and (3.56) gives ∥e′∥ ≤ 0,

which implies that e = 0, i.e. uh = 0, since u = 0. We conclude that under the

hypothesis C ′
2(k)h < 1, the homogeneous system of equations represented by (3.57)

has only the trivial solution. Therefore the nonhomogeneous system (3.46) has, for

each f , a unique solution uh, the nodal values of which may be computed e.g. by

Gauss elimination with pivoting of the matrix–vector form of (3.46).

We now turn to the proof of the error estimates (3.48) and (3.49). Note that (3.48)

and (3.52) imply (3.49) with C4(k) = C3(k)C̃(k). Hence, it suffices to prove (3.48).

We have

∥e′∥2 = ∥(u− uh)
′∥2 = ∥u′ − u′I + u′I − u′h∥2 ≤ 2∥u′ − u′I∥2 + 2∥u′I − u′h∥2, (3.58)

where uI denotes the Sh–interpolant of u, and where use was made of the elementary

inequality (α+ β)2 ≤ 2α2 + 2β2.

To estimate the second term in the right–hand side of (3.58), note that (3.50) with

ϕ = uI − uh gives

(u′ − u′h, u
′
I − u′h)− k2(u− uh, uI − uh) = 0 ⇒

((u′ − u′I) + (u′I − u′h), u
′
I − u′h)− k2 ((u− uI) + (uI − uh), uI − uh) = 0 ⇒

(u′ − u′I , u
′
I − u′h) + ∥u′I − u′h∥2 − k2(u− uI , uI − uh)− k2∥uI − uh∥2 = 0.

Hence

∥u′I − u′h∥2 − k2∥uI − uh∥2 = − (u′ − u′I , u
′
I − u′h) + k2(u− uI , uI − uh)

≤ ∥u′ − u′I∥∥u′I − u′h∥+ k2∥u− uI∥∥uI − uh∥

≤ 1

2
∥u′ − u′I∥2 +

1

2
∥u′I − u′h∥2 +

+
k2

2
∥u− uI∥2 +

k2

2
∥uI − uh∥2.
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Hence, we obtain an “analog” of (3.51), namely that

∥u′I − u′h∥2 − 3k2∥uI − uh∥2 ≤ ∥u′ − u′I∥2 + k2∥u− uI∥2.

Hence,

∥u′I − u′h∥2 ≤ 3k2∥uI − uh∥2 + ∥u′ − u′I∥2 + k2∥u− uI∥2

≤ 3k2∥uI − u+ u− uh∥2 + ∥u′ − u′I∥2 + k2∥u− uI∥2

≤ 6k2∥
e︷ ︸︸ ︷

u− uh ∥2 + ∥u′ − u′I∥2 + 7k2∥u− uI∥2
(3.52)

≤ 6(C̃(k))2 k2 h2∥e′∥2 + ∥u′ − u′I∥2 + 7k2∥u− uI∥2. (3.59)

We use now (3.59) in (3.58), obtaining:

∥e′∥2 ≤ 12k2 (C̃(k))2 h2∥e′∥2 + 4∥u′ − u′I∥2 + 14k2∥u− uI∥2 ⇒

(
1− 12k2 (C̃(k))2 h2

)
∥e′∥2 ≤ 4∥u′ − u′I∥2 + 14k2∥u− uI∥2

≤ C h2∥u′′∥2 + C k2 h4∥u′′∥2 (error of the interpolant)

≤ C (1 + k2)h2∥u′′∥2 (if h < 1);

where C is independent of h and u.

Letting now C2(k) = 2
√
3 k C̃(k) (note that C2 = 2C ′

2), and supposing that

C2(k)h < 1 – which is slightly stronger than C ′
2(k)h < 1, the inequality needed

for existence of uh – we have that

∥e′∥2 ≤ 1

β
C (1 + k2)h2∥u′′∥2,

where β = 1− 12k2 (C̃(k))2 h2 > 0, i.e.

∥e′∥ ≤ C3(k)h∥u′′∥,

where C3 = (C (1 + k2)/β)1/2.

Hence (3.48) is proved. �
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3.4 Approximation by Hermite cubic functions and

cubic splines

In this section we will construct two examples of finite dimensional subspaces of H1(I)

(or
0

H1(I)), I = (a, b), consisting of piecewise cubic polynomials. The Galerkin approx-

imation uh of u, the solution of (3.1),(3.2) or of (3.1),(3.24), will have higher order of

accuracy. For example, it’s L2 error ∥u− uh∥ will have an O(h4) bound, provided u is

in H4(I).

3.4.1 Hermite, piecewise cubic functions

On I = [a, b] we consider, for simplicity, the uniform partition of meshlength h = b−a
N+1

,

defined by xi = a+ i h, i = 0, . . . , N + 1, and the associated vector space of functions

H = {ϕ : ϕ ∈ C1[a, b], ϕ is a cubic polynomial on each (xi, xi+1), 0 ≤ i ≤ N}.

The space H is called the vector space of Hermite, piecewise cubic functions on I,

relative to the partition {xi}.

It is not hard to see that H is a (2N + 4)-dimensional subspace of H2(I). To

construct a suitable basis for H we define two functions, V and S on [−1, 1] as follows:

V ∈ C1[−1, 1], S ∈ C1[−1, 1],

V
∣∣
[−1,0]

, V
∣∣
[0,1]

∈ P3, S
∣∣
[−1,0]

, S
∣∣
[0,1]

∈ P3,

V (−1) = 0, V ′(−1) = 0, V (0) = 1, S(−1) = 0, S′(−1) = 0, S(0) = 0,

V ′(0) = 0, V (1) = 0, V ′(1) = 0, S′(0) = 1, S(1) = 0, S′(1) = 0.

Since a cubic polynomial is uniquely defined by its values and the values of its deriva-

tive at two points, it follows that the functions V and S exist uniquely. In fact, they

are given by the following formulas:

V (x) =

 (x+ 1)2(−2x+ 1) −1 ≤ x ≤ 0,

(x− 1)2(2x+ 1) 0 ≤ x ≤ 1,

-1 10

1

x

V(x)
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S(x) =

 x(x+ 1)2 −1 ≤ x ≤ 0,

x(x− 1)2 0 ≤ x ≤ 1,

-1 10

1

1/6

x

S(x)

Using V and S we define the functions {Vj, Sj}, 0 ≤ j ≤ N + 1, on I as follows:

For j = 1, . . . , N we let:

Vj(x) =

 V
(x−xj

h

)
xj−1 ≤ x ≤ xj+1

0 otherwise
, Sj(x) =

 hS
(x−xj

h

)
xj−1 ≤ x ≤ xj+1

0 otherwise
.

We also define V0, VN+1, S0, SN+1 as

V0(x) =

 V
(
x−a
h

)
a ≤ x ≤ x1

0 otherwise
, S0(x) =

 hS
(
x−a
h

)
a ≤ x ≤ x1

0 otherwise
,

VN+1(x) =

 V
(
x−b
h

)
xN ≤ x ≤ b

0 otherwise
, SN+1(x) =

 hS
(
x−b
h

)
xN ≤ x ≤ b

0 otherwise
,

We may easily verify that Vj, Sj ∈ H, 0 ≤ j ≤ N+1, and that Vj(xk) = δjk, V
′
j (xk) = 0,

Sj(xk) = 0, S ′
j(xk) = δjk, 0 ≤ j, k ≤ N + 1.

1
V0 V1 Vj VN VN+1

x0 =a x1 x2 xj−1 xj xj+1 xN−1 xN xN+1 =b

S0 S1 Sj SN

SN+1

x0 =a x1 x2 xj−1 xj xj+1 xN−1 xN
xN+1 =b

The 2N + 4 functions {Vj, Sj}, 0 ≤ j ≤ N + 1, form a basis of H. Indeed, any

function ϕ ∈ H may be written in the form

ϕ(x) =
N+1∑
j=0

ϕ(xj)Vj(x) + ϕ′(xj)Sj(x), x ∈ I, (3.60)
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since, on the interval [xk, xk+1] the cubic polynomial ϕ
∣∣
[xk,xk+1]

is uniquely determined

by the values ϕ(xk), ϕ
′(xk), ϕ(xk+1) and ϕ

′(xk+1). On the other hand, the right-hand

side of (3.60) is a cubic polynomial on [xk, xk+1], whose values at xk, xx+1 are ϕ(xk),

ϕ(xk+1), respectively, and whose derivative values are ϕ′(xk) and ϕ
′(xk+1) as well. In

addition, since the relation

N+1∑
j=0

cjVj(x) + djSj(x) = 0,

implies (set x = xk, 0 ≤ k ≤ N + 1) that ck = 0 all k, and that

N+1∑
j=0

cjV
′
j (x) + djS

′
j(x) = 0.

(from which, similarly, dj = 0 all j), we conclude that the set {Vj, Sj} is linearly

independent.

Note that supp(Vj) = supp(Sj) = [xj−1, xj+1] for 1 ≤ j ≤ N . Hence, the functions

Vj, Sj have the minimal support possible in H: A function in H with support in one

interval [xk, xk+1] is identically zero.

If we are given now a function f ∈ C1[a, b], there is a uniquely determined element

f̃ ∈ H such that

f(xj) = f̃(xj), f ′(xj) = f̃ ′(xj), 0 ≤ j ≤ N + 1. (3.61)

f̃ is called the cubic Hermite interpolant of f (relative to the partition {xi} of I) and

is given by the formula

f̃(x) =
N+1∑
j=0

f(xj)Vj(x) + f ′(xj)Sj(x), x ∈ I . (3.62)

We shall study the approximation properties of the Hermite interpolant. Denote by

∥ · ∥k the norm on the Sobolev space Hk = Hk(I). Then, the following theorem holds:

Theorem 3.3. There exists C > 0 (independent of h), such that for each f ∈ Hm,

m = 2, 3 or 4, we have

∥f − f̃∥k 5 C hm−k ∥f (m)∥k k = 0, 1, 2. � (3.63)
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Before proving it, let us remark that m = 2 since, otherwise, f ′(xk) may not have

a meaning. In addition, since f̃ ∈ H2 but f̃ /∈ H3 in general, we take k ≤ 2. If f is

taken in H4, then we have the best order of accuracy, O(h4−k) in Hk, k = 0, 1, 2. This

rate cannot be improved even if f is smoother.

Theorem 3.3 follows from two lemmas:

Lemma 3.3. Let f ∈ H2 and k = 0 or 1. Then we have for 1 ≤ j ≤ N + 1

∥Dk(f − f̃)∥L2(xj−1,xj) ≤ h ∥Dk+1(f − f̃)∥L2(xj−1,xj) (3.64)

Proof: Since for k = 0 or 1, Dk(f − f̃)(xj) = 0, all j, we have Dk(f − f̃)(x) =∫ x

xj−1

(
Dk+1(f − f̃)

)
(t)dt, xj−1 ≤ x ≤ xj.

Hence, for x ∈ [xj−1, xj+1], from the Cauchy-Schwartz inequality:

|Dk(f − f̃)(x)| 5
∫ xj

xj−1

|Dk+1(f − f̃)| dt 5
√
h∥Dk+1(f − f̃)∥L2(xj−1,xj).

Therefore

∥Dk(f − f̃)∥2L2(xj−1,xj)
5
∫ xj

xj−1

(
Dk(f − f̃)

)2
dt 5 h2 ∥Dk+1(f − f̃)∥2L2(xj−1,xj)

,

Q.E.D. �

Lemma 3.4. Let f ∈ Hm, m = 2, 3, or 4. Then

∥D2(f − f̃)∥ ≤ hm−2 ∥Dmf∥. (3.65)

Proof: For 1 ≤ j ≤ N+1 we have the ‘orthogonality’ relation
∫ xj

xj−1
D2(f−f̃)D2f̃ =

0.
(
This follows from the observation that

∫ xj

xj−1
D2(f−f̃)D2f̃ = (integrating by parts

and using D(f−f̃)(xj) = 0 all j ) = −
∫ xj

xj−1
D(f−f̃)D3f̃ = −

[
(f − f̃)(x)D3f̃(x)

]xj

x=xj−1

+∫ xj

xj−1
(f − f̃)D4f̃ = 0, since (f − f̃)(xj) = 0, all j, and D4f̃

∣∣
[xj−1,xj ]

= 0 since

f̃ ∈ P3[xj−1, xj].
)

This ‘orthogonality’ relation implies, for f ∈ Hm, m = 2, 3, or 4

∥D2(f − f̃)∥2L2(xj−1,xj)
≤ ∥D4−m(f − f̃)∥L2(xj−1,xj)∥Dmf∥L2(xj−1,xj), 1 ≤ j ≤ N + 1

(3.66)

To see (3.66), consider

∥D2(f − f̃)∥2L2(xj−1,xj)
=

∫ xj

xj−1

D2(f − f̃)D2(f − f̃) = (‘orthogonality’) =

=

∫ xj

xj−1

D2(f − f̃)D2f = (−1)m
∫ xj

xj−1

D4−m(f − f̃)Dmf,
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where the last equality is trivial for m = 2, requires one integration by parts and use

of the fact that D(f − f̃)(xj) = 0 all j if m = 3, and one more integration by parts and

the fact that (f − f̃)(xj) = 0 all j, if m = 4. The Cauchy-Schwarz inequality yields

now (3.66).

If m = 2, (3.66) gives ∥D2(f − f̃)∥L2(xj−1,xj) ≤ ∥D2f∥L2(xj−1,xj). Hence, squaring

and summing over j we get

∥D2(f − f̃)∥2 =
N+1∑
j=1

∥D2(f − f̃)∥2L2(xj−1,xj)
≤

N+1∑
j=1

∥D2f∥2L2(xj−1,xj)
= ∥D2f∥2,

which is (3.65) for m = 2. If m = 3, (3.66) and (3.64) for k = 1, give

∥D2(f − f̃)∥2L2(xj−1,xj)
≤ ∥D(f − f̃)∥L2(xj−1,xj)∥D3f∥L2(xj−1,xj)

≤ h∥D2(f − f̃)∥L2(xj−1,xj)∥D3f∥L2(xj−1,xj).

Hence, ∥D2(f− f̃)∥L2(xj−1,xj) ≤ h∥D3f∥L2(xj−1,xj), which gives (3.65) after squaring and

summing over j. Finally, if m = 4, (3.66), and (3.64) for k = 0 yield

∥D2(f − f̃)∥2L2(xj−1,xj)
≤ ∥f − f̃∥L2(xj−1,xj)∥D4f∥L2(xj−1,xj)

≤ h∥D(f − f̃)∥L2(xj−1,xj)∥D4f∥L2(xj−1,xj).

Again, by (3.64) for k = 1, we obtain

∥D2(f − f̃)∥2L2(xj−1,xj)
≤ h2∥D2(f − f̃)∥L2(xj−1,xj)∥D4f∥L2(xj−1,xj),

i.e. ∥D2(f − f̃)∥L2(xj−1,xj) ≤ h2∥D4f∥L2(xj−1,xj). Squaring and summing we get (3.65).

�
Proof of Theorem 3.3: It follows from Lemma 3.3 and 3.4 easily. For example,

if m = 4, we have:

k = 0 : ∥f − f̃∥ ≤ (Lemma 3.3) ≤ h∥D(f − f̃)∥ ≤ (Lemma 3.3)

≤ h2∥D2(f − f̃)∥ ≤ (Lemma 3.4) ≤ h4∥D4f∥.

k = 1 : ∥(f − f̃)′∥ ≤ (Lemma 3.3) ≤ h∥D2(f − f̃)∥ ≤ (Lemma 3.4)

≤ h3∥D4f∥.

Hence ∥f − f̃∥21 5
(
(h4)2 + (h3)2

)
∥D4f∥2 ≤ C h6∥D4f∥2.

k = 2 : ∥D2(f − f̃)∥ ≤ (Lemma 3.4) ≤ h2∥D4f∥ ⇒

∥f − f̃∥2 ≤ C h2∥D4f∥.
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The cases m = 2, 0 ≤ k ≤ 2, m = 3, 0 ≤ k ≤ 2, also follow analogously. �
We conclude that given f ∈ Hm (m = 2, 3, or 4), there exists an element χ ∈ H (we

took χ = f̃) such that
2∑

k=0

hk∥f − χ∥k ≤ C hm∥Dmf∥. (3.67)

We turn now to the Galerkin solution of the 2-pt. b.v.p. for the d.e. (3.1). Considering

first Neumann boundary conditions, i.e. the b.c. (3.24), we see that uh is the unique

element of H that satisfies

B(uh, ϕ) = (f, ϕ) ∀ϕ ∈ H ,

for which, as usual (taking as our Hilbert space H1(I) ), there follows that

∥u− uh∥1 ≤ C inf
ϕ∈H

∥u− ϕ∥1.

Hence, by (3.67) we conclude that if u ∈ Hm, m = 2, 3, or 4, then

∥u− uh∥1 ≤ C hm−1∥Dmu∥. (3.68)

By a duality argument (‘Nitsche trick’) it follows, just as in the proof of Thm 3.1 (with

H1 instead of
0

H1), that in L2 we have

∥u− uh∥ ≤ C hm∥Dmu∥. (3.69)

Hence, the (optimal) rate of accuracy one may achieve for uh is 4 in L2 (3 in H1),

provided u, the solution of (3.1), (3.24), is in H4. (If for example p ∈ Cm−1, q ∈

Cm−2, f ∈ Hm−2 for some m ≤ 2, it may be shown that the elliptic regularity estimate

(3.4) generalizes and gives that u ∈ Hm and

∥u∥m 5 Cm∥f∥m−2 .
)

In the case of homogeneous Dirichlet boundary conditions, i.e. the problem (3.1)-(3.2),

we may take as our subspace of
0

H1(I) the vector space
0

H= {ϕ : ϕ ∈ H, ϕ(a) = ϕ(b) = 0}.

It is easily seen that
0

H is a (2N+2)-dimensional subspace of H2∩
0

H1. Its basis consists

of the elements Vj, 1 ≤ j ≤ N , and Sj, 0 ≤ j ≤ N + 1. We may define the interpolant

f̃ of a function f ∈ H2 ∩
0

H1 in the natural way, and show as before that

∥f − f̃∥k ≤ C hm−k∥Dmf∥, k = 0, 1, 2 ,
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provided f ∈ Hm ∩
0

H1, and m is 2, 3, or 4. The analogous estimates to (3.68) and

(3.69) still hold, i.e. we have

∥u− uh∥j ≤ C hm−j∥Dmu∥, j = 0, 1 ,

provided u, the solution of (3.1),(3.2), belongs to Hm ∩
0

H1 .

The system that defines the Galerkin equations is now of size (say, for the Neu-

mann problem) (2N + 4)×(2N + 4). Ordering the basis vectors {ϕ1, . . . , ϕ2N+4} as

{V0, S0, V1, S1, . . . , VN+1, SN+1}, we see that e.g. the Gram matrix (with elements∫ b

a
ϕiϕj) is block-tridiagonal with 2x2 blocks. Its general ‘line’ of blocks is:∫

VjVj−1

∫
VjSj−1∫

SjVj−1

∫
SjSj−1

∫
(Vj)

2
∫
VjSj∫

SjVj
∫
(Sj)

2

∫
VjVj+1

∫
VjSj+1∫

SjVj+1

∫
SjSj+1

The cubic Hermite elements will, then, give an accuracy of O(h4) in L2 (if u ∈ H4)

at the expense of solving a (2N + 4)×(2N + 4) 7-diagonal linear system.

We close this section with two remarks:

(i) We may define Hermite piecewise cubic functions on a general partition a = x0 <

x1 < . . . < xN+1 = b of [a, b]. The associated basis {Vj, Sj}, 0 ≤ j ≤ N +1 may be de-

fined in a straightforward way; its members have support in [xj−1, xj+1] for 1 ≤ j ≤ N ,

etc. An interpolant may be defined in the natural way. The estimate (3.63) still holds

with h := max
j

(xj+1 − xj).

(ii) The cubic Hermite functions are a special case of the space

Hm =
{
ϕ ∈ Cm−1[a, b], ϕ

∣∣
[xi,xi+1]

∈ P2m−1

}
, on which the error of the Galerkin approx-

imation is O(h2m) in L2.

3.4.2 Cubic splines

The dimension of H, the space of Hermite cubics is, as we saw, 2N +4. This, in

particular, leads to rather large linear systems that have to be solved for the Galerkin

approximation uh. A natural idea is to lower the dimension of the space by requiring

more continuity at the nodes xj. In the cubic polynomial case this leads to the space

S := {ϕ : ϕ ∈ C2[a, b], ϕ
∣∣
[xi,xi+1]

∈ P3, 0 ≤ i ≤ N},
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of the so-called cubic splines. (We suppose that the {xi} define a uniform partition of

[a, b] with x0 = a, xN+1 = b, of meshlength h = (b− a)/(N + 1). )

A count of the free parameters and the constraints of functions in S leads to the

conjecture that S is a (N+4)-dimensional subspace of H3((a, b)). To prove this fact,

we shall construct a basis of S, in fact a basis with elements of minimal support.

It is not hard to see that there are no nontrivial elements of S vanishing outside

less than four adjacent mesh intervals. (For example, prove that the only element of

S which vanishes identically outside [xj−1, xj+2] is the zero element.) In addition, it is

easy to see that there is a unique function S ∈ C2[−2, 2], such that supp(S) = [−2, 2],

S
∣∣
[k,k+1]

∈ P3 for k = −2,−1, 0, 1, S(±2) = S ′(±2) = S ′′(±2) = 0, S(0) = 1. This

function is given by the formula

S(x) =



1
4
(x+ 2)3 −2 ≤ x ≤ −1,

1
4
[1 + 3(x+ 1) + 3(x+ 1)2 − 3(x+ 1)3] −1 ≤ x ≤ 0,

1
4
[1 + 3(1− x) + 3(1− x)2 − 3(1− x)3] 0 ≤ x ≤ 1,

1
4
(2− x)3 1 ≤ x ≤ 2

0 x ∈ R− [−2, 2].

(3.70)

S(x)

-2 -1 0 1 2

1

4

1

1

4

Using S(x), we define the functions {ϕj}, j = −1, 0, 1, . . . , N + 2, on [a, b] as follows:

We introduce the extra nodes x−1 := a− h, xN+2 := b+ h and put

ϕj(x) = S

(
x− xj
h

) ∣∣∣∣∣
[a,b]

, −1 ≤ j ≤ N + 2 ,

(the restriction of S
(x−xj

h

)
to [a, b]). It may be seen immediately that each ϕj, −1 ≤

j ≤ N + 2, is a cubic polynomial on each interval [xk, xk+1], 0 ≤ k ≤ N , belongs to

C2[a, b], and hence ϕj ∈ S, 1 ≤ j ≤ N + 2.
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Moreover, supp(ϕj) = [xj−2, xj+2], for 2 ≤ j ≤ N − 1 ,

ϕ−1 vanishes for x ∈ [a, b]− [x0, x1],

ϕ0 vanishes for x ∈ [a, b]− [x0, x2],

ϕ1 vanishes for x ∈ [a, b]− [x0, x3],

ϕN vanishes for x ∈ [a, b]− [xN−2, xN+1],

ϕN+1 vanishes for x ∈ [a, b]− [xN−1, xN+1],

ϕN+2 vanishes for x ∈ [a, b]− [xN , xN+1],

In addition, ϕj(xj) = 1 for 0 ≤ j ≤ N + 1.

x0 =a x1 x2 x3 x4 xj−2 xj−1 xj xj+1 xj+2 x
N −3

x
N −2

x
N −1

x
N

x
N +1

= b

φ
−1

1
φ0 φ1 φ2

1

4

φj
1

1

4

φ
N−1

φ
N

φ
N+1

φ
N+2

The N + 4 functions ϕj, −1 ≤ j ≤ N + 2, are known as B-splines, since they form a

basis of S. We shall show this in a series of lemmata:

Lemma 3.5. The {ϕj}N+2
j=−1 are linearly independent.

Proof: Suppose that for real constants cj, −1 ≤ j ≤ N + 2, we have

N+2∑
j=−1

cjϕj(x) = 0, x ∈ [a, b] .

Then, in particular we have

N+2∑
j=−1

cjϕj(xk) = 0, k = 0, . . . , N + 1 , (3.71a)

and
N+2∑
j=−1

cjϕ
′
j(xk) = 0, k = 0, . . . , N + 1 . (3.71b)

Using the facts that

ϕj(xk) =


1 if j = k ,

1
4

if |j − k| = 1 ,

0 if |j − k| = 2 ,
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we may write the relation (3.71a) as

1
4
ck−1 + ck + 1

4
ck+1 = 0, k = 0, . . . , N + 1. (3.72)

Now, using the fact that S is even (about zero) and therefore that S ′ is an odd function,

we conclude from the definition of ϕj that

ϕ′
j(xj) = 0, ϕ′

j(xj−1) = −ϕ′
j(xj+1), ϕ′

j(xk) = 0, |j − k| ≥ 2 .

Therefore, (3.71b) for k = 0 gives

c−1ϕ
′
−1(x0) + c1ϕ

′
1(x0) = 0 ⇒ c−1 = c1 . (3.73a)

In addition, (3.71b) for k = N + 1 gives

cNϕ
′
N(xN+1) + cN+2ϕ

′
N+2(xN+1) = 0 ⇒ cN = cN+2 . (3.73b)

The relations (3.73a) and (3.73b) are used to eliminate the unknowns c−1 and cN+2

from the linear system (3.72), which takes the form

Ac = 0, (3.74)

where c = [c0, . . . , cN+1]
T and A is the (N + 2)×(N + 2) tridiagonal matrix

A =



4 2 0

1 4 1
. . . . . . . . .

1 4 1

0 2 4


.

The matrixA is strictly diagonally dominant and therefore is invertible by Gerschgorin’s

lemma. Therefore, cj = 0, 0 ≤ j ≤ N + 1, since c solves the homogeneous problem

(3.74). By (3.73a) and (3.73b) cN+2 = 0, c−1 = 0. We conclude that the {ϕj},

−1 ≤ j ≤ N + 2, are linearly independent. �

We let nowM := ⟨ϕ−1, . . . , ϕN+2⟩ be the subspace of S which is spanned by the elements

of the set {ϕj}N+2
j=−1. We shall show that in fact M = S , thus completing the proof

that {ϕj}N+2
j=−1 is a basis for S. This will be accomplished by two intermediate results

of interpolation:
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Lemma 3.6. Let f ∈ C1[a, b]. Then, there exists a unique element f̃ ∈ M satisfying

the interpolation conditions
f̃(xj) = f(xj), 0 ≤ j ≤ N + 1,

f̃ ′(a) = f ′(a),

f̃ ′(b) = f ′(b)

(3.75)

Proof:

The functions {ϕj}N+2
j=−1 form a basis forM . We seek therefore a function f̃ =

∑N+2
j=−1 cjϕj ∈M

which satisfies (3.75), i.e. the linear system (for its coefficients cj):

N+2∑
j=−1

cjϕj(xk) = f(xk) , 0 ≤ k ≤ N + 1,

c−1ϕ
′
−1(a) + c1ϕ

′
1(a) = f ′(a) ,

cNϕ
′
N(b) + cN+2ϕ

′
N+2(b) = f ′(b) .


(3.76)

The linear system (3.76) has a unique solution, since the associated homogeneous

system (obtained by putting f(xk) = 0, 0 ≤ k ≤ N + 1, f ′(a) = f ′(b) = 0 in (3.76)),

has only the trivial solution as we argued in the proof of Lemma 3.5. We conclude that

there is a unique element f̃ ∈M satisfying the interpolation conditions (3.75). �

Lemma 3.7. Let f ∈ C1[a, b]. Then, there is a unique element s̃ ∈ S which satisfies

the analogous to (3.75) interpolation conditions

s̃(xj) = f(xj), 0 ≤ j ≤ N + 1 ,

s̃′(a) = f ′(a) ,

s̃′(b) = f ′(b) .

 (3.77)

Proof: See Akrivis-Dougalis “Introduction to Numerical Analysis”, Thm. 4.7.

The function s̃(x) is explicitly constructed by the values of its second derivative at the

points xj, 0 ≤ j ≤ N + 1. �
We may now conclude that the {ϕi} span S i.e. that M = S:

Theorem 3.4. The {ϕj}N+2
j=−1 are a basis of S.

Proof: In view of Lemma 3.5 we need only to show that S ⊂ M . Let f ∈ S.

Then, by Lemma 3.6, there is a unique element f̃ ∈M that satisfies the interpolation

conditions (3.75). ButM ⊂ S, hence f̃ ∈ S. However, by Lemma 3.7 there is a unique
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element of S that satisfies the interpolation conditions (3.77) which are the same as

(3.75). This element coincides with f since f ∈ S. We conclude that f = f̃ . Hence

f ∈M , i.e. S ⊂M . �

Given f ∈ C1[a, b], we call f̃(= s̃) its cubic spline interpolant (with “first derivative”

end–point conditions f̃ ′(a) = f ′(a), f̃ ′(b) = f ′(b).) It is not hard to see that if we are

given f ′′(a), f ′′(b), we may construct a cubic spline interpolant ˜̃f satisfying, in addition

to the conditions ˜̃f(xj) = f(xj), 0 ≤ j ≤ N + 1, the endpoint “second derivative”

boundary conditions ˜̃f ′′(a) = f ′′(a), ˜̃f ′′(b) = f ′′(b). Similarly, for periodic f ∈ C1[a, b]

we may construct the “periodic spline” interpolant etc. All these interpolant functions

satisfy error estimates of O(h4) accuracy in L2 provided f ∈ H4(I). For example,

we shall prove the following result for the interpolant with first-derivative boundary

conditions:

Theorem 3.5. There exists a constant C > 0 (independent of h), such that for each

f ∈ Hm , m = 2, 3, or 4, we have

∥f − f̃∥k ≤ C hm−k∥f (m)∥k, k = 0, 1, 2. � (3.78)

As before , we shall prove the theorem using two intermediate results. First, we

prove the analog of Lemma 3.3; but now the norms are global, i.e. they are the L2(a, b)

norms.

Lemma 3.8. Let f ∈ H2 and k = 0 or 1. Then, there exists a constant C independent

of h and f , such that

∥Dk(f − f̃)∥ ≤ C h ∥Dk+1(f − f̃)∥ . (3.79)

Proof: For k = 0 we may prove the local result as well. Since f coincides with f̃ at

the nodes xj, 0 ≤ j ≤ N + 1, we have, for x ∈ [xj−1, xj], for some 1 ≤ j ≤ N + 1, that

f(x)− f̃(x) =

∫ x

xj−1

D(f − f̃)(y) dy .

Hence, for xj−1 ≤ x ≤ xj, using the Cauchy-Schwarz inequality,

|(f − f̃)(x)| ≤
∫ x

xj−1
|D(f − f̃)(y)| dy ≤

√
(xj − xj−1)

(∫ xj

xj−1

(
D(f − f̃)(y)

)2
dy

) 1
2

≤
√
h ∥D(f − f̃)∥L2(xj−1,xj) .
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Therefore,

∥f − f̃∥L2(xj−1,xj) 5 h ∥D(f − f̃)∥L2(xj−1,xj) , (3.80)

from which, by squaring and summing, we get (3.79) for k = 0 with C = 1.

To prove (3.79) for k = 1, we note that since

ϕ(xj) = 0, 0 ≤ j ≤ N + 1,

where ϕ := f − f̃ , there follows, by Rolle’s theorem, that there exist ξj ∈ (xj−1, xj),

1 ≤ j ≤ N + 1, where ϕ′(ξj) = 0.

x0 =a x1 xj−1 xj xj+1 xN xN+1 =b

ξ0 ξ1 ξj ξj+1 ξN+1 ξN+2

(Note that ϕ ∈ H2[a, b]; hence, ϕ ∈ C1[a, b]). Note also that, by definition of f̃ ,

ϕ′(x0) = ϕ′(xN+1) = 0. Introduce then ξ0 := x0 and ξN+2 := xN+1, so that ϕ′(ξj) = 0,

0 ≤ j ≤ N + 2. Therefore, for x ∈ [ξj−1, ξj], ϕ
′(x) =

∫ x

ξj−1
ϕ′′(y) dy. Hence |ϕ′(x)| ≤√

(x− ξj−1)∥ϕ′′∥L2(ξj−1,ξj) 5
√
(ξj − ξj−1)∥ϕ′′∥L2(ξj−1,ξj) 5

√
2h∥ϕ′′∥L2(ξj−1,ξj) . We con-

clude that

∥ϕ′∥L2(ξj−1,ξj) ≤ (ξj − ξj−1)(2h)∥ϕ′′∥2L2(ξj−1,ξj)
5 4h2∥ϕ′′∥2L2(ξj−1,ξj)

.

Hence,

∥ϕ′∥2 =
N+2∑
j=1

∥ϕ′∥2L2(ξj−1,ξj)
≤ 4h2

N+2∑
j=1

∥ϕ′′∥2L2(ξj−1,ξj)
= 4h2∥ϕ′′∥2 .

We conclude that (3.79) is valid for k = 1 as well, with C = 2. �

We proceed now to the analog of Lemma 3.4:

Lemma 3.9. Let f ∈ Hm, m = 2, 3 or 4. Then, for some C independent of h and f :

∥D2(f − f̃)∥ 5 C hm−2∥Dmf∥ . (3.81)

Proof: First we prove the orthogonality relation∫ b

a

D2(f − f̃)D2f̃ = 0 . (3.82)

We have, using the endpoint condition f ′(a) = f̃ ′(a), f ′(b) = f̃ ′(b),∫ b

a

D2(f − f̃)D2f̃ =
[
(f − f̃)′f̃ ′′

]b
a
−
∫ b

a

(f − f̃)′f̃ ′′′

= −
∫ b

a

(f − f̃)′f̃ ′′′. (Note that f̃ ∈ H3(a, b)) .
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Now

∫ b

a

(f−f̃)′f̃ ′′′ =
N∑
j=0

∫ xj+1

xj

(f−f̃)′f̃ ′′′ =
N∑
j=0

{
[(f − f̃)f̃ ′′′]xj+1

xj
−
∫ xj+1

xj

(f − f̃)D4f̃

}
=

0, since (f − f̃)(xj) = 0, 0 ≤ j ≤ N + 1, and f̃ ∈ P3 in each [xj, xj+1]. Thus, (3.82) is

proved. Using now (3.82) we have by Cauchy-Schwarz

∥D2(f − f̃)∥2 =
∫ b

a

D2(f − f̃)D2(f − f̃) =

∫ b

a

D2(f − f̃)D2f 5 ∥D2(f − f̃)∥∥D2f∥ .

Hence, (3.81) holds, if m = 2, with C = 1. If now m = 3, we have, integrating by parts

once and using the endpoint derivative conditions:

∥D2(f − f̃)∥2 =

∫ b

a

D2(f − f̃)D2f =
[
D(f − f̃)D2f

]b
a
−
∫ b

a

(f − f̃)′D3f

= −
∫ b

a

((f − f̃)′D3f ≤ ∥(f − f̃)′∥ ∥D3f∥ ,

from which, by (3.79) k = 1,∥D2(f − f̃)∥2 5 C h ∥D2(f − f̃)∥ ∥D3f∥, which shows that

(3.81) holds if m = 3. Finally, if m = 4, we may integrate by parts once more; using

the interpolation conditions f(a) = f̃(a), f(b) = f̃(b), we have:

∥D2(f − f̃)∥2 = −
∫ b

a

(f − f̃)′D3f = −
[
(f − f̃)D3f

]b
a
+

∫ b

a

(f − f̃)D4f

=

∫ b

a

(f − f̃)D4f ≤ ∥f − f̃∥ ∥D4f∥ ≤ C h2 ∥D2(f − f̃)∥ ∥D4f∥ .

(In the last step, we used Lemma 3.8 twice). We conclude that (3.81) holds as well for

m = 4. �

Proof of Theorem 3.5: It is straightforward to see that (3.78) follows from the results

of Lemmata 3.8 and 3.9 . �

We conclude that given f ∈ Hm, (m = 2, 3, or 4), there exists an element χ ∈ S (take

χ = f̃), such that
2∑

k=0

hk∥f − χ∥k ≤ C hm ∥Dmf∥ . (3.83)

As before, it follows for the Galerkin approximation uh to u, the solution of the b.v.p.

(3.1),(3.24), that

∥u− uh∥k ≤ C hm−k∥Dmu∥ , (3.84)

for k = 0, 1, provided u ∈ Hm, m = 2, 3 or 4. In the case of homogeneous Dirichlet

b.c.’s, i.e. of the problem (3.1),(3.2), we take as subspace of
0

H1(I) the vector space
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0

S= {ϕ : ϕ ∈ S, ϕ(a) = ϕ(b) = 0} . It is easily seen that
0

S is a (N +2)-dimensional

subspace of
0

H1 ∩ H3. A basis of this subspace consists of the previously defined B-

splines ϕj, 2 ≤ j ≤ N − 1, plus four functions ϕ̃0, ϕ̃1, ϕ̃N , ϕ̃N+1 ∈
0

S , taken as

(independent) linear combinations of the ϕ−1, ϕ0, ϕ1 and ϕN , ϕN+1, ϕN+2 B-splines,

which are such that ϕ̃0(a) = 0, ϕ̃1(a) = 0, ϕ̃N(b) = 0, ˜ϕN+1(b) = 0. For example, we

take
ϕ̃0 := ϕ0 − 4ϕ−1, ϕ̃1 := ϕ1 − ϕ−1 etc .

Given f ∈
0

H1 ∩H2, we construct again an interpolant f̃ ∈
0

S satisfying f̃(xi) = f(xi),

0 ≤ i ≤ N + 1, and f̃ ′(x0) = f ′(x0), f̃
′(xN+1) = f ′(xN+1), for example. The error

estimates are entirely analogous. (The linear system that defines the Galerkin equations

has now a seven-diagonal, banded matrix B(ϕi, ϕj). )

As before, we may prove the error estimates (3.83), (3.84) etc. for cubic splines

defined on a general partition {xj} of [a, b]. Also, one one may define higher-order

smooth spline spaces, as follows: For m = 2 we let

S(m) =
{
ϕ : ϕ ∈ Cm[a, b], ϕ

∣∣
[xi,xi+1]

∈ P2m−1

}
,

in which we may prove L2 error estimates for the Galerkin approximations of O(h2m).
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Chapter 4

Results from the Theory of Sobolev

Spaces and the Variational

Formulation of Elliptic

Boundary–Value Problems in RN

In this chapter we let Ω be a bounded domain in RN (i.e. an open, connected, bounded

point set in RN). Many of the results that we shall quote hold for arbitrary open sets

in Ω but we do not strive for generality here, having in mind applications in the case of

boundary–value problems on bounded domains. Let x = (x1, . . . , xN) denote a generic

point of Ω or RN . All functions are real–valued.

4.1 The Sobolev space H1(Ω).

Definition. The Sobolev space H1 = H1(Ω) is defined by

H1(Ω) = {u ∈ L2(Ω) : ∃ g1, g2, . . . , gN ∈ L2(Ω), such that∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

giϕ, ∀ϕ ∈ C∞
c (Ω), ∀i : 1 ≤ i ≤ N}.

For u ∈ H1 we denote gi =
∂u
∂xi

and call gi the weak (generalized) partial derivative of

u with respect to xi.

(Note e.g. that this definition does not need that Ω be bounded).
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Remarks.

(i) Using Lemma 2.4 we conclude that each generalized partial derivative gi in the

above definition is unique, as in the case of one dimension.

(ii) Again, C1
c (Ω) may be used in place of C∞

c (Ω) for the test functions ϕ.

(iii) It is clear that if u ∈ C1(Ω) ∩ L2(Ω) and if the classical partial derivatives ∂u
∂xi

belong to L2(Ω) for i = 1, 2, . . . , N , then the weak derivatives exist and coincide

with the classical; in particular u ∈ H1(Ω). Of course C1(Ω) ⊂ H1(Ω). It can be

shown with some care that, inversely, if u ∈ H1(Ω)∩C(Ω) and if the generalized

derivatives ∂u
∂xi

belong to C(Ω) for 1 ≤ i ≤ N , then u ∈ C1(Ω).

(iv) Since u ∈ L2(Ω) ⇒ u ∈ L1
loc(Ω), we can define the distributional derivatives of

u, ∂u
∂xi

, in the sense of the theory of distributions. We can say that H1 is the

set of elements of L2(Ω) whose distributional derivatives ∂u
∂xi

, 1 ≤ i ≤ N , are

represented by functions in L2.

It is clear that H1 is a subspace of L2. Denoting by (·, ·), ∥ · ∥ the inner product,

respectively the norm, on L2(Ω), we introduce the quantities:

(u, v)1 = (u, v) +
N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
, u, v ∈ H1,

∥u∥1 =

(
∥u∥2 +

N∑
i=1

∥ ∂u

∂xi
∥2
) 1

2

, u ∈ H1,

which clearly define an inner product, resp. (the induced) norm, on H1. Hence H1 is

a normed linear space.

Theorem 4.1. The space (H1(Ω), ∥ · ∥1) is a Hilbert space.

Proof. Adapt the 1–dim. proof. �
Remark. (H1(Ω), ∥ · ∥1) is separable.

In the case of one dimension we had shown (Theorem 2.4) that the restrictions on

Ω = I of functions in C∞
c (R) form a dense set in H1. In more than one dimensions

this is not true for an arbitrary Ω. We list below several “density” results:
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1. (Friedrichs) Let u ∈ H1(Ω). Then, there exists a sequence {un} ∈ C∞
c (RN)

such that:

(α) un|Ω → u in L2(Ω)

(β) ∀i : ∂un
∂xi

|ω → ∂u

∂xi
|ω in L2(ω) for every precompact ω ⊂ Ω.

2. (Meyers – Serrin) If u ∈ H1(Ω), then ∃ sequence {un} ∈ C∞(Ω)∩H1(Ω) such

that un → u in H1(Ω).

3. If Ω is an arbitrary open (or even open and bounded) set and if u ∈ H1(Ω), in

general there does not exist a sequence un ∈ C1
c (RN) such that un|Ω → u in

H1(Ω). (The problem is at the boundary; however, compare with Theorem 4.2

below).

With the aid e.g. of Friedrichs’ result (1), above, we can show the following analog

of Proposition 2.1:

Proposition 4.1. If u, v ∈ H1(Ω) ∩ L∞(Ω), then uv ∈ H1 ∩ L∞ and

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, 1 ≤ i ≤ N.

As in the case of one dimension, many properties of H1 are established easier if

Ω = RN . Then an extension result is needed to establish the same property for an

Ω ⊂ RN . Such extensions (of functions i.e. of H1(Ω) to functions of H1(RN))are not

always possible to construct, unless the set Ω has a “regular” boundary ∂Ω in a certain

sense.

Definition. Let Ω be a bounded domain in RN . We say that Ω is of class C1 if there

exist finitely many open balls Bi ⊂ RN , i = 1, 2, . . . ,M such that

(i) ∂Ω ⊂ ∪M
i=1Bi, Bi ∩ ∂Ω ̸= ∅.

(ii) There is for each i, 1 ≤ i ≤M , a function y = f (i)(x) in C1(Bi) which maps the

ball Bi in an one–to–one and onto way onto a domain in RN so that ∂Ω∩Bi gets

mapped onto a subset of the hyperplane yN = 0 and Ω∩Bi into a simply connected

domain in the half–space {y : yN > 0}. Moreover the Jacobian determinant

det

(
∂f

(i)
k

∂xl

)
does not vanish for x ∈ Bi.
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The C1 property of Ω permits for example the advertized “extension” result:

Proposition 4.2. Suppose that Ω is of class C1 (or that Ω = RN
+ = {x ∈ RN : xN >

0}). Then there exists a linear extension operator P : H1(Ω) → H1(RN) such that,

(i) Pu|Ω = u ∀u ∈ H1(Ω).

(ii) ∃C such that ∥ Pu ∥L2(IRN)≤ C ∥ u ∥L2(Ω), ∀u ∈ H1(Ω).

(iii) ∃C ′ such that ∥ Pu ∥H1(IRN)≤ C ′ ∥ u ∥H1(Ω) ∀u ∈ H1(Ω).

Using e.g. this extension one may show the following important density result:

Theorem 4.2. If Ω is of class C1 and u ∈ H1(Ω), then, there exists a sequence

un ∈ C∞
c (RN) such that un|Ω → u in H1. That is to say, the restriction to Ω of

functions in C∞
c (RN) are dense in H1(Ω).

For the purposes of studying boundary–value problems, it is important to study the

behavior of functions in H1(Ω) at the boundary ∂Ω of Ω. We suppose to this effect that

Ω is of class C1. Then we can “measure” (in the sense of the above definition of the C1

domain) the content of pieces on the “hypersurface” ∂Ω (through measuring “plane”

surface pieces on the hyperplane yN = 0, i.e. measuring the “area” of the images of the

pieces of ∂Ω that are mapped on yN = 0 by the functions y = f (i)(x)). One may define

open sets on ∂Ω as intersections of ∂Ω and open sets in RN . These open sets on ∂Ω one

can then complete into a σ–algebra and then extend the elementary “content measure”

into the Lebesque measure on ∂Ω. With respect to this measure we may define the

surface integral
∫
Ω
g(y)dy. Consequently, one may consider the Hilbert space L2(∂Ω)

of functions defined on ∂Ω with norm

∥ g ∥L2(∂Ω)≡
(∫

∂Ω

g2(y) dy

) 1
2

for g ∈ L2(∂Ω).

One may show first that the following result holds for smooth functions:

Lemma 4.1. Let Ω be of class C1. Then there exists a constant C such that for all

functions f ∈ C∞(Ω) we have

∥ f ∥L2(∂Ω)≤ C ∥ f ∥H1(Ω) .
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This lemma, along with Theorem 4.2, permits us to define boundary values for

functions in H1(Ω) for C1 domains Ω. Let f ∈ H1(Ω). Then ∃ fn ∈ C∞(Ω) such that

fn → f in H1(Ω) (Theorem 4.2). By Lemma 4.1 {fn} is Cauchy in L2(∂Ω). So fn → g

in L2(∂Ω). (It is easily seen that this g is independent of the chosen sequence fn).

This limiting function g we denote by f | ∂Ω and call it “boundary value” on ∂Ω of f ,

or trace of f on ∂Ω (sometimes we say that g = f | ∂Ω is the boundary value of f in the

sense of trace). We summarize in the following theorem.

Theorem 4.3 (Trace theorem). Let Ω be of class C1. Then, every f ∈ H1(Ω) possesses

boundary values in the above sense (also denoted by f), which belong to the Hilbert space

L2(∂Ω). Moreover there exists a constant C such that

∥ f ∥L2(∂Ω) ≤ C ∥ f ∥H1(Ω) ∀ f ∈ H1(Ω).

Remarks.

(i) It can be shown that under our hypotheses on Ω, the boundary value f | ∂Ω of

a function f ∈ H1(Ω) actually belongs to the so–called “fractional–order” space

H1/2(∂Ω), an intermediate space defined by interpolation between the spaces

H0(∂Ω) ≡ L2(∂Ω) and H1(∂Ω).

(ii) Let Ω be a C1 domain. Then we may show that Green’s formula (Gauss’s theo-

rem) holds: ∀i : 1 ≤ i ≤ N∫
Ω

∂u

∂xi
v = −

∫
Ω

u
∂v

∂xi
+

∫
∂Ω

u v νi dy

for u, v ∈ H1(Ω). Here dy is the surface Lebesgue measure constructed on ∂Ω

as above and νi = n⃗ · e⃗i is the ith component of the unit outward normal n⃗(y)

defined on the boundary of the C1 domain Ω. (Note that since u, v ∈ H1(Ω)

⇒ ∂u
∂xi

, ∂v
∂xi

∈ L2(Ω), u, v ∈ L2(∂Ω) and all terms in the above equality make

sense).

4.2 The Sobolev space
0

H1(Ω).

Definition. We define the space
0

H1(Ω) as the completion of C∞
c (Ω) with respect to

the H1(Ω) norm.
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Hence

(
0

H1(Ω), ∥ · ∥1
)

is a Hilbert space (a closed subspace of H1). (We may show

that the completion of C∞
c (RN) under the ∥ · ∥H1(IRN) norm is H1(RN) itself, i.e. that

0

H1(RN) = H1(RN). But for Ω ⊂ RN we have in general that
0

H1(Ω) ⊂ H1(Ω)). More

precisely, we may show that for sufficiently smooth ∂Ω (e.g. C1) then
0

H1(Ω) consists

precisely of those functions in H1(Ω) which vanish (in the sense of trace) on ∂Ω.

Theorem 4.4. Let Ω be of class C1. Then

0

H1(Ω) = {v ∈ H1(Ω) : v| ∂Ω = 0},

(where by v| ∂Ω = 0 we mean that the trace of v on ∂Ω (a function in L2(∂Ω)), is equal

to the zero function in L2(∂Ω)).

On
0

H1(Ω) we also have the analog of Proposition 2.3:

Proposition 4.3 (Inequality of Poincaré–Friedrichs). Let Ω be a bounded domain.

Then, there exists a constant C∗ = C∗(Ω) such that

∥u∥ ≤ C∗

(
N∑
i=1

∥ ∂u

∂xi
∥2
) 1

2

∀u ∈
0

H1(Ω).

In particular the expression
(∑N

i=1 ∥
∂u
∂xi

∥2
)1/2

is a norm on
0

H1(Ω), equivalent to the

norm ∥ · ∥1 on
0

H1(Ω). The quantity
∫
Ω

(∑N
i=1

∂u
∂xi

∂v
∂xi

)
dx is an inner product on

0

H1(Ω).

Remark. As in the 1–dim case, if Ω is of class C1, then u ∈
0

H1(Ω) if and only if

the extension

ū(x) =

 u(x) if x ∈ Ω

0 if x ∈ RN \ Ω

belongs to H1(RN). (In such a case also ∂u
∂xi

= ∂ū
∂xi

).

4.3 The Sobolev spaces Hm(Ω), m = 2, 3, 4, . . .

For m ≥ 2 an integer we can define the spaces Hm(Ω) recursively by

Hm = Hm(Ω) = {u ∈ Hm−1(Ω) :
∂u

∂xi
∈ Hm−1(Ω), ∀i = 1, 2, . . . , N}.
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We introduce some notation. A multiindex α = (α1, . . . , αN) is an N–vector of non-

negative integers αi ≥ 0, 1 ≤ i ≤ N . If α is a multiindex we let | α |=
∑N

i=1 αi. Then,

the partial derivatives of a function of N variables may be denoted by

Dαφ =
∂|α|φ

∂xα1
1 . . . ∂xαN

N

.

It follows that Hm is the set:

Hm = Hm(Ω) = {u ∈ L2(Ω) : ∀α with | α |≤ m, ∃ gα ∈ L2(Ω) such that∫
Ω

uDαφ = (−1)|α|
∫
Ω

gα φ, ∀φ ∈ C∞
c (Ω)}.

We call gα the generalized partial derivative of order α of u and denote gα = Dαu.

The space Hm with the norm

∥u∥m =

 ∑
0≤|α|≤m

∥ Dαu ∥2
 1

2

,

induced by the inner product

(u, v)m =
∑

0≤|α|≤m

(Dαu,Dαv)

is a Hilbert space. One may show that if ∂Ω is sufficiently regular (C1 will certainly

suffice), then the norm ∥ · ∥m on Hm(Ω) is equivalent to the norm∥u∥2 +
∑
|α|=m

∥ Dαu ∥2
 1

2

.

In effect one may show that ∀α, 0 <| α |≤ m and ϵ > 0, there exists a constant

C = C(α, ϵ,Ω) such that the interpolation inequality

∥ Dαu ∥≤ ϵ
∑
|β|=m

∥ Dβu ∥ +C ∥u∥ , ∀u ∈ Hm(Ω)

holds.

Now, since u ∈ Hm ⇒ Dαu ∈ H1(Ω) for each α: 0 ≤| α |≤ m− 1, we can define by

the trace theorem, boundary values on ∂Ω (for Ω, say, of class C1) for all derivatives

Dαu, 0 ≤| α |≤ m − 1 of u. In this sense we can define e.g. the normal derivative on

∂Ω of a function u ∈ H2(Ω) as the linear combination

∂u

∂n
=

N∑
i=1

∂u

∂xi
|∂Ω ni,
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where n⃗(y) is the unit outer normal on ∂Ω. For u ∈ H2(Ω), ∂u
∂n

∈ L2(∂Ω). One has

another formula of Green’s too:

−
∫
Ω

∆u v =

∫
Ω

N∑
i=1

∂u

∂xi

∂v

∂xi
−
∫
∂Ω

∂u

∂n
v dy , ∀u, v ∈ H2(Ω).

One may define again
0

Hm(Ω) as the completion of C∞
c (Ω) in the ∥ · ∥m norm. For ∂Ω

sufficiently smooth (e.g. for Ω a domain of class Cm – replace C1 by Cm in the definition

of C1 domain) one may show that
0

Hm(Ω) is equal to the subspace of Hm(Ω) for which

u ∈
0

Hm(Ω) ⇔ u ∈ Hm(Ω) and Dαu| ∂Ω = 0 (in the sense of trace), 0 ≤| α |≤ m − 1.

Again we note the difference between the spaces

H2 ∩
0

H1 = {u ∈ H2 : u| ∂Ω = 0}

and
0

H2 = {u ∈ H2 : u| ∂Ω =
∂u

∂xi
| ∂Ω = 0}.

4.4 Sobolev’s inequalities.

In one dimension we had proved that H1(I) ⊂ C(I) for a bounded interval I and that

∥u∥L∞(I) ≤ C ∥u∥H1(I). In more than one dimensions this is no longer true. There is

a wealth of imbedding theorems of which we quote two results:

Theorem 4.5 (Sobolev). Let Ω be of class C1. Then

(a) If N = 2, H1 ⊂ Lp ∀p, 1 ≤ p <∞.

If N > 2, H1 ⊂ Lp where 1 ≤ p ≤ 2N
N−2

.

(b) If m > N
2
we have Hm(Ω) ⊂ Ck(Ω) where 0 ≤ k < m− N

2
and

sup
x∈Ω, 0≤|α|≤k

| Dαu(x) | ≤ C ∥u∥m ∀u ∈ Hm(Ω).

This theorem tells us that if N > 1 the functions in H1(Ω) are no longer continuous

(in the sense of a.e. equality as usual). For example if N = 2 we need to go to H2(Ω)

to obtain continuous functions in Ω. As a counterexample in this direction we may

verify that the function

u =

(
log

1

| x |

)α

with 0 < α <
1

2
, Ω = {x ∈ R2 : | x |< 1

2
}

belongs to H1(Ω) but it is not bounded because of the singularity at x = 0.

106



4.5 Variational formulation of some elliptic boundary–

value problems.

4.5.1 (a) Homogeneous Dirichlet boundary conditions.

We consider the following problem. Let Ω ⊂ RN be a C1 domain. We seek a function

u : Ω → R satisfying

−∆u+ u = f in Ω, ∆ =
N∑
i=1

∂2

∂x2i
(4.1)

u = 0 on ∂Ω, (4.2)

where f is a given function on Ω. The boundary condition u = 0 on ∂Ω is called

homogeneous (zero) Dirichlet b.c.

Definition Let f ∈ C(Ω). Then, a classical solution of (4.1), (4.2) is a function

u ∈ C2(Ω) satisfying the P.D.E. (4.1) and the b.c. (4.2) in the usual (pointwise)

sense. Let now f ∈ L2(Ω). Then, a weak solution of (4.1), (4.2) is a function u ∈
0

H1

which satisfies the weak form of (4.1), (4.2), i.e. the relation∫
Ω

(
N∑
i=1

∂u

∂xi

∂v

∂xi
+ u v

)
dx =

∫
Ω

f v ∀v ∈
0

H1. (4.3)

(i) A classical solution of (4.1), (4.2) is a weak solution.

Let f ∈ C(Ω) and let u ∈ C2(Ω) be a classical solution of (4.1), (4.2). Then, since

u ∈ H1(Ω) and u = 0 on ∂Ω, it follows that u ∈
0

H1. Multiplying −∆u + u = f by a

function φ ∈ C∞
c (Ω) we have, using Green’s theorem (cf. p. 88) that∫

Ω

(
N∑
i=1

∂u

∂xi

∂φ

∂xi
+ uφ

)
dx =

∫
Ω

f φ

holds. Since now C∞
c (Ω) is dense in (

0

H1, ∥ · ∥1) (4.3) follows by the above by approxi-

mating in H1, v ∈
0

H1(Ω) by a sequence φi ∈ C∞
c (Ω). Hence u is a weak solution.

(ii) Existence and uniqueness of the weak solution.

Let f ∈ L2(Ω) and consider the bilinear form a(v, w) defined on
0

H1 ×
0

H1 by

a(v, w) =

∫
Ω

(
N∑
i=1

∂v

∂xi

∂w

∂xi
+ v w

)
dx. (4.4)
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By our hypotheses, a(·, ·) is a bilinear, symmetric form on
0

H1 ×
0

H1. Moreover, for

v, w ∈
0

H1 we have

a(v, w) ≤
N∑
i=1

∫
Ω

| ∂v
∂xi

∂w

∂xi
| +
∫
Ω

| v w |

≤
N∑
i=1

∥ ∂v

∂xi
∥ ∥ ∂w

∂xi
∥ + ∥ v ∥ ∥ w ∥

≤

(
N∑
i=1

∥ ∂v

∂xi
∥2
) 1

2
(

N∑
i=1

∥ ∂w

∂xi
∥2
) 1

2

+ ∥ v ∥1 ∥ w ∥1

≤ 2 ∥ v ∥1 ∥ w ∥1, (4.5)

i.e. that a(v, w) is continuous on
0

H1 ×
0

H1. Also

a(v, v) =
N∑
i=1

∫
Ω

(
∂v

∂xi
)2 +

∫
Ω

v2 ≥
N∑
i=1

∫
Ω

(
∂v

∂xi
)2

≥ c ∥v∥21, c > 0 (4.6)

using the Poincaré–Friedrichs inequality. Hence a(·, ·) satisfies the hypotheses of the

Lax–Milgram theorem on the Hilbert space
0

H1. Since f 7→
∫
Ω
f v is a bounded linear

functional on
0

H1, it follows that (4.3) has a unique solution u ∈
0

H1 that satisfies

∥u∥1 ≤ C ∥ f ∥ .

(Note that by the symmetry of a(·, ·), the weak solution can be also characterized as

the (unique) element of
0

H1 that solves the minimization problem

J(u) = inf
v∈

0

H1(Ω)

J(v),

where

J(v) =
1

2

∫
Ω

(
N∑
i=1

(
∂v

∂xi
)2 + v2

)
−
∫
Ω

f v.

This is “Dirichlet’s principle”).

(Note also that simply a(v, w) = (v, w)1 on
0

H1×
0

H1. Hence an appeal to the Riesz

theorem would solve the problem. Of course, a(v, w) ≤ ∥v∥1 ∥ w ∥1 and a(v, v) = ∥v∥21
too. But the proof of (4.5), (4.6) above indicates the general way of proving (4.5) and

(4.6) in the case e.g. of a positive definite form with variable coefficients).

(iii) Regularity of the weak solution.
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If f ∈ L2(Ω) and Ω is a domain of class C2 and if u ∈
0

H1 is a weak solution of (4.1),

(4.2), i.e. a solution of (4.3), then one may show that in fact u ∈ H2(Ω) and that

∥u∥2 ≤ C ∥ f ∥ (“elliptic regularity” estimate). Here C is a constant depending only

on Ω. More generally, if Ω is of class Cm+2 and if f ∈ Hm(Ω), then u ∈ Hm+2(Ω) and

∥u∥m+2 ≤ Cm ∥ f ∥m. (In particular, using Sobolev’s Theorem 4.5 we may conclude

that if m > N
2
, then u ∈ C2(Ω)).

(iv) If the weak solution is in C2(Ω), then it is classical.

Let u, the weak solution of (4,1), (4.2) be in C2(Ω) and let f ∈ C(Ω). Since u ∈
0

H1 ∩ C2(Ω) we conclude that u| ∂Ω = 0 (in the classical sense). Applying Green’s

formula we have now from (4.3)∫
Ω

(−∆u + u) v dx =

∫
Ω

f v ∀v ∈ C∞
c (Ω)

from which −∆u + u− f = 0 a.e. in Ω since C∞
c (Ω) is dense in L2(Ω). We conclude,

by our hypotheses that −∆u+ u = f ∀x ∈ Ω. Hence u is a classical solution.

Remarks

(i) The above discussion extends with no extra difficulties to the case of a linear,

self–adjoint elliptic operator with variable coefficients. Consider the problem of

finding u : Ω → R such that

−
N∑

i,j=1

∂

∂xi
(aij

∂u

∂xj
) + a0u = f in Ω (4.7)

u = 0 on ∂Ω, (4.8)

where we suppose that aij(x) = aji(x) are functions in C
1(Ω) such that the matrix

aij is symmetric and uniformly positive definite, i.e. that the ellipticity condition

N∑
i,j=1

aij(x)ξiξj ≥ α
N∑
i=1

ξ2i

holds for some α > 0 ∀x ∈ Ω, ξ ∈ RN . We also suppose that a0 ∈ C(Ω) and that

a0(x) ≥ 0 on Ω. We define a classical solution of (4.7), (4.8) to be a function

u ∈ C2(Ω) satisfying (4.7), (4.8) in the usual sense, while a weak solution is an

element of
0

H1 satisfying

A(u, v) =

∫
Ω

(∑
i,j

aij
∂u

∂xi

∂v

∂xi
+ a0uv

)
= (f, v) ∀v ∈

0

H1. (4.9)
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For f ∈ L2(Ω) we may show that (4.9) has a unique solution u ∈
0

H1: It is easy

to see that A(u, v) ≤ C1 ∥u∥1 ∥v∥1 ∀u, v ∈
0

H1 and A(u, v) ≥ C2 ∥v∥21 ∀v ∈
0

H1 for

C1, C2 > 0. The regularity in H2 also holds under our hypotheses on aij, a0. In

general, form ≥ 1 if f ∈ Hm(Ω), aij ∈ Cm+1(Ω), a0 ∈ Cm(Ω) yields u ∈ Hm+2(Ω)

(elliptic regularity).

(ii) The fact that the weak solution of (4.1), (4.2) is in C2(Ω) if f ∈ Hm with m > N
2

follows from Sobolev’s theorem. There is a sharper theory based on Schauder’s

estimates which states that if Ω is of class C2,a (Hölder spaces) with 0 < a < 1 and

f ∈ C0,a(Ω), then ∃ u ∈ C2,a(Ω), unique solution of (4.1), (4.2) in the classical

sense. Moreover of Ω is of class Cm+2(Ω) (m ≥ 1 integer) and f ∈ Cm,a(Ω), then

u ∈ Cm+2,a(Ω) and an analogous elliptic regularity result holds. Here

C0,a(Ω) = {u ∈ C(Ω), sup
x,y∈Ω,x ̸=y

| u(x)− u(y) |
| x− y |a

<∞}

Cm,a(Ω) = {u ∈ Cm(Ω), Dβu ∈ C0,a(Ω) ∀β : | β |= m}.

4.5.2 (b) Homogeneous Neumann boundary conditions.

We now consider the problem of finding u : Ω → R such that

−∆u+ u = f in Ω (4.10)

∂u

∂n
= 0 on ∂Ω (4.11)

with f given on Ω. As usual ∂u
∂n

= ∇⃗u · n⃗ is the normal derivative at the boundary ∂Ω

(again Ω is of class C1). A classical solution of (4.10), (4.11) (for f ∈ C(Ω))is a C2(Ω)

function u satisfying (4.10), (4.11) in the classical sense. A weak solution is an element

u ∈ H1(Ω) satisfying (for f ∈ L2(Ω) say)

a(u, v) ≡
∫
Ω

(
N∑
i=1

∂u

∂xi

∂v

∂xi
+ u v

)
dx =

∫
Ω

f v ∀v ∈ H1(Ω). (4.12)

(i) Every classical solution is weak.

Let u ∈ C2(Ω) be a classical solution of (4.10), (4.11). Then Green’s formula gives∫
Ω

∆u v = −
∫
Ω

N∑
i=1

∂u

∂xi

∂v

∂xi
+

∫
∂Ω

∂u

∂n
v dy ∀v ∈ C∞(Ω).

110



Hence (4.10), (4.11) yields that∫
Ω

(
N∑
i=1

∂u

∂xi

∂v

∂xi
+ u v

)
=

∫
Ω

f v ∀v ∈ C∞(Ω)

and density of C∞(Ω) in H1(Ω) yields then that (4.12) is satisfied.

(ii) An immediate application of the Lax–Milgram theorem yields that there exists a

unique weak solution.

(iii) More refined theory yields again the regularity of the weak solution. Exactly the

same results as in the Dirichlet b.c. case hold.

(iv) If the weak solution is in C2(Ω), then it is classical.

For if this case we have by (4.12) that (f ∈ C(Ω) here)∫
Ω

(−∆u+ u) v +

∫
∂Ω

∂u

∂n
v dy =

∫
Ω

f v ∀v ∈ C∞(Ω).

Choosing v ∈ C∞
c (Ω) we obtain as in the Dirichlet b.c. case that −∆u + u = f in Ω.

It follows that
∫
∂Ω

∂u
∂n
v dy = 0 ∀v ∈ C∞(Ω) ⇒ ∂u

∂n
= 0 on ∂Ω.
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Chapter 5

The Galerkin Finite Element

Method for Elliptic

Boundary–Value Problems

5.1 Introduction

Let Ω be a bounded domain in RN . Consider the boundary–value problem of finding

u = u(x), x ∈ Ω, such that

Lu = f, x ∈ Ω

u = 0, x ∈ ∂Ω

 (5.1)

where L is the elliptic operator given by

Lu = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a0(x)u.

As in the previous chapter, we assume that for 1 ≤ i, j ≤ N aij(x) = aji(x), x ∈ Ω,

that ∃ c > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ c

N∑
i=1

ξ2i ∀ξ ∈ RN ,

that aij, a0 are sufficiently smooth functions of x, and that a0 ≥ 0 in Ω. Under

these hypotheses, and if f ∈ L2(Ω), we have shown that there exists a weak solution

u ∈
0

H1(Ω) of (5.1) satisfying

B(u, v) = (f, v) ∀v ∈
0

H1, (5.2)
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where

B(u, v) =

∫
Ω

(
N∑

i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+ a0(x)uv

)
dx.

We shall assume that the data are such that the unique solution u of (5.2) belongs to

H2∩
0

H1 and satisfies the elliptic regularity estimate that for some C > 0, independent

of f and u, we have

∥u∥2 ≤ C ∥ f ∥ . (5.3)

As we have seen in Chapters 1 and 3, the (standard) Galerkin method for approximating

the solution u of (5.2) amounts to constructing a family of finite–dimensional subspaces

Sh of
0

H1, say for 0 < h < 1, and seeking uh ∈ Sh satisfying the linear system of

equations

B(uh, vh) = (f, vh) ∀vh ∈ Sh. (5.4)

Under our hypotheses, we have seen that a unique solution uh of (5.4) exists and

satisfies

∥ u− uh ∥1≤ C inf
χ∈Sh

∥ u− χ ∥1 (5.5)

for some constant C independent of h. Assuming e.g. that

inf
χ∈Sh

(∥ v − χ ∥ +h ∥ v − χ ∥1) ≤ C h2∥v∥2 ∀v ∈ H2 ∩
0

H1, (5.6)

we obtain from (5.5) the optimal–rate H1–error estimate

∥ u− uh ∥1 ≤ C h∥u∥2. (5.7)

The L2–error estimate is obtained again by the “Nitsche trick”, by letting e = u− uh

and considering w ∈ H2 ∩
0

H1, the solution of the problem

B(w, v) = (e, v) ∀v ∈
0

H1. (5.8)

Then, ∥ e ∥2= (e, e) = B(w, e) = B(e, w) = B(e, w−χ) for any χ ∈ Sh – we used (5.2)

and (5.4) –. By the continuity of B in H1 ×H1 we have then

∥ e ∥2≤ C ∥ e ∥1∥ w − χ ∥1
by(5.6)

≤ C ∥ e ∥1 h ∥ w ∥2 ≤ C h ∥ e ∥1∥ e ∥ .

Hence ∥ e ∥≤ C h ∥ e ∥1≤ C h2∥u∥2 by (5.7)
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In general, assuming that for some r ≥ 2 (integer) we have

inf
χ∈Sh

(∥ v − χ ∥ +h ∥ v − χ ∥1) ≤ C hr∥v∥r ∀v ∈ Hr ∩
0

H1, (5.9)

and that the weak solution u of (5.2) is in Hr ∩
0

H1, we see that (5.5) and the Nitsche

argument give

∥ u− uh ∥ +h ∥ u− uh ∥1≤ C hr∥u∥r. (5.10)

Hence, our task is to construct subspaces of
0

H1 (endowed with bases of small support

so that the linear system (5.4) is sparse) so that (5.6) or, in general, (5.9) holds. In

what follows we shall consider the subspace of piecewise linear, continuous functions

on a polygonal domain in R2 (subdivided into triangular elements).

5.2 Piecewise linear, continuous functions on a tri-

angulation of a plane polygonal domain

(This section is largely based on Ciarlet (1978), chapter 3).

We consider a convex polygonal domain Ω in R2 and the elliptic b.v.p. (5.1) associated

with it. Although Ω is not C1, it is known that (5.3) still holds.

We subdivide Ω into triangles τi, 1 ≤ i ≤ M , M = M(h), forming a triangulation

Th = {τi} of Ω. We assume that the τi are open and disjoint, that maxi(diam τi) ≤ h,

0 < h < 1, and that Ω = Int(∪M
i=1τi). The vertices of the triangles are called nodes

of the triangulation. We shall assume that Th is such that there are no nodes in the

interior of the interior sides of triangles:

1

2
3

23

4 1

NO YES

We let now Sh be the vector space of continuous functions on Ω that are linear on

each τi and vanish on ∂Ω, i.e. let

Sh = {ϕ ∈ C(Ω), ϕ |τi= αi + βix+ γiy (i.e. ϕ ∈ P1(τi)), ϕ |∂Ω= 0}.
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Let N = N(h) be the number of interior nodes Pi of the triangulation (i.e. those

nodes are not on ∂Ω). Since these points which are not collinear define a single plane,

it follows that an element ϕ ∈ Sh is uniquely defined by its values ϕ(Pj), 1 ≤ j ≤ N .

(This means that dimSh = N). A suitable basis of Sh (for our purposes) consists of

the functions ϕi ∈ Sh, 1 ≤ i ≤ N , such that

ϕi(Pj) = δij, 1 ≤ i, j ≤ N.

φi
1

0

0

0

0

It is clear that the support of ϕi consists exactly of those triangles of Th that share

Pi as a vertex. The ϕi are linearly independent, since if
∑N

i=1 ciϕi(x) = 0, then putting

x = xj yields cj = 0, 1 ≤ j ≤ N . Moreover, given ψ ∈ Sh, we can write

ψ(x) =
N∑
j=1

ψ(Pj)ϕj(x), x ∈ Ω, (5.11)

since both sides of (5.11) are elements of Sh that coincide at the interior nodes Pj,

1 ≤ j ≤ N . Hence, {ϕi}Ni=1 form a basis for Sh.

Sh is a subspace of
0

H1(Ω): Obviously, Sh ⊂ L2(Ω) and the elements of Sh vanish

(pointwise) on ∂Ω. Hence, to show that v ∈ Sh belongs to H1(Ω), it suffices to prove

that there exist gi ∈ L2(Ω), i = 1, 2, such that∫
Ω

v
∂ϕ

∂xi
= −

∫
Ω

gi ϕ ∀ϕ ∈ C∞
c (Ω), i = 1, 2. (5.12)

Let v(τ) be the restriction of v to τ ∈ Th. For i = 1, 2 let gi ∈ L2(Ω) be defined as the

piecewise constant function given by

gi =
∂

∂xi
(v(τ)) i = 1, 2, if x ∈ τ. (5.13)
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There follows that for ϕ ∈ C∞
c (Ω)∫

Ω

v
∂ϕ

∂xi
dx =

∑
τ∈Th

∫
τ

v
∂ϕ

∂xi
dx =

∑
τ∈Th

∫
τ

v(τ)
∂ϕ

∂xi
dx

(Gauss theorem on τ)
=

= −
∑
τ∈Th

∫
τ

gi ϕ dx+
∑
τ∈Th

∫
∂τ

v(τ) ϕ ν
(τ)
i dy,

where ν(τ) = (ν
(τ)
1 , ν

(τ)
2 )T is the unit outward normal on the boundary ∂τ of τ .

ν (τ)

τ

The first term of the right–hand side of the above equality is equal to −
∫
Ω
giϕdx, where

gi ∈ L2(Ω) was defined (piecewise) by (5.13). The second term vanishes. To see this,

note that the second term is eventually the sum of terms∫
s

v(τ) ϕ ν
(τ)
i dy

where s any side of any triangle τ . If s ⊂ ∂Ω, then the corresponding term is zero

since ϕ = 0 on ∂Ω. If s = AB is an interior side, suppose it is the common side of two

adjacent triangles τ1 and τ2.

τ 1

τ 2

(τ )1ν(τ )2ν s

A

B

In that case, there are precisely two terms in the sum
∑

s: s∈∂τ
∫
s
. . . involving AB,

namely ∫
AB

v(τ1) ϕ ν
(τ1)
i dy and

∫
AB

v(τ2) ϕ ν
(τ2)
i dy,

which cancel each other since v(τ1) |AB= v(τ2) |AB (v is continuous in Ω as an element

of Sh), ϕ ∈ C∞
c (Ω), and ν

(τ1)
i = − ν

(τ2)
i , i = 1, 2. We conclude then that (5.12) holds,

i.e. that v ∈ H1(Ω), q.e.d.
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Given v ∈ C(Ω), v |∂Ω= 0, we define the interpolant Ihv of v in Sh, as the unique

element Ihv of Sh that coincides with v at the interior nodes Pi, 1 ≤ i ≤ N , of the

triangulation Th, i.e. as

(Ihv)(x) =
N∑
i=1

v(Pi)ϕi(x), x ∈ Ω.

It will be the objective of this section to show that for v ∈ H2(Ω) ∩
0

H1(Ω) (note that

v ∈ C(Ω), v |∂Ω= 0), we have, for some constant C independent of h and v:

∥ v − Ihv ∥ +h ∥ v − Ihv ∥1≤ C h2 | v |2,Ω . (5.14)

(Given v ∈ Hm(ω), where ω is a subdomain of Ω, we define

| v |0,ω = ∥ v ∥L2(ω)

| v |1,ω =

(
∥ ∂v

∂x1
∥2L2(ω) + ∥ ∂v

∂x2
∥2L2(ω)

) 1
2

...

| v |m,ω =

∑
|α|=m

∥ Dαv ∥2L2(ω)

 1
2

, Dα =
∂α1+α2

∂xα1
1 ∂xα2

2

.

Then | v |m,ω is in general a semi–norm on Hm(Ω)).

If (5.14) is established, then (5.6) holds and, as a consequence, we have our optimal–

order L2 and H1 error estimates for u− uh.

The estimate (5.14) will be proved as a consequence of two facts:

(i) A local L2 and H1 estimate for the interpolant:

Given a function v ∈ C(τ), where τ is the triangle with vertices P1, P2, P3 define

the (local) interpolant Iτv ∈ P1(τ) as the unique linear polynomial in x1, x2 on τ such

that

(Iτv)(Pi) = v(Pi), i = 1, 2, 3.

Note that if v ∈ C(Ω), then Ihv |τ= Iτv.

Following Ciarlet, we shall prove that there exists a constant C, independent of τ

and Th, such that for each v ∈ H2(τ), τ ∈ Th

| v − Iτv |m,τ ≤ C
h2τ
ρmτ

| v |2,τ , m = 0, 1, (5.15)
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where hτ = diamτ ≡ the length of the largest side of the triangle τ , and ρτ is the

diameter of the inscribed circle in the triangle τ .

ρ
τ

h τ

τ

(ii) The regularity of the triangulation:

We shall assume that the triangulation Th is regular, in the sense that there exists

a constant σ > 0, independent of τ and Th, such that

hτ
ρτ

≤ σ ∀τ ∈ Th. (5.16)

(The regularity condition (5.16) essentially states that h = maxτ hτ → 0, i.e. the

triangulation is refined, if and only if max ρτ → 0 i.e. all triangles tend to become

‘points’ and not ‘needles’, (for which hτ

ρτ
would become unbounded). It may be shown

that (5.16) is equivalent to requiring that there exists a θ0 > 0 independent of Th

such that θτ ≥ θ0 ∀τ ∈ Th, where θτ is the minimum (interior) angle of τ . It is also

equivalent to requiring that ∃c0, independent of Th, such that µ(τ) ≥ c0 h
2
τ ∀τ ∈ Th,

where µ(τ) = area(τ)).

Indeed, if (5.15) and (5.16) hold, we have

1

ρτ
≤ σ

hτ
⇒ 1

ρmτ
≤ σm

hmτ
, m = 0, 1,

so that (5.15) gives

| v − Iτv |m,τ ≤ Cm h
2−m
τ | v |2,τ , m = 0, 1, ∀v ∈ H2(τ), (5.17)

for constants C0, C1 independent of Th.

We conclude then for v ∈ H2(Ω) ∩
0

H1(Ω) (⇒ v ∈ C(Ω) by Sobolev’s theorem)

∥ v − Ihv ∥2 ≡ ∥ v − Ihv ∥2L2(Ω) =
∑
τ∈Th

| v − Iτv |20,τ ≤ C2
0

∑
τ∈Th

h4τ | v |22,τ

≤ C2
0 h

4
∑
τ∈Th

| v |22,τ = C2
0 h

4 | v |22,Ω .
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Hence

∥ v − Ihv ∥≤ C h2 | v |2,Ω (5.18)

for some constant C independent of Th.

In addition, analogously

| v − Ihv |21,Ω =
∑
τ∈Th

| v − Iτv |21,τ ≤ C2
1

∑
τ∈Th

h2τ | v |22,τ

≤ C2
1 h

2
∑
τ∈Th

| v |22,τ = C2
1 h

2 | v |22,Ω .

Therefore

| v − Ihv |1,Ω ≤ C h | v |2,Ω, (5.19)

for some C independent of Th.

The estimates (5.18) and (5.19) yield then (5.14) as advertized. We turn then to

proving (5.15). To accomplish this we shall need a series of results and definitions:

Definition: Let Ω, Ω̂ be two bounded domains in RN . We say that Ω and Ω̂ are affinely

equivalent if there exists an invertible affine map F : x̂ ∈ RN 7→ F (x̂) = Bx̂ + b ∈ RN

such that F (Ω̂) = Ω.

In the definition of the invertible affine map B is an N × N invertible matrix of

constants and b ∈ RN . Hence, if x ∈ RN , x̂ = F−1(x) ≡ B−1x−B−1b.

Hence x̂ ∈ Ω̂ ⇔ x = F (x̂) ∈ Ω and if v̂ : Ω̂ → R is a real–valued function defined on

Ω̂, then defining v = v̂ ◦ F−1 : Ω → R, we have if x ∈ Ω, x = F (x̂), i.e. if x̂ = F−1(x),

that

v(x) = (v̂ ◦ F−1)(x) = v̂(F−1(x)) = v̂(x̂).

(Note that if v = v̂ ◦ F−1 : Ω → R, then v̂ = v ◦ F : Ω̂ → R).

Using this notation we may prove:

Lemma 5.1. Let Ω, Ω̂ be two affinely equivalent bounded domains in RN and let F be

the associated affine map such that F (Ω̂) = Ω. Then v ∈ Hm(Ω), m ≥ 0 integer, if

and only if v̂ = v ◦ F ∈ Hm(Ω̂). Moreover, there exist constants C and Ĉ depending

only on m and N such that

| v̂ |m,Ω̂ ≤ C | B |m| detB |−
1
2 | v |m,Ω (5.20)

and | v |m,Ω ≤ Ĉ | B−1 |m| detB |
1
2 | v̂ |m,Ω̂ . (5.21)
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Here | B | denotes the matrix norm induced by the Euclidean vector norm in RN , i.e.

| B |= sup
IRN∋x ̸=0

| Bx |
| x |

, where | x |=

(
N∑
i=1

x2i

) 1
2

.

Proof: We shall prove (5.20) for m = 0 and m = 1. Recall that whenever x =

F (x̂) = Bx̂+ b, i.e. whenever x̂ = B−1x+ c, c = −B−1b, then v̂(x̂) = v(x). Hence∫
Ω̂

v̂2(x̂) dx̂ =

∫
Ω

v2(x) | J | dx,

where J is the determinant of the Jacobian matrix of the transformation x̂ = B−1x+c.

Hence J = det(B−1) = (det(B))−1 and we conclude that

∥ v̂ ∥2
0,Ω̂

=

∫
Ω̂

v̂2(x̂) dx̂ = | detB |−1

∫
Ω

v2(x) dx = | detB |−1 ∥v∥20,Ω,

which implies (5.20) with m = 0, C = 1.

Let now m = 1 and v̂ ∈ H1(Ω̂). Then, if x = F (x̂) and 1 ≤ i ≤ N ,

∂v̂

∂x̂i
(x̂) =

∂

∂x̂i
(v(x)) =

N∑
j=1

∂v

∂xj
(x)

∂xj
∂x̂i

=
N∑
j=1

∂v

∂xj
(x)

∂Fj(x̂)

∂x̂i
,

where xj = Fj(x̂) ≡
∑N

k=1Bjkx̂k + bj. Hence
∂Fj(x̂)

∂x̂i
= Bji and we conclude that

∂v̂

∂x̂i
(x̂) =

N∑
j=1

∂v

∂xj
(x)Bji, 1 ≤ i ≤ N,

which we may write as

(∇̂v̂)(x̂) = BT (∇v)(x), (5.22)

where

∇̂v̂ =

(
∂v̂

∂x̂1
, . . . ,

∂v̂

∂x̂N

)T

and ∇v =

(
∂v

∂x1
, . . . ,

∂v

∂xN

)T

.

From (5.22), taking Euclidean norms we see that

| ∇̂v̂ | ≤ | BT || ∇v |=| B || ∇v | (5.23)

since | BT |=| B |. (To see this, recall that

| B |= max
i

√
λi(BTB) = max

i

√
λi(BBT ) =| BT |,

since BBT and BTB have the same eigenvalues).
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Hence, using (5.23) we have

| v̂ |2
1,Ω̂

=
N∑
i=1

∫
Ω̂

(
∂v̂

∂x̂i
(x̂)

)2

dx̂ =

∫
Ω̂

| ∇̂v̂ |2 dx̂ ≤ | B |2
∫
Ω

| ∇v |2| J | dx

= | B |2| detB |−1| v |21,Ω,

which is (5.20) for m = 1.

The rest of the proof is analogous. �
Given two bounded, affinely equivalent domains Ω and Ω̂ we let

ĥ

Ω̂

ρ̂
ẑ F(y)^

F(z)̂
ŷ

h

F

Ω

ρ

ξ
0

ĥ = diamΩ̂ ≡ supx̂,ŷ∈Ω̂ | x̂−ŷ |, ρ̂ = diameter of the inscribed ball in Ω̂ = sup{diamŜ, Ŝ

is a ball contained in Ω̂}, and h, ρ be the corresponding quantities for Ω.

Lemma 5.2. Let Ω, Ω̂ be two affinely equivalent bounded domains in RN such that

Ω = F (Ω̂), F (x̂) = Bx̂+ b. Then

| B | ≤ h

ρ̂
, | B−1 | ≤ ĥ

ρ
. (5.24)

Proof: An easy scaling argument yields that

| B |= 1

ρ̂
sup

ξ∈IRN,|ξ|=ρ̂

| Bξ | .

Now given ξ ∈ RN such that | ξ |= ρ̂, we may find two points ŷ, ẑ ∈ Ω̂ such that

ŷ− ẑ = ξ (see Fig. 5.6). For these points we have that F (ŷ)−F (ẑ) = Bŷ−Bẑ = Bξ,

with F (ŷ), F (ẑ) ∈ Ω. Hence supξ∈IRN,|ξ|=ρ̂ | Bξ | ≤ h. We conclude that | B | ≤ h
ρ̂
. �
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Let us consider now our triangulation Th = {τ} of the polygonal domain Ω in R2.

Q
1

^ Q
2

^

Q
3

^

Q
1

Q
2

Q
3

Fτ

τ̂

x̂

τ

x

It is clear that any triangle τ of the triangulation is affinely equivalent to a fixed

reference triangle τ̂ . (E.g. we can take τ̂ to be the triangle with vertices (0,0), (0,1),

(1,0). Indeed we have for each τ ∈ Th

Fτ (τ̂) = τ

for some invertible affine map Fτ (x̂) = Bτ x̂+bτ , x̂ ∈ τ̂ , depending on τ . (We construct

the map Fτ by requiring that Qi = Fτ (Q̂i), 1 ≤ i ≤ 3, where Q̂i, Qi, i = 1, 2, 3, are

the vertices of τ̂ , τ , respectively. These three 2–vector equations determine uniquely

the six constants which are the entries of the matrix Bτ and the vector bτ . Then we

may easily check that Q1Q2 = Fτ (Q̂1Q̂2) etc., and that each point x̂ in τ̂ is mapped

onto a uniquely defined point x in τ , and that each point x̂ ∈ ∂τ̂ is mapped onto

a corresponding point x on ∂τ . The idea is to work on τ̂ and obtain corresponding

estimates on τ (such as the required (5.15)) by using the properties of the interpolant in

spaces of piecewise linear continuous functions as well as the scaling and transformation

inequalities of Lemmata 5.1 and 5.2.

To this effect, define the interpolant Iτ̂ on the reference triangle τ̂ as the map

Iτ̂ : C(τ̂) → P1(τ̂) such that

(Iτ̂ v̂)(Q̂i) = v̂(Q̂i), 1 ≤ i ≤ 3. (5.25)

for any continuous real–valued function v̂ defined on τ̂ . Our basic step towards proving

(5.15) is the following

Lemma 5.3. Let v̂ ∈ H2(τ̂). Then, there exists a constant C(τ̂) such that for m =

0, 1, 2

| v̂ − Iτ̂ v̂ |m,τ̂ ≤ C(τ̂) | v̂ |2,τ̂ . (5.26)
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Proof: The estimates (5.26) will be proved as a consequence of three important

facts:

(i) The linear map Iτ̂ preserves linear polynomials, i.e. ∀p̂ ∈ P1(τ̂), Iτ̂ p̂ = p̂.

This is obvious and implies that for any v̂ ∈ H2(τ̂) and any p̂ ∈ P1(τ̂)

v̂ − Iτ̂ v̂ = v̂ − p̂− Iτ̂ v̂ + Iτ̂ p̂ = (v̂ − p̂)− Iτ̂ (v̂ − p̂). (5.27)

(ii) Iτ̂ is “stable” on H2(τ̂). By this we mean that there exists a constant C̃ = C̃(τ̂)

such that

∥ Iτ̂ ŵ ∥2,τ̂ ≤ C̃(τ̂) ∥ ŵ ∥2,τ̂ ∀ŵ ∈ H2(τ̂). (5.28)

(To see this, let ϕ̂i ∈ P1(τ̂) be the “hat” basis functions associated with the vertices

Q̂i of τ̂ , i.e. let ϕ̂i ∈ P1(τ̂) be defined for i = 1, 2, 3 by the relations

ϕ̂i(Q̂j) = δij, 1 ≤ i, j ≤ 3.

Then, for ŵ ∈ H2(τ̂)

∥ Iτ̂ ŵ ∥2,τ̂ = ∥ ŵ(Q̂1)ϕ̂1 + ŵ(Q̂2)ϕ̂2 + ŵ(Q̂3)ϕ̂3 ∥2,τ̂ ≤
3∑

i=1

| ŵ(Q̂i) | ∥ ϕ̂i ∥2,τ̂

≤ C ′(τ̂) max
x̂∈τ̂

| ŵ(x̂) | ≤ C̃(τ̂) ∥ ŵ ∥2,τ̂ , by Sobolev’s theorem in R2).

As a consequence of (5.27) and (5.28) note that for m = 0, 1, 2 and v̂ ∈ H2(τ̂)

| v̂ − Iτ̂ v̂ |m,τ̂ ≤ | v̂ − p̂ |m,τ̂ + | Iτ̂ (v̂ − p̂) |m,τ̂ ≤ ∥ v̂ − p̂ ∥2,τ̂ + ∥ Iτ̂ (v̂ − p̂) ∥2,τ̂

≤ ∥ v̂ − p̂ ∥2,τ̂ +C̃(τ̂) ∥ v̂ − p̂ ∥2,τ̂

≤ ˜̃C(τ̂) ∥ v̂ − p̂ ∥2,τ̂ ∀p̂ ∈ P1(τ̂). (5.29)

We invoke now the

(iii) Bramble–Hilbert Lemma, which in our case asserts that there exists a constant

C∗(τ̂) such that:

min
p̂∈P1(τ̂)

∥ v̂ − p̂ ∥2,τ̂ ≤ C∗(τ̂) | v̂ |2,τ̂ ∀v̂ ∈ H2(τ̂). (5.30)

(We postpone for the moment the proof of this important result; we shall prove it later

in more generality).

Putting together (5.29) and (5.30) yields now

| v̂ − Iτ̂ v̂ |m,τ̂ ≤ ˜̃C(τ̂) min
p̂∈P1(τ̂)

∥ v̂ − p̂ ∥2,τ̂ ≤ C(τ̂) | v̂ |2,τ̂ ,
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which is the advertized result (5.26). �
Before turning to the proof of (5.30) we first complete the argument and show how

(5.26) implies (5.15). To do this, recall that if ŵ is defined on τ̂ , then for x = Fτ (x̂) we

have ŵ(x̂) = w(x), where w is the image function, i.e. where w = ŵ ◦ F−1
τ , defined on

τ . Note that the ˆ operation is linear, in the sense that ̂µu+ λv = µû+ λv̂, µ, λ ∈ R.

(Indeed ̂(µu+ λv)(x̂) = (µu+ λv)(x) = µu(x) + λv(x) = µû(x̂) + λv̂(x̂)).

Hence, if Iτv is the (local) linear interpolant on P1(τ) of v ∈ H2(τ), we have

(v − Iτv)
∧ = v̂ − Îτv. (5.31)

Now, Îτv = Iτ̂ v̂. To see this, note that for i = 1, 2, 3

(Îτv)(Q̂i) = (Iτv)(Qi) = v(Qi) = v̂(Q̂i) = (Iτ̂ v̂)(Q̂i)

i.e. Îτv and Iτ̂ v̂ (which are real–valued functions defined on τ̂) coincide at the vertices

Q̂i of τ̂ . However Iτ̂ v̂ ∈ P1(τ̂) and (Îτv)(x̂) = (Iτv)(x) = (Iτv)(Fτ (x̂)) ∈ P1(τ̂). Hence

(Îτv)(x̂) = (Iτ̂ v̂)(x̂) ∀x̂ ∈ τ̂ . Therefore, (5.31) gives that

(v − Iτv)
∧ = v̂ − Iτ̂ v̂. (5.32)

Now, using (5.21) for m = 0, 1, 2, we have (hτ̂ = diam(τ̂))

| v − Iτv |m,τ ≤ C̃ | B−1
τ |m| detBτ |

1
2 | (v − Iτv)

∧ |m,τ̂

(by (5.24), (5.26), (5.32)) ≤ C̃
hmτ̂
ρmτ

| detBτ |
1
2 C(τ̂) | v̂ |2,τ̂

≤ C ′(τ̂)
1

ρmτ
| detBτ |

1
2 | v̂ |2,τ̂

(using again (5.20)) ≤ C ′′(τ̂)
1

ρmτ
| detBτ |

1
2 | Bτ |2| detBτ |−

1
2 | v |2,τ

(by (5.24)) ≤ C ′′(τ̂)
h2τ
ρmτ

1

ρ2τ̂
| v |2,τ

≤ C ′′′(τ̂)
h2τ
ρmτ

| v |2,τ ,

which is (5.15), since C ′′′(τ̂) ≡ C is a constant depending only on the fixed reference

triangle τ̂ and is, hence, independent of Th.

We finally turn to proving (5.30). This will be done in some generality in the

following Proposition in which Ω is assumed to be a bounded, Lipschitz domain in RN .
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Prpoposition 5.1 (Bramble–Hilbert/Deny–Lions). For k ≥ 1 there exists a constant

Ck = Ck(Ω) such that for every u ∈ Hk(Ω)

min
p∈Pk−1

∥ u+ p ∥k ≤ Ck | u |k . (5.33)

Remark: (5.33) may be viewed as a type of “Taylor’s theorem”. Also, note that

obviously | u |k ≤ minp∈Pk−1
∥ u + p ∥k. Hence (5.33) implies that | · |k is a norm,

equivalent to the quotient norm minp∈Pk−1
∥ ·+p ∥k on the space Hk/Pk−1. (From now

on Hk = Hk(Ω)).

Proof. The estimate (5.33) is a direct consequence of two facts:

(i) For each u ∈ Hk there exists a unique q ∈ Pk−1 such that

∀α : | α | ≤ k − 1,

∫
Ω

Dαq dx =

∫
Ω

Dαu dx. (5.34)

(ii) There exists Ck = Ck(Ω) such that ∀u ∈ Hk:

∥u∥k ≤ Ck

| u |2k +
∑
|α|<k

(∫
Ω

Dαu dx

)2


1
2

. (5.35)

Indeed, if (i) and (ii) hold, then for u ∈ Hk, with q as in (i),

min
p∈Pk−1

∥ u+ p ∥k ≤ ∥ u− q ∥k
(ii)

≤ Ck

| u− q |2k +
∑
|α|<k

(∫
Ω

(Dαu−Dαq) dx

)2


1
2

(i)
= Ck | u− q |k = Ck | u |k

since q ∈ Pk−1 ⇒ Dαq = 0 for | α |= k.

Therefore, (5.33) is a consequence of (i) and (ii).

We now prove (i) and (ii).

(i). Let u ∈ Hk be given. We shall construct a polynomial q ∈ Pk−1 such that the

relations (5.34) hold. Let q be of the form

q(x) =
k−1∑
m=0

∑
|α|=m

cαx
α ≡

k−1∑
m=0

∑
|α|=m

cα1...αN
xα1
1 x

α2
2 . . . xαN

N .

We shall determine the unknown coefficients cα, | α |≤ k− 1, from the relations (5.34)

which represent a linear system of equations for the cα of sizeMk×Mk whereMk is the
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number of multiindices α = (α1, α2, . . . , αN) with | α |≤ k − 1. We first determine the

coefficients cα multiplying the terms xα of highest degree, i.e. the cα with | α |= k− 1.

For a multiindex α with | α |= k − 1 we have

Dαq = Dα

 ∑
β: |β|=k−1

cβx
β

+ Dα

 ∑
β: |β|<k−1

cβx
β


︸ ︷︷ ︸

∈Pk−2

= cα α!,

where α! ≡ α1!α2! . . . αN ! for α = (α1, α2, . . . , αN).

(To see the last equality, consider any one term Dα(Cβx
β) of the sum

Dα

 ∑
β: |β|=k−1

cβx
β

 .

Hence, for such a term, | α |=| β |= k − 1. If α ̸= β then Dα(Cβx
β) = 0. For if

α ̸= β there must exist an index j, 1 ≤ j ≤ N , such that βj ̸= αj. Then for the

corresponding factor in Dαxβ we will have
(

∂
∂xj

)αj

x
βj

j = 0. Now, if α = β we have

Dα(xβ) = Dα(xα) =
(

∂
∂x1

)α1

xβ1

1 . . .
(

∂
∂xN

)αN

xβN

N = α1!α2! . . . αN ! ≡ α!).

Hence, the relation (5.34) for α such that | α |= k − 1 yield∫
Ω

Dαu dx =

∫
Ω

Dαq dx =

∫
Ω

cα α! dx = cα α!µ(Ω) ⇒

cα =

∫
Ω
Dαu dx

α!µ(Ω)
, | α |= k − 1, (5.36)

i.e. the coefficients of q with | α |= k − 1 have been determined.

Write now qk−1(x) =
∑

|α|=k−1 cαx
α (qk−1 is now known). Hence

q(x) =
∑

|α|=k−2

cαx
α + qk−1 + s(x),

where s ∈ Pk−3, from which, for | α |= k − 2, as before

Dαq = cα α! + Dαqk−1.

Therefore, (5.34) for | α |= k − 2 yield∫
Ω

Dαu dx = cα α!µ(Ω) +

∫
Ω

Dαqk−1 dx

from which the cα, | α |= k − 2 are determined. We continue in the same fashion to

determine all cα.

126



Note that the polynomial q satisfying (5.34) is necessarily unique: if two such

q1, q2 ∈ Pk−1 exist, then q = q1 − q2 will satisfy
∫
Ω
Dαq dx = 0, | α |≤ k − 1, which is a

homogeneous linear system for the associated cα. The formulas (5.36) would yield now

cα = 0, | α |= k − 1. Therefore qk−1 = 0, i.e. cα = 0, | α |= k − 2, and so on, implying

finally that q = 0.

(ii). We argue by contradiction: Suppose (5.36) does not hold. This means that for

any constant C > 0 there exists a u ∈ Hk such that

∥u∥k > C

| u |2k +
∑
|α|<k

(∫
Ω

Dαu dx

)2


1
2

,

i.e. such that

C

{
| u |2k
∥u∥2k

+

∑
|α|<k

(∫
Ω
Dαu dx

)2
∥u∥2k

} 1
2

< 1.

This implies that for any constant C > 0 there exists a v ∈ Hk with ∥v∥k = 1 (take

v = u/∥u∥k) such that

C

| v |2k +
∑
|α|<k

(∫
Ω

Dαv dx

)2


1
2

< 1.

Take C = n, n = 1, 2, . . .. Hence, there exists a sequence {un} of functions in Hk with

∥ un ∥k= 1, such that

| un |2k +
∑
|α|<k

(∫
Ω

Dαun dx

)2

<
1

n2
. (5.37)

We now use the fact (“Rellich’s theorem” cf. Adams) that for a domain such as Ω

(in fact for any bounded, Lipschitz domain) and for k ≥ 1, Hk may be compactly

imbedded in Hk−1, in the sense that every bounded subset of Hk is relatively compact

when viewed as a subset of Hk−1. This means that every bounded sequence in Hk has

a subsequence which converges in the Hk−1 norm. Therefore the bounded sequence

un ∈ Hk (∥ un ∥k= 1) has a subsequence, which we denote again by un without loss of

generality, and which converges in Hk−1. But (5.37) yields that | un |k→ 0, n → ∞,

i.e. that Dαun → 0 in L2 for | α |= k. Since un converges in Hk−1 already, we conclude

that un converges in Hk. Let the limit of {un} in Hk be denoted by w. Since ∥ un ∥k= 1

⇒∥ w ∥k= 1. But since Dαun → 0 in L2, | α |= k, we conclude that Dαw = 0, | α |= k,

i.e. w ∈ Pk−1.
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Now, (5.37) also yields
∑

|α|<k

(∫
Ω
Dαun dx

)2 → 0, n→ ∞, i.e. that∫
Ω

Dαun dx→ 0, for | α |≤ k − 1.

We conclude, since un → w in Hk, that
∫
Ω
Dαw = 0 for | α |≤ k − 1. Since the

polynomial w ∈ Pk−1 satisfies
∫
Ω
Dαw = 0 for | α |≤ k − 1, the construction in (i)

yields that w = 0, a contradiction, since ∥ w ∥k= 1; q.e.d. �

5.3 Implementation of the finite element method

with P1 triangles

In this section we shall study the details of the implementation of the standard Galerkin

/ finite element method for a simple elliptic boundary–value problem on a polygonal

plane domain, based on the ideas of MODULEF, cf. Bernadou et al., 1985. We seek

u(x) = u(x1, x2) defined on Ω, where Ω is a convex, polygonal domain in R2, and

satisfying

−∆u+ a(x)u = f(x), x ∈ Ω,

u = 0, x ∈ ∂Ω.

 (5.38)

Here f , a are given, say continuous, functions on Ω with a ≥ 0. The weak formulation

of the problem is, as usual, to seek u ∈
0

H1 =
0

H1(Ω), such that∫
Ω

(∇u · ∇v + a(x)u v) dx =

∫
Ω

f v dx, ∀v ∈
0

H1. (5.39)

Let Sh be a finite–dimensional subspace of
0

H1. The standard Galerkin method for the

approximation of the solution of (5.39) consists in seeking uh ∈ Sh such that∫
Ω

(∇uh · ∇vh + a(x)uh vh) dx =

∫
Ω

f vh dx, ∀vh ∈ Sh. (5.40)

We take Sh to be the space of continuous functions on Ω that vanish on ∂Ω and are

polynomials of degree at most 1 on each triangle τ of a triangulation Th of Ω. (For

notation cf. Section 5.2). Accordingly, we refer to (5.40) as the “standard Galerkin /

finite element method with P1 triangles”.
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(i) Local degrees of freedom.

P
1
τ P

2
τ

P
3
τ

τ

On each triangle τ ∈ Th, uh is represented in terms of the local basis functions φτ
j (x),

j = 1, 2, 3, (which are P1 polynomials on τ such that φτ
j (P

τ
i ) = δij, 1 ≤ i, j ≤ 3) as

uh(x) =
3∑

j=1

φτ
j (x)uh(P

τ
j ), x ∈ τ. (5.41)

The values {uh(P τ
j )}, 1 ≤ j ≤ 3, coefficients of φτ

j (x) in the linear combination of the

{φτ
j (x)} in the r.h.s. of (5.41), are, in our case, the “local degrees of freedom” that

determine uh(x) uniquely on τ . (In general, there are Nτ degrees of freedom – not

all function values of uh necessarily – on each triangle τ . In our case Nτ = 3 ∀τ).

Introducing the 1× 3 matrix of local basis functions Φτ = Φτ (x) by

Φτ = [φτ
1(x), φ

τ
2(x), φ

τ
3(x)] (5.42)

and the 3× 1 vector

U τ = [uh(P
τ
1 ), uh(P

τ
2 ), uh(P

τ
3 )]

T (5.43)

of the local degrees of freedom, we may rewrite (5.41) as

uh(x) = Φτ (x)U τ . (5.44)

Let ∇uh = [∂uh

∂x1

∂uh

∂x2
]T denote the gradient of uh. Then, (5.41) gives

∂uh
∂xi

=
3∑

j=1

∂φτ
j

∂xi
uh(P

τ
j ), i = 1, 2,

i.e. that

∇uh(x) = DΦτ (x) · U τ , x ∈ τ, (5.45)

where DΦτ = DΦτ (x), x ∈ τ , denotes the 2× 3 matrix

DΦτ =

 ∂φτ
1

∂x1

∂φτ
2

∂x1

∂φτ
3

∂x1

∂φτ
1

∂x2

∂φτ
2

∂x2

∂φτ
3

∂x2

 . (5.46)
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The Galerkin equations (5.40) become, since Ω = ∪τ∈Thτ ,∑
τ∈Th

∫
τ

(∇uh · ∇vh + a(x)uh vh) dx =
∑
τ∈Th

∫
τ

f(x) vh dx, ∀vh ∈ Sh. (5.47)

We shall write (5.47) in matrix–vector form in terms of the local basis functions and

the local degrees of freedom {U τ} and {V τ} of uh and vh, respectively. Writing

uh = ΦτU τ , vh = ΦτV τ , x ∈ τ,

we have

uhvh = (ΦτU τ )(ΦτV τ ) = (V τ )T (Φτ )TΦτU τ , x ∈ τ.

∇uh · ∇vh = (DΦτU τ ) · (DΦτV τ ) = (DΦτV τ )T (DΦτU τ )

= (V τ )T (DΦτ )TDΦτU τ , x ∈ τ.

fvh = fΦτV τ = (ΦτV τ )T = (V τ )T (Φτ )Tf, x ∈ τ.

Using these expressions in (5.47) we have∑
τ∈Th

∫
τ

{
(V τ )T (DΦτ )TDΦτU τ + a(x)(V τ )T (Φτ )TΦτU τ

}
dx =

=
∑
τ∈Th

∫
τ

(V τ )T (Φτ )Tf(x) dx, ∀vh ∈ Sh. (5.48)

Let Kτ , M τ denote, respectively, the 3× 3 local stiffness and mass matrix. These are

given by the formulas

Kτ :=

∫
τ

(DΦτ )T DΦτ dx, (5.49)

M τ :=

∫
τ

a(x) (Φτ )T Φτ dx. (5.50)

Let also Aτ := Kτ + M τ , and bτ be the 3× 1 vector

bτ :=

∫
τ

f(x) (Φτ )T dx. (5.51)

Using these local quantities in (5.48) yields the desired matrix–vector form of (5.47):∑
τ∈Th

(V τ )T Aτ U τ =
∑
τ∈Th

(V τ )T bτ , ∀vh ∈ Sh. (5.52)
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(ii) The global - to - local degrees of freedom map.

i1
P

P
1
τ

{

i3
P

P
3
τ

{

i2
P

P
2
τ

{

τ

Suppose that the triangulation Th consists of N nodes (vertices) (including the nodes

on the boundary ∂Ω), that are denoted by Pi, i = 1, 2, . . . , N , in some global indexing

scheme. Then the vertices P τ
1 , P

τ
2 , P

τ
3 of of a given triangle τ ∈ Th correspond to the

points Pi1 , Pi2 , Pi3 , respectively, in the global enumeration. We would like to find an

efficient way of expressing the correspondence Pik → P τ
k . Specifically, we are realy

interested in expressing the local degrees of freedom, i.e. in our case the values uh(P
τ
k ),

k = 1, 2, 3, in terms of the global degrees of freedom, i.e. the values uh(Pi), i =

1, 2, . . . , N .

Let us consider an example: let Ω be the rectangle (0, α)×(0, β). Subdivide it in 20

rectangles of size ∆x1 ×∆x2, where ∆x1 =
α
5
, ∆x2 =

β
4
and then in 40 equal triangles

as shown, by bisecting the rectangles.

τ = 25
P

2
τ

{
P

7

P
3
τ

{P10

P
1
τ

{
P
6

9
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(0,0) (α,0)

(0,β)

We number the triangles τ from 1 to 40 as shown and introduce the following global

indexing scheme for the nodes: The interior nodes are the points Pi shown, with

i = 1, 2, . . . , 12, and the boundary nodes are the points Pi, i = 13, . . . , 30. Here N = 30,
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therefore. For example, the triangle with τ = 25 is defined by the nodes P6, P7 and P10

in the global numbering. These coincide with the local nodes P τ
1 , P

τ
2 , P

τ
3 , (τ = 25),

respectively. For τ = 25, let the local degrees of freedom be represented by the 3 × 1

vector U τ = [U τ
1 , U

τ
2 , U

τ
3 ]

T (U τ
j = uh(P

τ
j ), j = 1, 2, 3). The global degrees of freedom

uh(Pi), i = 1, 2, . . . , N = 30, are arranged in the 30 × 1 vector U = [U1, . . . , U30]
T .

Clearly, we have U τ = Gτ U , where Gτ is a 3 × 30 matrix whose elements are 0 or 1

(Boolean matrix). In our case, i.e. for τ = 25, we have


U τ
1

U τ
2

U τ
3

 =


0 0 0 0 0

6th

1
7th

0 0 0
10th

0 0 . . . 0

0 0 0 0 0 0 1 0 0 0 0 . . . 0

0 0 0 0 0 0 0 0 0 1 0 . . . 0





U1

U2

U3

...

U30


.

In general, let Th be the triangulation consisting of triangles {τ} that we label, abusing

notation a bit, as τ = 1, 2, . . . , J . For each τ , let

i = g(τ, j)

be the map that associates the local index j, 1 ≤ j ≤ 3, of the local vertices P τ
j to the

global index i, 1 ≤ i ≤ 30, of the corresponding points Pi. Then g is a function defined

on the set {1, 2, . . . , J} × {1, 2, 3} with values onto the set {1, 2, . . . , N} that can be

easily stored. In our example, the values of i for τ = 25 and j = 1, 2, 3 are

g(25, 1) = 6,

g(25, 2) = 7,

g(25, 3) = 10.

Let Gτ , for each τ , denote the 3×N matrix whose elements are given by

Gτ
kl = δg(τ,k),l 1 ≤ k ≤ 3, 1 ≤ l ≤ N, (5.53)

where δi,j is the Kronecker delta, i.e. δi,j = 1 if i = j, δi,j = 0 if i ̸= j. Then, the

relation between the global degrees of freedom vector U , Ui = uh(Pi), 1 ≤ i ≤ N , and

the local degrees of freedom vector U τ on τ , U τ
j = uh(P

τ
j ), j = 1, 2, 3, is expressed as

U τ = Gτ U. (5.54)
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Substituting (5.54), and the corresponding expression V τ = Gτ V , into (5.52), we have∑
τ∈Th

V T (Gτ )TAτGτU =
∑
τ∈Th

V T (Gτ )T bτ , ∀vh ∈ Sh

or, since V , U do not depend on τ ,

V T

{∑
τ∈Th

(Gτ )TAτGτ

}
U = V T

∑
τ∈Th

(Gτ )T bτ , ∀vh ∈ Sh.

Hence, (5.52) in terms of global degrees of freedom may be written as

V T AU = V T b, ∀V ∈ RN such that vh ∈ Sh, (5.55)

where A is the N ×N matrix defined by

A :=
∑
τ∈Th

(Gτ )TAτGτ , (5.56)

and b the N × 1 vector given by

b :=
∑
τ∈Th

(Gτ )T bτ . (5.57)

(iii) Assembly of A and b.

The matrix A and the vector b defined by (5.56) and (5.57) should be assembled from

their local contributions Aτ and bτ . In doing this we should not form Gτ and perform

the indicated matrix–matrix and matrix–vector operations, since this would be very

costly in terms of storage and number of operations. Instead, recalling the definition

(5.53) of Gτ , we have, for the vector b = {bi}, 1 ≤ i ≤ N :

bi =
∑
τ∈Th

(
(Gτ )T bτ

)
i
=
∑
τ∈Th

(
3∑

j=1

Gτ
jib

τ
j

)
=
∑
τ∈Th

(
3∑

j=1

δg(τ,j),ib
τ
j

)
.

We conclude that the following algorithm computes the bi: For i = 1, 2, . . . , N do:

bi = 0
For i = 1, 2, . . . , N do:

For τ ∈ Th do: For j = 1, 2, 3 do:

bi = bi + δg(τ,j),i b
τ
j .
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Since δg(τ,j),i = 0 unless i = g(τ, j), the last term contributes only to the bi with

i = g(τ, j). Hence, the above algorithm can be written, more compactly, in the form: For i = 1, 2, . . . , N do:

bi = 0
For τ ∈ Th do: For j = 1, 2, 3 do:

bg(τ,j) = bg(τ,j) + bτj ,

(5.58)

i.e. the bτj is added to the previous value of that bi that has i = g(τ, j). Similarly by

(5.56) we have

Aij =
∑
τ∈Th

(
3∑

k,l=1

Gτ
kiA

τ
kl Gτ

lj

)
=
∑
τ∈Th

(
3∑

k,l=1

δg(τ,k),iA
τ
kl δg(τ,l),j

)
,

i.e. the term Aτ
kl contributes to the element Aij if i = g(τ, k) and j = g(τ, l). Conse-

quently, the following algorithm may be used to assemble the matrix A:
For i = 1, 2, . . . , N do: For j = 1, 2, . . . , N do:

Aij = 0
For τ ∈ Th do:

For k = 1, 2, 3 do: For l = 1, 2, 3 do:

Ag(τ,k),g(τ,l) = Ag(τ,k),g(τ,l) + Aτ
kl.

(5.59)

The algorithms (5.58) and (5.59) implement the assembly of the (global) matrix A and

vector b in the equations (5.55) from their local parts Aτ and bτ .

(iv) Reduction of (5.55) to a linear system of equations.

The components of the global vector of degrees of freedom U ∈ RN , may be ordered

(although this is not necessary always) so that U be of the form

U = [U1, U2, . . . , UN−N0 , UN−N0+1, . . . , UN ]
T ,

so that the degrees of freedom U1, U2, . . . , UN−N0 are the values of uh at the interior

nodes P1, P2, . . . , PN−N0 and UN−N0+1, . . . , UN are the values of uh at the N0 boundary

nodes PN−N0+1, . . . , PN . (In the example on p. 114, N0 = 18, N = 30).
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Then, writing

U =

 UI

UII

 , with UI ∈ RN−N0 , UII ∈ RN0 ,

and partitioning conformably V , A and b in (5.55), we can write it in the form

[V T
I V T

II ]

 AI,I AI,II

AII,I AII,II

 UI

UII

 = [V T
I V T

II ]

 bI

bII

 , ∀vh ∈ Sh. (5.60)

Since Sh is such that vh ∈ Sh ⇔ VI ∈ RN−N0 , VII = 0 in RN0 , and since uh ∈ Sh as

well, we rewrite the above as

V T
I AI,I UI = V T

I bI ∀VI ∈ RN−N0 ,

which is of course equivalent to the (N −N0)× (N −N0) system

AI,I UI = bI . (5.61)

The reduction of the N × N system (5.60) to the system (5.61) is usually referred to

as “taking into account the boundary conditions of the problem”.

(v) Computing Kτ , M τ and bτ .

There remains one important issue of implementation, namely the computation of the

local stiffness and mass matrices Kτ and M τ , as well as the computation of the (local)

bτ , cf. (5.49)–(5.51). This can be accomplished efficiently by letting τ be the affine map

of a fixed reference triangle τ̂ and transforming the integrals in the formulas (5.49)–

(5.51) to τ̂ . To this end we will use the notation introduced in Section 5.2.

P
2
τ

P
3
τ

P
1
τ

x 2
2

x 1
2(   ,    )

x 1
1

x 2
1(   ,    )

x 1
3

x
3
2(   ,    )

P
2

^ (1,0)

P
3

^ (0,1)

P
1
^ (0,0)

Fτ

τ̂

x 1

x 2

τ

Let P̂1P̂2P̂3 be the unit right triangle with vertices (0,0), (1,0), (0,1). Let τ ∈ Th

be an arbitrary triangle in the triangulation with vertices P τ
j , 1 ≤ j ≤ 3, where

135



P τ
j = (xj1, x

j
2), j = 1, 2, 3. Consider the affine map Fτ that maps τ̂ onto τ and is

defined by the requirements that P τ
j = Fτ (P̂j), j = 1, 2, 3. Then Fτ is of the form

x = Fτ (x̂) = Bτ x̂ + cτ , (5.62)

where Bτ is the 2× 2 invertible matrix

Bτ =

 x21 − x11 x31 − x11

x22 − x12 x32 − x12


and cτ = (x11, x

1
2)

T . Notice that | detBτ |= 2 | τ |:= 2 area(τ).

Recall that functions on τ̂ are transformed to the corresponding functions on τ by

v̂(x̂) = v(x), whenever x = Fτ (x̂). I.e. v̂(x̂) = v(Fτ (x̂)) and v(x) = v̂(F−1
τ (x)). (Under

our assumption on Bτ , the map Fτ is invertible, with x̂ = F−1
τ (x) = B−1

τ x − B−1
τ cτ ).

(In our example (p. 114) the triangle τ = 25 has

Bτ =

 ∆x1 0

0 ∆x2

 , cτ =

 2∆x1

2∆x2

 , where ∆x1 =
α

5
, ∆x2 =

β

4
).

Let φ̂i(x̂), 1 ≤ i ≤ 3 be the local basis functions on the triangle τ̂ , i.e. let φ̂i ∈ P1 be

defined by the relations φ̂i(P̂j) = δij. Then, we easily see that

φ̂1(x̂1, x̂2) = 1− x̂1 − x̂2,

φ̂2(x̂1, x̂2) = x̂1,

φ̂3(x̂1, x̂2) = x̂2.

It is easy to see that the corresponding local basis functions on τ , i.e. the elements of

P1 that satisfy φτ
i (P

τ
j ) = δij, 1 ≤ i, j ≤ 3, are given by the relations

φτ
i (x) = φ̂i(x̂), whenever x = Fτ (x̂).

Defining the 1× 3 matrix of reference basis functions Φ̂ by

Φ̂ = Φ̂(x̂) = [φ̂1(x̂), φ̂2(x̂), φ̂3(x̂)]
T , (5.63)

we see that Φτ (x) = Φ̂(x̂), whenever x = Fτ (x̂), where Φ
τ (x) is the matrix of the local

basis functions on τ defined by (5.42).
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We now compute the quantities bτ , M τ and Kτ in terms of integrals of functions

defined on τ̂ . We already seen that the area element transforms so that dx =| detBτ | dx̂

i.e. dx = 2 | τ | dx̂. Then we have

bτ =

∫
τ

f(x) (Φτ (x))T dx = 2 | τ |
∫
τ

f̂(x̂) (Φ̂(x̂))T dx̂. (5.64)

Hence, to compute bτ we must evaluate the integral on τ̂ of the vector–valued function

f(Fτ (x̂))(Φ̂(x̂))
T , where Φ̂ is defined in (5.63). Unless f̂(x̂) is a very simple function,

such integrals are evaluated numerically by an integration rule on τ̂ . A simple but

effective rule is the barycenter rule, which is exact for P1 polynomials and states that∫
τ̂

v̂(x̂) dx̂ ∼= | τ̂ | v̂(M̂),

where | τ̂ |= area(τ̂) = 1/2 and M̂ = (1/3, 1/3) is the barycenter of τ̂ . Hence using∫
τ̂

v̂(x̂) dx̂ ∼=
1

2
v̂(1/3, 1/3)

in (5.64) we see that

bτ ∼= | τ | f̂(1/3, 1/3)


1/3

1/3

1/3

 , i.e. bτi
∼=

| τ |
3

f(Fτ (1/3, 1/3)), 1 ≤ i ≤ 3.

Similarly, we may easily compute the elements of M τ . Since

M τ =

∫
τ

a(x) (Φτ (x))T Φτ (x) dx = 2 | τ |
∫
τ̂

â(x̂) (Φ̂(x̂))T Φ̂(x̂) dx̂,

we have, for 1 ≤ i, j ≤ 3

M τ
ij = 2 | τ |

∫
τ̂

a(Fτ (x̂)) φ̂i(x̂) φ̂j(x̂) dx̂.

(If numerical integration with the barycenter rule is used, we have that

M τ
ij
∼=

| τ |
9

a(Fτ (1/3, 1/3)), 1 ≤ i, j ≤ 3).

The computation of

Kτ =

∫
τ

[DΦτ (x)]T [DΦτ (x)] dx
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requires transforming the matrix DΦτ . We have, for 1 ≤ i, j ≤ 3

(DΦτ (x))ij =
∂φτ

j (x)

∂xi
=

∂

∂xi
(φ̂j(x̂)) =

3∑
k=1

∂

∂x̂k
(φ̂j(x̂))

∂x̂k
∂xi

.

In analogy to (5.46) let D̂Φ̂(x̂) be the 2× 3 matrix with elements

(D̂Φ̂(x̂))ij =
∂φ̂j(x̂)

∂x̂i
. (5.65)

In addition, note that from x̂ = B−1
τ x−B−1

τ cτ , we infer that

∂x̂k
∂xi

= (B−1
τ )ki.

Hence,

(DΦτ (x))ij =
3∑

k=1

(B−1
τ )ki (D̂Φ̂(x̂))kj, 1 ≤ i, j ≤ 3,

i.e.

DΦτ (x) = (B−1
τ )T D̂Φ̂(x̂). (5.66)

We conclude that

Kτ = 2 | τ |
∫
τ̂

(D̂Φ̂(x̂))T B−1
τ (B−1

τ )T D̂Φ̂(x̂) dx̂.

The quantities inside the integral are independent of x̂. Indeed,

D̂Φ̂(x̂) := J =

 −1 1 0

−1 0 1

 ,

and therefore

Kτ = | τ | JT (BT
τ Bτ )

−1 J.
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Chapter 6

The Galerkin Finite Element

Method for the Heat Equation

6.1 Introduction. Elliptic projection

In this chapter we shall construct and analyze Galerkin finite element methods for the

following model parabolic initial-boundary-value problem. Let Ω be a bounded domain

in Rd, d = 1, 2, or 3. We seek a real function u = u(x, t), x ∈ Ω, t ≥ 0, such that
ut −∆u = f, x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), x ∈ Ω.

(6.1)

Here f = f(x, t) and u0 are given real functions on Ω × [0,∞) and Ω, respectively.

We shall assume that the initial-boundary-value problem (ibvp) (6.1) has a unique

solution which is sufficiently smooth for the purposes of the analysis of its numerical

approximation. For the theory of existence-uniqueness and regularity of problems

like (6.1) see [2.2] - [2.5]. In this chapter we will just introduce some basic issues of

approximating ibvp’s like (6.1) with Galerkin methods. The reader is referred to [3.6]

and [3.7] for many other related topics.

The spatial approximation of functions defined in Ω will be effected by a Galerkin

finite element method. For this purpose we suppose that for h > 0 we have a finite-

dimensional subspace Sh of
0

H1 =
0

H1(Ω) such that, for integer r = 2 and h sufficiently
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small, there holds

inf
χ∈Sh

{∥v − χ∥+ h∥∇(v − χ)∥} ≤ Chs∥v∥s for v ∈ Hs ∩
0

H1, 2 ≤ s ≤ r, (6.2)

where C is a positive constant independent of h and v. (In (6.2) we have used the

notation ∥∇v∥ ≡ |v|1 ≡
(∑d

i=1 ∥
∂v
∂xi

∥2
)1/2

=
(∫

Ω
∇v · ∇v dx

)1/2 ≡ (∇v,∇v)1/2). For

example, (6.2) holds in R2 when Sh =
{
ϕ ∈ C(Ω), ϕ

∣∣
τ
∈ P1 ∀τ ∈ Th, ϕ

∣∣
Ω−Ωh

= 0
}
,

where Ωh is a polygonal domain included in Ω and Th a regular triangulation of Ωh

with triangles τ with h = max(diam τ) whose vertices on ∂Ωh lie on ∂Ω, cf. [3.5].

Given v ∈ H1, we define Rhv, the elliptic projection of v in Sh, by the linear mapping

Rh : H1 → Sh, such that

(∇Rhv,∇χ) = (∇v,∇χ), ∀χ ∈ Sh . (6.3)

Given v ∈ H1 it is easy to see that Rhv exists uniquely in Sh and satisfies ∥∇Rhv∥ 5
∥∇v∥. The following error estimates follow from (6.2) and (6.3). (We have essentially

seen their proof in Section 5.1 but we repeat it here for the convenience of the reader).

Proposition 6.1. Suppose that v ∈ Hs ∩
0

H1, where 2 ≤ s ≤ r. Then, there exists a

constant C independent if v and h such that

∥Rhv − v∥+ h∥∇(Rhv − v)∥ ≤ C hs∥v∥s , 2 ≤ s ≤ r. (6.4)

Proof. We have, by (6.3)

∥∇(Rhv − v)∥2 = (∇(Rhv − v),∇Rhv −∇v)

= − (∇(Rhv − v),∇v) = (∇(Rhv − v),∇χ−∇v)

for any χ ∈ Sh. Hence, by (6.2)

∥∇(Rhv − v)∥2 5 ∥∇(Rhv − v)∥ ∥∇(v − χ)∥ ≤ C∥∇(Rhv − v)∥ hs−1∥v∥s ,

from which the H1 estimate in (6.4) follows. For the L2 estimate we use Nitsche’s trick.

Given g ∈ L2 = L2(Ω), consider the bvp−∆ψ = g in Ω

ψ = 0 on ∂Ω .
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This problem has a unique solution ψ ∈ H2 ∩
0

H1 such that ∥ψ∥2 ≤ C ∥∆ψ∥ = C ∥g∥

(Elliptic regularity). For v ∈ Hs ∩
0

H1, 2 ≤ s ≤ r, we have by Gauss’s theorem and

(6.3)

(Rhv − v, g) = −(Rhv − v,∆ψ) = (∇(Rhv − v),∇ψ) = (∇(Rhv − v),∇(ψ − χ))

for any χ ∈ Sh. Hence, the H1 estimate in (6.4), (6.2), and elliptic regularity imply

that

(Rhv − v, g) 5 Chs−1∥v∥sh ∥ψ∥2 ≤ Chs∥v∥s∥g∥ .

Taking g = Rhv − v gives that the L2 estimate in (6.4). �

6.2 Standard Galerkin semidiscretization

(In this and in the sections 6.2 and 6.3 we generally follow Thomée, [3.6, Ch.1])

Multiplying the pde in (6.1) by a function v ∈
0

H1, and integrating over Ω using

Gauss’s theorem, we see that

(ut, v) + (∇u,∇v) = (f, v), t ≥ 0 . (6.5)

Motivated by (6.5), for each t ≥ 0 we approximate u(t) = u(·, t) by a function uh(t) =

uh(·, t) in Sh, called the (standard Galerkin) semidiscrete approximation (or spatial

discretization) of u in Sh, and defined by the equations (uht, ϕ) + (∇uh,∇ϕ) = (f, ϕ), ∀ϕ ∈ Sh, t ≥ 0,

uh(0) = u0h ,
(6.6)

where u0h is an approximation of u0 in Sh to be specified later.

The equations (6.6), that will be called the (standard Galerkin) semidiscretization of

(6.1) in Sh, are equivalent to a linear system of ordinary differential equations (ode’s).

To see this, let {ϕj}Nh
j=1 be a basis of Sh, where Nh = dimSh , and let

uh(x, t) =

Nh∑
j=1

αj(t)ϕj(x)
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be the unknown semidiscrete approximation of u. Substituting this expression for uh

in (6.6) and taking ϕ = ϕk, k = 1, . . . , Nh, we see that
Nh∑
j=1

α′
j(t)(ϕj, ϕk) + αj(t)(∇ϕj,∇ϕk) = (f, ϕk), 1 ≤ k ≤ Nh, t ≥ 0,

αj(0) = α0
j , 1 ≤ j ≤ Nh,

where u0h =
∑Nh

j=1 α
0
jϕj. Hence the vector of unknowns α = α(t) = [α1, . . . , αNh

]T

satisfies the initial-value problemGα̇+ Sα = F (t), t ≥ 0,

α(0) = α0,
(6.7)

whereG = (Gij) is theNh×Nh mass (Gram) matrix defined byGij = (ϕj, ϕi), S = (Sij)

the Nh×Nh stiffness matrix given by Sij = (∇ϕj,∇ϕi), and Fi = (f, ϕi). As we know,

G and S are real, symmetric, positive definite matrices. In particular G is invertible

and the ivp (6.7) has a unique solution α(t) for all t = 0. We conclude that the Galerkin

semidiscrete approximation uh exists uniquely for all t ≥ 0.

For each t > 0 choose ϕ = uh in (6.6). Then

(uht, uh) + ∥∇uh∥2 = (f, uh) .

Since (uht, uh) =
1
2

∫
Ω
∂t (u

2
h(·, t)) dx = 1

2
d
dt
∥uh(t)∥2, we have

1

2

d

dt
∥uh∥2 + ∥∇uh∥2 = (f, uh) 5 ∥f∥ ∥uh∥, t ≥ 0 .

Recall the Pointcarè-Friedrichs inequality, i.e. that

∥v∥ ≤ Cp ∥∇v∥, v ∈
0

H1(Ω), (6.8)

valid for some Cp = Cp(Ω). Using (6.8) in the above gives

1

2

d

dt
∥uh∥2 + ∥∇uh∥2 ≤ Cp ∥f∥ ∥∇uh∥ ≤

C2
p

2
∥f∥2 + 1

2
∥∇uh∥2,

from which
d

dt
∥uh∥2 + ∥∇uh∥2 ≤ C2

p ∥f∥2, t ≥ 0 .

We conclude that for any t > 0 there holds that

∥uh(t)∥2 +
∫ t

0

∥∇uh(s)∥2ds 5 ∥u0h∥2 + C2
p

∫ t

0

∥f(s)∥2ds . (6.9)

In particular, for f = 0, we get ∥uh(t)∥ ≤ ∥u0h∥ for t = 0, i.e. that uh is stable in L2.

We now prove the main error estimate of this section.
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Theorem 6.1. Let uh, u be the solutions of (6.6), (6.1), respectively. Then, there

exists a constant C > 0, independent of h such that

∥uh(t)− u(t)∥ 5 ∥u0h − u0∥+ Chr
(
∥u0∥r +

∫ t

0

∥ut∥rds
)
, t ≥ 0 . (6.10)

Proof. Following Wheeler (SIAM J. Numer. Anal., 10 (1973), 723-759), we write

uh − u = θ + ρ , (6.11)

with θ = uh − Rhu, where Rh is the elliptic projection operator onto Sh defined by

(6.3), and ρ = Rhu− u. Note that θ ∈ Sh for t ≥ 0, and in order to estimate ∥uh − u∥

we should estimate ∥θ∥ and ∥ρ∥. For the latter, we have

∥ρ(t)∥ = ∥Rhu(t)− u(t)∥ ≤ Chr∥u(t)∥r, t ≥ 0 ,

by (6.4). Since u(x, t) = u0(x) +
∫ t

0
ut(x, s) ds, assuming u0 ∈ Hr ∩

0

H1 and ut ∈

Hr ∩
0

H1 for t ≥ 0 with
∫ t

0
∥ut∥rds < ∞, we see that u ∈ Hr ∩

0

H1 for t ≥ 0 and

∥u(t)∥r ≤ ∥u0∥r +
∫ t

0
∥ut∥r ds.

Therefore

∥ρ(t)∥ 5 Chr
(
∥u0∥r +

∫ t

0

∥ut∥rds
)

for t ≥ 0 . (6.12)

In order to get an equation for θ note that for t ≥ 0 and any χ ∈ Sh we have

(θt, χ) + (∇θ,∇χ) = (uht, χ) + (∇uh,∇χ)− ((Rhu)t, χ)− (∇Rhu,∇χ) .

Hence, using (6.6), (6.3), and the fact that ((Rhu)t, χ) = (Rhut, χ) for χ ∈ Sh (this

follows from (6.3) by differentiating both sides with respect to t), we have

(θt, χ) + (∇θ,∇χ) = (f, χ)− (Rhut, χ)− (∇u,∇χ) .

Therefore, by (6.5) and the definition of ρ, we see that

(θt, χ) + (∇θ,∇χ) = −(ρt, χ), ∀χ ∈ Sh, t ≥ 0 . (6.13)

Given t > 0, take χ = θ in the above to obtain

1

2

d

dt
∥θ∥2 + ∥∇θ∥2 = −(ρt, θ) . (6.14)

We would like to argue now that 1
2

d
dt
∥θ∥2 = ∥θ∥ d

dt
∥θ∥ and conclude from (6.14) that

∥θ(t)∥ ≤ ∥θ(0)∥+
∫ t

0
∥ρt∥ds, but we don’t know whether d

dt
∥θ(t)∥ exists if θ = 0 for some
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t. Therefore we argue as follows: For all ε > 0 we have from (6.14) 1
2

d
dt
∥θ∥2 = 1

2
d
dt
(∥θ∥2+

ε2) 5 ∥ρt∥ ∥θ∥. Hence
√
∥θ∥2 + ε2 d

dt

√
∥θ∥2 + ε2 5 ∥ρt∥ ∥θ∥ ≤ ∥ρt∥

√
∥θ∥2 + ε2. There-

fore, d
dt

√
∥θ∥2 + ε2 ≤ ∥ρt∥ for all t > 0 , from which

√
∥θ(t)∥2 + ε2 ≤

∫ t

0
∥ρt∥ds +√

∥θ(0)∥2 + ε2. Letting ε→ 0 we obtain the desired inequality

∥θ(t)∥ ≤
∫ t

0

∥ρt∥ds+ ∥θ(0)∥, t ≥ 0 . (6.15)

Since ρt = Rhut − ut, we have
∫ t

0
∥ρt∥ds ≤ Chr

∫ t

0
∥ut∥rds form (6.4). On the other

hand,

∥θ(0)∥ 5 ∥u0h − u0∥+ ∥Rhu
0 − u0∥ ≤ ∥u0h − u0∥+ Chr∥u0∥r .

Therefore, (6.15), (6.11) and (6.12) yield the desired estimate (6.10). �

Remarks

a. Theorem 6.1, and subsequent error estimates, depend on assumptions of sufficient

regularity of the solution u of the continuous problem. Such assumptions will not

normally be explicitly made in the statements of theorems but will appear in the con-

clusions or in the course of proofs of the error estimates. For example, in the case of

the estimate at hand the proof requires that u0 ∈ Hr ∩
0

H1 and ut(·, s) ∈ Hr ∩
0

H1 for

0 ≤ s ≤ t. These assumptions guarantee in particular that the bound of ∥uh(t)−u(t)∥

in (6.10) is of the form ∥u0h − u0∥+O(hr) where the O(hr) term is of optimal order of

convergence in L2 for Sh, as evidenced by the approximation property (6.2).

b. The initial value u0h may be chosen in various ways so that ∥u0h − u0∥ = O(hr). For

example, we could choose it as u0h = Rhu
0 or u0h = Pu0 (the L2 projection of u0 onto

Sh) or equal to an interpolant of u0 in Sh. For example, if one of the first two choices

is made, (6.2) and (6.4) yield that ∥u0h − u0∥ ≤ Chr∥u0∥r, provided u0 ∈ Hr ∩
0

H1, and

the overall optimal-order accuracy O(hr) is preserved in the right-hand side of (6.10).

Exercise 1. In the proof of Theorem 6.1 take in (6.11) uh − u = θ + ρ, where, for

example, θ = uh−Pu, where P is the L2-projection operator onto Sh, or θ = uh− Ihu,

where Ihu is an interpolant of u in Sh, satisfying ∥v− Ihv∥+h∥∇(v− Ihv)∥ 5 Chr∥v∥r
for v ∈ Hr ∩

0

H1. For these choices show that the best L2-error estimate that one

could obtain is of O(hr−1), i.e. of suboptimal order. Try to understand from these
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considerations why Wheeler’s choice θ = uh −Rhu is crucial.

We now prove an optimal-order H1 estimate for uh.

Proposition 6.2. Under the hypotheses of Theorem 6.1, there holds

∥∇(uh(t)−u(t))∥ 5 ∥∇(u0h−u0)∥+Chr−1

[
∥u0∥r + ∥u(t)∥r +

(∫ t

0

∥ut∥2r−1ds

)1/2
]
, t ≥ 0.

(6.16)

Proof: As before, we write ∇(uh−u) = ∇θ+∇ρ, where θ = uh−Rhu, ρ = Rhu−u.

Note that ∥∇ρ∥ ≤ Chr−1∥u∥r. From (6.13) with χ = θt it follows that

∥θt∥2 +
1

2

d

dt
∥∇θ∥2 = −(ρt, θt) 5

1

2
∥ρt∥2 +

1

2
∥θt∥2 .

Therefore
d

dt
∥∇θ∥2 5 ∥ρt∥2, t ≥ 0

form which

∥∇θ(t)∥ ≤ ∥∇θ(0)∥+
(∫ t

0

∥ρt∥2ds
)1/2

, t ≥ 0 .

We conclude that

∥∇(uh − u)∥ ≤ ∥∇θ(0)∥+
(∫ t

0

∥ρt∥2ds
)1/2

+ ∥∇ρ∥

≤ ∥∇(u0h − u0)∥+ ∥∇(Rhu
0 − u0)∥+ ∥∇ρ∥+ Chr−1

(∫ t

0

∥ut∥2r−1

)1/2

,

from which (6.16) follows. �

Exercise 2. Consider instead of (6.1) the initial-boundary value problem with Neu-

mann boundary conditions:
ut −∆u = f, x ∈ Ω, t ≥ 0,

∂u

∂n
= 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), x ∈ Ω .

Construct the standard Galerkin semidiscretization for this problem in a finite-dimensional

subspace Sh of H1 and prove an analog of Theorem 6.1. (Define now an elliptic projec-

tion Rh : H1 → Sh by the equations a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh for v ∈ H1, where
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a(v, w) = (∇v,∇w) + (v, w) for v, w ∈ H1. )

Exercise 3. Generalize the results of this section to the case of the initial-boundary

value problem with variable coefficients
ut −

d∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a0(x)u = f(x, t), x ∈ Ω, t ≥ 0,

u = 0 on Ω, t ≥ 0,

u(x, 0) = u0(x), x ∈ Ω,

where the functions aij satisfy aij(x) = aji(x), x ∈ Ω and
∑d

i,j=1 aijξiξj ≥ c0
∑d

i=1 ξ
2
i ,

∀x ∈ Ω, ∀ξ = (ξ1, . . . , ξd) ∈ Rd, for some positive constant c0 independent of x and ξ,

i.e. when the matrix-valued function aij is symmetric and uniformly positive definite

for x ∈ Ω, and where a0(x) ≥ 0, x ∈ Ω. Assume that the coefficients aij, a0 are smooth

enough on Ω. The weak formulation of this ibvp is to find u ∈
0

H1 for t ≥ 0 such that (ut, v) + a(u, v) = (f(t), v), ∀v ∈
0

H1, t ≥ 0,

u(0) = u0,

where a(u, v) :=
∑d

i,j=1

∫
Ω
aijuvdx +

∫
Ω
a0uv dx. (Establish first that there exist pos-

itive constants C1, C2 such that |a(v, w)| ≤ C1∥v∥1∥w∥1 ∀v, w ∈
0

H1, and a(v, v) ≥

C2∥v∥21 ∀v ∈
0

H1, and introduce now the elliptic projection of v ∈
0

H1 onto Sh by

a(Rhv, χ) = a(v, χ) ∀χ ∈ Sh. Use the Lax-Milgram theorem and Nitche’s trick to

prove analogous properties of Rh to those of Section 6.1, assuming elliptic regularity,

i.e. that ∥u∥2 ≤ C∥f∥ holds for the associated elliptic bvp
−

d∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a0(x)u = f(x), x ∈ Ω̃,

u = 0 on ∂Ω . )
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6.3 Full discretization with the implicit Euler and

the Crank-Nicolson method

To solve the o.d.e. system (6.6) (or (6.7)) we need to discretize it in t and obtain

a fully discrete method. This may be done by various time-stepping techniques. In

this section we shall examine two of them, the implicit Euler and the Crank-Nicolson

methods, that are ’unconditionally stable’ in a sense that we shall make precise.

Let ∆t = k be the length of the (uniform) timestep and tn = nk, n = 0, 1, 2, . . ..

The implicit Euler full discretization of (6.16) is defined as follows. We seek for n =

0, 1, 2, . . . approximations Un ∈ Sh of uh(t
n) that satisfy

(
Un − Un−1

k
, χ

)
+ (∇Un,∇χ) = (fn, χ), ∀χ ∈ Sh, n ≥ 1,

U0 = u0h,

(6.17)

where fn = f( · , tn).

Finding Un for n ≥ 1, given Un−1, requires solving a linear system for the coefficients

of Un with respect to the basis {ϕj}Nh
j=1 of Sh. Let Un =

∑Nh

i=1 α
n
i ϕi, where αn =

(αn
1 , . . . , α

n
Nh

) ∈ RNh . Then, putting χ = ϕj, 1 ≤ j ≤ Nh, in (6.17) gives

(G+ kS)αn = Gαn−1 + kF n, n ≥ 1, (6.18)

where F n
i = (fn, ϕi), 1 ≤ i ≤ Nh. Thus, computing αn requires forming the right-

hand side of (6.18) and solving a Nh×Nh linear system with the matrix G+kS, which

is symmetric positive definite, and has the sparsity structure of G and S. If a direct

method, like Cholesky’s method, is used to solve this linear system, the LLT analysis

of G + kS may be done only once and αn computed for each n using two backsolves

with L and LT. In more than one spatial dimensions such linear systems are usually

solved by a preconditioned conjugate-gradient type method.

Putting χ = Un in (6.17) gives

∥Un∥2 + k ∥∇Un∥2 = (Un−1, Un) + k(fn, Un) 5
(
∥Un−1∥+ k∥fn∥

)
∥Un∥ .

Hence, ∥Un∥ ≤ ∥Un−1∥+ k∥fn∥, for n = 1, 2, . . .. This implies that

∥Un∥ ≤ ∥U0∥+ k
n∑

j=1

∥f j∥, n = 1, 2, . . .
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If f = 0 we see that ∥Un∥ ≤ ∥U0∥, i.e. that the implicit Euler scheme is L2 -stable. In

fact for each n we have ∥Un∥ 5 ∥Un−1∥, i.e. the L2 norm of Un is non-increasing. In

particular, if fn = 0, Un−1 = 0, we see that Un = 0, i.e. that the homogenous linear

system of equations of the form (6.18) has only the trivial solution, implying that (6.18)

has a unique solution; this is an alternative to the matrix argument used previously

to show the same result. Note that the L2 stability of the scheme was proved without

any assumption on the timestep k, i.e. that the scheme (6.17) is unconditionally stable

in L2.

As expected, the implicit Euler method is first-order accurate in the time variable

as the following estimate suggests.

Theorem 6.2. Let Un, u(t) = u(·, t), be the solutions of (6.17), (6.1), respectively.

Then, there exists a positive constant C, independent of h, k, and n, such that for

n ≥ 0

∥Un − u(tn)∥ 5 ∥u0h − u0∥+ Chr
[
∥u0∥r +

∫ tn

0

∥ut∥rds
]
+ k

∫ tn

0

∥utt∥ds . (6.19)

Proof: As in the proof of Theorem 6.1 we write Un − u(tn) = θn + ρn, where θn =

Un −Rhu(t
n), ρn = Rhu(t

n)− u(tn).

Using (6.4) we see that

∥ρn∥ ≤ C hr∥u(tn)∥r ≤ C hr
[
∥u0∥r +

∫ tn

0

∥ut∥rds
]
, (6.20)

and it remains to estimate ∥θn∥. Let ∂Un := 1
k
(Un − Un−1). By (6.17), (6.5) and for

χ ∈ Sh we have

(∂θn, χ) + (∇θn,∇χ) =(∂Un, χ) + (∇Un,∇χ)− (∂Rhu(t
n), χ)− (∇Rhu(t

n),∇χ)

=(f(tn), χ)− (∂Rhu(t
n), χ)− (∇u(tn),∇χ)

=(ut(t
n)−Rh∂u(t

n), χ),

i.e.

(∂θn, χ) + (∇θn,∇χ) = −(ωn, χ), ∀χ ∈ Sh, n ≥ 1, (6.21)

where

ωn =Rh∂u(t
n)− ut(t

n)

=(Rh − I)∂u(tn) + (∂u(tn)− ut(t
n)) =: ωn

1 + ωn
2 . (6.22)
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Putting χ = θn in (6.21) gives

(∂θn, θn) + ∥∇θn∥2 ≤ ∥ωn∥ ∥θn∥ , i.e.

∥θn∥2 − (θn−1, θn) ≤ h ∥ωn∥ ∥θn∥ , from which

∥θn∥ 5 ∥θn−1∥+ k ∥ωn∥, n ≥ 1 .

Therefore, in view of (6.22), summation with respect to n gives

∥θn∥ 5 ∥θ0∥+ k

n∑
j=1

∥ωj
1∥+ k

n∑
j=1

∥ωj
2∥, n ≥ 1 . (6.23)

Now

ωj
1 =(Rh − I)∂u(tj) = (Rh − I)

1

k
(u(tj)− u(tj−1))

=(Rh − I)
1

k

∫ tj

tj−1

ut(s)ds =
1

2

∫ tj

tj−1

(Rh − I)ut(x)ds .

Therefore by (6.4)

∥ω1
j∥ ≤ C

hr

k

∫ tj

tj−1

∥ut∥rds, giving

k

n∑
j=1

∥ωj
1∥ ≤ C hr

∫ tn

0

∥ut∥rds . (6.24)

For the last term in (6.23) we note

ωj
2 = ∂u(tj)− ut(t

j) =
1

k

(
u(tj)− u(tj−1)

)
− ut(t

j) .

For a real function v = v(t) recall Taylor’s theorem with integral remainder:

v(t) = v(a) + (t− a)v′(a) + . . .+
(t− a)p

p!
v(p)(a) +

1

p!

∫ t

a

(t− s)pv(p+1)(s)ds .

Hence

u(tj−1) = u(tj)− kut(t
j) +

∫ tj−1

tj
(tj−1 − s)utt(s)ds .

We conclude

ωj
2 = −1

k

∫ tj−1

tj
(tj−1 − s)utt(s)ds ,

from which

∥ωj
2∥ ≤ 1

k

∫ tj

tj−1

(s− tj−1)∥utt(s)∥ds 5
∫ tj

tj−1

∥utt(s)∥ds ,
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yielding

k
n∑

j=1

∥ωj
2∥ 5 k

∫ tn

0

∥utt(s)∥ds . (6.25)

Since ∥θ0∥ = ∥U0 − Rhu
0∥ ≤ ∥u0h − u0∥ + C hr∥u0∥r, we conclude from (6.23), (6.24),

(6.25) that

∥θn∥ 5 ∥u0h − u0∥+ C hr
[
∥u0∥r +

∫ tn

0

∥ut∥rds
]
+ k

∫ tn

0

∥utt(s)∥ds, n ≥ 0,

which, in view of the inequality ∥Un − u(tn)∥ ≤ ∥θn∥+ ∥ρn∥ and (6.20) gives (6.19).

Remark. The inequality (6.23) is essentially a stability inequality for the ‘error’ equa-

tion (6.21), whereas the estimates (6.24) and (6.25) are bounds on the spatial and

temporal ‘truncation’ errors in the right-hand side of (6.23) and express the consis-

tency of the fully discrete scheme in that the tend to zero as h → 0, k → 0 under

the implied regularity assumptions on u. In fact, they imply that the spatial accuracy

of the scheme in L2 is of O(hr) and the temporal accuracy of O(k). Thus the proof

of Theorem 6.2 is an illustration of the general principle that ‘stability + consistency

⇒ convergence’. Such a statement has to be verified in any given particular case and

depends on the choice of norms and the regularity of solutions.

We turn now to the Crank - Nicolson scheme for discretizing (6.6) in t with second-

order accuracy and retaining unconditional stability. We seek for n ≥ 0 approximations

Un ∈ Sh of uh(t
n) satisfying

(
Un − Un−1

k
, χ

)
+

1

2
(∇(Un + Un−1),∇χ) = (fn−1/2, χ), ∀χ ∈ Sh, n ≤ 1,

U0 = u0h,

(6.26)

where fn−1/2 = f
(
· , tn − k

2

)
. Using our previous notation, we see that for n ≥ 1 the

matrix-vector representation of (6.26) is(
G+

k

2
S

)
αn =

(
G− k

2
S

)
αn−1 + k F n−1/2, n ≥ 1 , (6.27)

where again αn is the vector of coefficients of Un with respect to the basis of Sh. The

matrixG+ k
2
S is again sparse, symmetric and positive definite, and similar remarks hold

for computing αn as in the case of the implicit Euler scheme. Putting χ = Un + Un−1
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in (6.26) gives for n ≥ 1

∥Un∥2 − ∥Un−1∥2 + k

2
∥∇(Un + Un−1)∥2 = k(fn−1/2, Un+1 + Un)

5 k ∥fn−1/2 ∥
(
∥Un∥+ ∥Un−1∥

)
.

Hence ∥Un∥ 5 ∥Un−1∥+ k∥fn−1/2∥, for n = 1, implying that

∥Un∥ ≤ ∥U0∥+ k

n∑
j=1

∥f j−1/2∥, n = 1, 2, . . . .

From these relations, if f = 0, we see that the Crank-Nicolson method is L2-stable and

that ∥Un∥ is non-increasing, unconditionally. In particular, if fn−1/2 = 0, Un−1 = 0,

it follows that Un = 0, which means that the homogenous linear system of the form

(6.27) has only the trivial solution, implying that (6.27) has a unique solution given

αn−1 and F n−1/2. We proceed with an error estimate for the scheme.

Theorem 6.3. Let Un, u(t) = u( · , t), be the solutions of (6.26), (6.1), respectively.

Then, there exists a positive constant C, independent of h, k and n, such that for n ≥ 0

∥Un−u(tn)∥ ≤ ∥u0h−u0∥+C hr
[
∥u0∥r +

∫ tn

0

∥ut∥rds
]
+C k2

∫ tn

0

(∥uttt∥+ ∥∆utt∥) ds .

(6.28)

Proof: We write again Un − u(tn) = θn + ρn, where θn = Un − Rhu(t
n), ρn =

Rhu(t
n)− u(tn) and note that

∥ρn∥ ≤ C hr
[
∥u0∥r +

∫ tn

0

∥ut∥rds
]
. (6.29)

From (6.26), (6.5) and for χ ∈ Sh we have

(∂θn, χ) +
1

2

(
∇(θn + θn−1),∇χ

)
= (f(tn−1/2), χ)− (Rh∂u(t

n), χ)− 1

2

(
∇(u(tn) + u(tn−1)),∇χ

)
= (f(tn−1/2), χ)− (ut(t

n−1/2), χ) + (∆u(tn−1/2), χ)

+ (ut(t
n−1/2)−Rh∂u(t

n), χ)− (∆u(tn−1/2)− 1

2
∆(u(tn) + u(tn−1)), χ) ,

where we used Gauss’s theorem (integration by parts) in the last term. Hence

(∂θn, χ) +
1

2
(∇(θn + θn−1),∇χ) = −(ωn, χ), ∀χ ∈ Sh, n ≥ 1 , (6.30)
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where

ωn = ωn
1 + ωn

2 + ωn
3 := (Rh − I)∂u(tn) +

(
∂u(tn)− ut(t

n−1/2)
)

+∆
(
u(tn−1/2)− 1

2
(u(tn) + u(tn−1))

)
. (6.31)

If we put χ = θn + θn−1 in (6.30), we obtain, as in the stability proof of the scheme,

∥θn∥ 5 ∥θ0∥+ k
n∑

j=1

∥ωj
1∥+ k

n∑
j=1

∥ωj
2∥+ k

n∑
j=1

∥ωj
3∥, n ≥ 1 . (6.32)

As in the case of the implicit Euler scheme (cf. (6.24)), we have

k

n∑
j=1

∥ωj
1∥ ≤ C hr

∫ tn

0

∥ut∥rds . (6.33)

To estimate ωj
2 we note that for j ≥ 1

ωj
2 = ∂u(tj)− ut(t

j−1/2) =
1

k

(
u(tj)− u(tj−1)

)
− ut(t

j−1/2) .

Using Taylor’s theorem gives

u(tj) = u(tj−1/2) +
k

2
ut(t

j−1/2) +
k2

2! 4
utt(t

j−1/2) +
1

2!

∫ tj

tj−1/2

(tj − s)2uttt(s)ds ,

u(tj−1) = u(tj−1/2)− k

2
ut(t

j−1/2) +
k2

2! 4
utt(t

j−1/2) +
1

2!

∫ tj−1

tj−1/2

(tj−1 − s)2uttt(s)ds ,

so that

ωj
2 =

1

2k

[∫ tj

tj−1/2

(tj − s)2uttt(s)ds+

∫ tj−1/2

tj−1

(s− tj−1)2uttt(s)ds

]
.

Therefore, for 1 ≤ j

∥ωj
2∥ 5 1

2k

(
k2

4

∫ tj

tj−1/2

∥uttt∥ds+
k2

4

∫ tj−1/2

tj−1

∥uttt∥ds

)
=
k

8

∫ tj

tj−1

∥uttt∥ds ,

i.e.

k

n∑
j=1

∥ωj
2∥ ≤ k2

8

∫ tn

0

∥uttt∥ds . (6.34)

For ωj
3, j ≤ 1, we have

ωj
3 = ∆

(
u(tj−1/2)− 1

2

(
u(tj) + u(tj−1)

))
.
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By Taylor’s theorem

u(tj) = u(tj−1/2) +
k

2
ut(t

j−1/2) +

∫ tj

tj−1/2

(tj − s)utt(s)ds ,

u(tj−1) = u(tj−1/2)− k

2
ut(t

j−1/2) +

∫ tj−1

tj−1/2

(tj−1 − s)utt(s)ds ,

so that

ωj
3 = −1

2

∫ tj

tj−1/2

(tj − s)∆uttds−
1

2

∫ tj−1/2

tj−1

(s− tj−1)∆uttds .

Therefore

k

n∑
j=1

∥ωj
3∥ 5 k2

4

∫ tn

0

∥∆utt∥ds . (6.35)

The desired estimate (6.28) follows now from the inequalities (6.29), (6.32)-(6.35), and

the fact that ∥θ0∥ = ∥U0−Rhu0∥ 5 ∥u0h−u0∥+∥u0−Rhu
0∥ 5 ∥u0h−u0∥+C hr∥u0∥r . �

Exercise 1. Let 1
2
5 α 5 1 and consider the following family of fully discrete schemes

(
Un − Un−1

k
, χ

)
+
(
∇(αUn + (1− α)Un−1),∇χ

)
=
(
αf(tn) + (1− α)f(tn−1), χ

)
∀χ ∈ Sh, n ≥ 1,

U0 = u0h .

Show that the schemes are L2-stable and prove error estimates of the form

∥Un − u(tn)∥ ≤ ∥u0h − u0∥+O(kp + hr), where p = 1 if 1/2 < α ≤ 1 and p = 2 if

a = 1/2.

Exercise 2.Consider the implicit Euler method with variable step kn, where kn =

tn − tn−1, n ≥ 1:
(
Un − Un−1

kn
, χ

)
+ (∇Un,∇χ) = (f(tn), χ), ∀χ ∈ Sh, n ≥ 1,

U0 = u0h .

Show that the scheme is L2-stable and prove an error estimate of the form (6.19) with

k = maxn kn.
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6.4 The explicit Euler method. Inverse inequalities

and stiffness

The explicit Euler full discretization of (6.6) is the following scheme: We seek for

n = 0, 1, 2, . . . approximations Un ∈ Sh of uh(t
n) that satisfy

(
Un − Un−1

k
, χ

)
+ (∇Un−1,∇χ) = (fn−1, χ), ∀χ ∈ Sh, n ≥ 1,

U0 = u0h .

(6.36)

Finding Un for n ≥ 1, given Un−1, requires solving the linear system

Gαn = (G− k S)αn−1 + k F n−1, n ≥ 1, (6.37)

whereG, S, F n have been previously defined and αn is as usual the vector of coefficients

of Un with respect to the basis of Sh. (Note that although the time-stepping method

is explicit as a scheme for solving initial-value problems for ode’s, we still have to solve

linear systems with the mass matrix G at each time step.) Obviously the linear system

(6.37) has a unique solution αn given αn−1 and F n−1.

In order to study the stability of the scheme put χ = Un in (6.36). Then, for n ≥ 1

we have

∥Un∥2 − (Un−1, Un) + k (∇Un−1,∇Un) = k (fn−1, Un) .

Use now the identities

−(Un−1, Un) =
1

2

(
∥Un − Un−1∥2 − ∥Un∥2 − ∥Un−1∥2

)
,

(∇Un−1,∇Un) =
1

4
∥∇(Un + Un−1)∥2 − 1

4
∥∇(Un − Un−1)∥2

to obtain

∥Un − Un−1∥2 + ∥Un∥2 − ∥Un−1∥2 + k

2
∥∇(Un + Un−1)∥2 − k

2
∥∇(Un − Un−1)∥2 =

2 k (fn−1, Un), n ≥ 1 . (6.38)

In the left-hand side of this identity the troublesome term is −k
2
∥∇(Un−Un−1)∥2 which

is non-positive. To resolve this problem we write (6.38) in the form

∥Un − Un−1∥2 + ∥Un∥2 − ∥Un−1∥2 + k

2
∥∇(Un + Un−1)∥2

=
k

2
∥∇(Un − Un−1)∥2 + 2 k (fn−1, Un)
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and use the inverse inequality (valid for quasiuniform partitions of Ω)

∥∇χ∥ ≤ C∗

h
∥χ∥, χ ∈ Sh , (6.39)

where C∗ is a constant independent of h and χ, in the first term of the right-hand side

to get

∥Un − Un−∥2 + ∥Un∥2 − ∥Un−1∥2 ≤ k

2

C2
∗
h2

∥Un − Un−1∥2 + 2 k ∥fn−1∥ ∥Un∥ ,

i.e. (
1− k

h2
C2

∗
2

)
∥Un − Un−1∥2 + ∥Un∥2 − ∥Un−1∥2 ≤ 2 k ∥fn−1∥ ∥Un∥ .

Therefore, if
k

h2
≤ 2

C2
∗
, (6.40)

the above inequality gives

∥Un∥2 − ∥Un−1∥2 ≤ 2 k ∥fn−1∥ ∥Un∥ ≤ 2 k ∥fn−1∥
(
∥Un∥+ ∥Un−1∥

)
,

from which

∥Un∥ ≤ ∥Un−1∥+ 2 k ∥fn−1∥, n ≥ 1 ,

and finally

∥Un∥ ≤ ∥U0∥+ 2 k
n−1∑
j=0

∥f j∥ ,

which is the required L2-stability inequality, analogous to those that were derived for

the implicit Euler and the Crank-Nicolson schemes. However, whereas such inequalities

in the case of the previous schemes were valid unconditionally, the explicit Euler scheme

needs a stability condition of the form (6.40). This condition is very restrictive in that

it requires taking k = O(h2), i.e. very small time steps. It can be shown that such a

condition is also necessary for stability. (A simple numerical experiment with piecewise

linear functions in 1D gives a clear indication !).

We postpone for the time being the proof of the inverse inequality (6.39) in order

to prove an L2 error estimate for the fully discrete scheme (6.36):

Theorem 6.4. Suppose that (6.39) and (6.40) hold and let Un, u be the solutions of

(6.36), (6.1) respectively. Then, there exists a positive constant C, independent of h, k

and u, such that for n ≥ 0

∥Un − u(tn)∥ ≤ ∥u0h − u0∥+ C hr
[
∥u0∥r +

∫ tn

0

∥ut∥rds
]
+ 2 k

∫ tn

0

∥utt∥ ds . (6.41)
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Proof: Writing again Un − u(tn) = θn + ρn, θn = Un −Rhu(t
n), ρn = Rhu(t

n)− u(tn),

and noting that (6.29) holds for ρn, we obtain for n ≥ 1 and any χ ∈ Sh

(∂θn, χ) + (∇θn−1,∇χ) = −(ωn, χ) ,

where

ωn = ωn
1 + ωn

2 := (Rh − I)∂u(tn) +
(
∂u(tn)− ut(t

n−1)
)
.

Putting χ = θn we see, as in the derivation of (6.38), that

∥θn∥2−∥θn−1∥2+∥θn−θn−1∥2+ k

2
∥∇(θn+θn−1)∥2 = k

2
∥∇(θn−θn−1)∥2−2 k (ωn, θn)

5
(6.39)

k

2

C2
∗
h2

∥θn − θn−1∥2 − 2 k (ωn, θn) .

Therefore, using (6.40), as in the stability proof

∥θn∥ ≤ ∥θ0∥+ 2 k
n∑

j=1

∥ωj∥ ≤ ∥θ0∥+ 2 k
n∑

j=1

∥ωj
1∥+ 2 k

n∑
j=1

∥ωj
2∥ . (6.42)

For the ωj
1 term we have as in (6.24)

k

n∑
j=1

∥ωj
1∥ ≤ C hr

∫ tn

0

∥ut∥rds .

Since by Taylor’s theorem

k ωj
2 = u(tj)− u(tj−1)− k ut(t

j−1) =

∫ tj

tj−1

(tj − s)utt(s)ds, j ≥ 1 ,

we see that

k
n∑

j=1

∥ωj
2∥ 5 k

∫ tn

0

∥utt∥ds ,

and (6.41) follows from (6.42). �

We proceed now with verifying the inverse inequality (6.39). This is straightforward

to do in 1D. Consider an interval (λ, µ) with µ− λ < 1 and let Pk be the polynomials

of degree ≤ k. Then for some constant C = C(k) independent of λ and µ it holds that

∥ϕ∥H1(λ,µ) ≤
C(k)

µ− λ
∥ϕ∥L2(λ,µ), ∀ϕ ∈ Pk . (6.43)

To see this, observe that there exists a constant C = C(k) such that

∥ϕ∥H1(0,1) ≤ C ∥ϕ∥L2(0,1), ∀ϕ ∈ Pk , (6.44)
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as a consequence of the fact that Pk is a finite-dimensional vector space and the norms

∥·∥H1(0,1) and ∥·∥L2(0,1) are equivalent on Pk(0, 1). To derive (6.43) from (6.44) requires

just a change of scale. Write the inequality (6.44) for ϕ ∈ Pk as∫ 1

0

(
ϕ2(x) + (ϕ′(x))2

)
dx ≤ C2

∫ 1

0

ϕ2(x)dx ,

and make in the integrals the change of variable x 7→ y, y = (µ− λ)x + λ, that maps

[0, 1] onto [λ, µ]. Then the above inequality becomes

1

µ− λ

∫ µ

λ

[
ϕ2(y) + (µ− λ)2

(
dϕ

dy
(y)

)2
]
dy ≤ C2

µ− λ

∫ µ

λ

ϕ2(y)dy ,

giving

(µ− λ)2
∫ µ

λ

[
ϕ2(y) +

(
dϕ

dy
(y)

)2
]
dy ≤ C2

∫ µ

λ

ϕ2(y)dy ,

since we assumed µ− λ < 1. Hence (6.43) follows.

Let now (a, b) be any fixed finite interval and let a = x0 < x1 < . . . < xJ+1 = b

be an arbitrary partition of [a, b]. Letting hi = xi+1 − xi, 0 ≤ i ≤ J , we obtain from

(6.43) that

∥ϕ∥H1(xi,xi+1) ≤
C(k)

hi
∥ϕ∥L2(xi,xi+1), ∀ϕ ∈ Pk(xi, xi+1) . (6.45)

Let now Sh =
{
ϕ ∈ C[a, b] : ϕ

∣∣
[xi,xi+1]

∈ Pk

}
. Since Sh ⊂ H1, using (6.45) we get for

any ϕ ∈ Sh

∥ϕ∥2H1(a,b) =
J∑

i=0

∥ϕ∥2H1(xi,xi+1)
5 C2(k)

J∑
i=0

1

h2i
∥ϕ∥2L2(xi,xi+1)

. (6.46)

We now assume that the partition {xi} of [a, b] is quasiuniform, i.e. that there is a

constant ν independent of the partition (in the sense that as the partition is refined ν

does not change) such that
h

hi
5 ν, ∀i , (6.47)

where h = maxi hi. In view of (6.47), (6.46) gives

∥ϕ∥H1(a,b) 5
C∗

h
∥ϕ∥L2(a,b), ∀ϕ ∈ Sh , (6.48)

with C∗ = C(k) ν, from which (6.39) follows in 1D.

In order to prove (6.39) in 2D, we assume that Ω is a polygonal domain and let

Th = {τ} be a regular (cf. (5.16)) triangulation of Ω. We recall from section 5.2 that
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any triangle τ of the triangulation is affinely equivalent to a fixed reference triangle τ̂ .

As in the case of 1D, there exists a constant C1 = C1(τ̂ , k) such that

∥ϕ̂∥1,τ̂ ≤ C1∥ϕ̂∥0,τ̂ , ∀ϕ̂ ∈ Pk(τ̂) , (6.49)

as a consequence again of the fact that Pk(τ̂) is a finite-dimensional space and that

∥ · ∥1,τ̂ = ∥ · ∥H1(τ̂) and ∥ · ∥0,τ̂ = ∥ · ∥L2(τ̂) are norms on Pk(τ̂). Suppose now that

Sh =
{
ϕ ∈ C(Ω) : ϕ

∣∣
τ
∈ Pk(τ)

}
and let Fτ be the affine map that maps τ̂ one-one onto

τ . Following the notation of section 5.2 we write Fτ (x̂) = Bτ x̂+bτ , for x̂ = (x̂1, x̂2) ∈ τ̂ ,

where Bτ is a 2×2 invertible matrix and bτ a 2-vector. If ϕ ∈ Pk(τ) we define ϕ̂ ∈ Pk(τ̂)

by ϕ(x) = ϕ̂(x̂), where x = (x1, x2) and x = Fτ (x̂) as usual. Then for ϕ ∈ Pk(τ), using

the transformation norm inequalities (5.20), (5.21) and (6.49) we get

|ϕ|1,τ 5 Ĉ(k)|B−1
τ | | detBτ |1/2 |ϕ̂|1,τ̂

5 C1 Ĉ(k)|B−1
τ | | detBτ |1/2 ∥ϕ̂∥0,τ̂

5 C(k, τ̂)|B−1
τ | | detBτ |1/2 · | detBτ |−1/2 ∥ϕ∥0,τ .

Therefore, using the regularity of the triangulation and (5.24) we see that there exists

a constant C independent if τ such that

|ϕ|1,τ ≤ C

hτ
∥ϕ∥0,τ , ∀ϕ ∈ Pk(τ) ,

where hτ = diam(τ). Since Sh ⊂ H1(Ω) we see that

|ϕ|21,Ω =
∑
τ∈Th

|ϕ|21,τ 5 C2
∑
τ∈Th

1

h2τ
∥ϕ∥20,τ , ∀ϕ ∈ Sh .

If the triangulation is quasiuniform in the sense that for some constant ν independent

of the partition
h

hτ
5 ν, ∀τ ∈ Th , (6.50)

where h = maxτ hτ , we see that

|ϕ|1,Ω ≤ Cν

h
∥ϕ∥0,Ω , ∀ϕ ∈ Sh , (6.51)

from which (6.39) (and also ∥ϕ∥1 ≤ Ch−1∥ϕ∥ ) follows.

We mention that similar scaling arguments yield, for quasiuniforms partitions, the

more general inverse inequalities

∥χ∥α 5 Chβ−α∥χ∥β , ∀χ ∈ Sh ,
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provided α, β are nonnegative integers so that β < α and Sh ⊂ Hα(Ω), and

∥χ∥∞ ≤ Ch−d/2∥χ∥, ∀χ ∈ Sh

for Ω ∈ Rd. Of interest is also the nonstandard inverse “almost Sobolev” inequality

∥χ∥∞ ≤ C| lnh|1/2∥χ∥1, ∀χ ∈ Sh ,

valid for Ω ⊂ R2, cf. [3.6, p.68].

We close this section with a few remarks about stiff systems of ode’s and the in-

terpretation of the stability condition (6.40) as a restriction on the time step related

to the size of the eigenvalues of the matrix G−1S. Let A be a symmetric and positive

definite real m×m matrix and consider the ode ivp for y = y(t) ∈ Rm

ẏ + Ay = 0, t ≥ 0,

y(0) = y0 .
(6.52)

Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λm be the eigenvalues of A. Then from the theory of

numerical solution of ode’s, we know that if a method for the numerical solution of

ivp’s has interval of absolute stability [−α, 0], where α > 0 (a = +∞ if the method

is A0-stable), it will give stable approximations, when applied to (6.52), provided the

time step ∆t is chosen so that (−λi)∆t ∈ [−α, 0] for all i, i.e. so that ∆t 5 α
λm

.

We recall that for the explicit Euler method α = 2, while α = +∞ for the implicit

Euler and the trapezoidal method. Hence, the latter two methods are suitable for stiff

systems, i.e. systems for which λ1 = O(1) and λm >> 1.

Consider now the ode system (6.7) corresponding to the Galerkin semidiscretization

of the ibvp (6.1). For f = 0 we write the system as

Gẏ + Sy = 0, t ≥ 0 ,

y(0) = y0 ,
(6.53)

where y ∈ Rm withm = Nh = dimSh. This system is of the form (6.52) with A = G−1S

but G−1S is not symmetric. To transform the system into the form (6.52) with a

symmetric positive definite matrix, consider the matrix G1/2. Since G is symmetric

and positive definite, G1/2 is defined e.g. using the spectral representation of G and is
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symmetric and positive definite. Multiplying by G−1/2 both sides of the ode system in

(6.53) we have

G1/2ẏ +G−1/2S G−1/2G1/2y = 0 ,

or

ż + Az = 0, t ≥ 0 , (6.53´)

where z(t) = G1/2y(t), and A = G−1/2S G−1/2 is easily seen to be symmetric and

positive definite. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λm be the eigenvalues of A. Then they

satisfy

G−1/2S G−1/2x = λix , (6.54)

where x ∈ Rm is a corresponding to λi eigenvector. It follows that S G
−1/2x = λiG

1/2x.

Therefore, with G−1/2x = w, i.e. Gw = G1/2x, we see that the eigenvalue problem

(6.54) is equivalent to the generalized eigenvalue problem

Sw = λiGw (6.55)

and so the λi are eigenvalues of G−1S. It follows from (6.55) that

λi =
wTSw

wTGw
.

Let now ϕ =
∑m

i=1wiϕi ∈ Sh, where {ϕi} is the chosen basis of Sh. Then ∥ϕ∥2 = wTGw,

∥∇ϕ∥2 = wTSw, and λi =
∥∇ϕ∥2
∥ϕ∥2 . Therefore, if the inverse inequality (6.39) holds, we

have that

λm = λmax(G
−1S) 5 C2

∗
h2

. (6.56)

Hence, a sufficient condition for the stability of the explicit Euler scheme for the ivp

(6.53′) or, equivalently, for the ivp (6.53), is, since
(
−C2

∗
h2

)
k 5 (−λm)k, k = ∆t, that

−C2
∗

h2 k = −2, i.e. k
h2 ≤ 2

C2
∗
, which is precisely the restriction (6.40) found by the energy

method. For the implicit Euler or the Crank-Nicolson (i.e. the trapezoidal) scheme for

which α = +∞, there is no restriction.
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Chapter 7

The Galerkin Finite Element

Method for the Wave Equation

7.1 Introduction

In this chapter we shall consider Galerkin finite element methods for the following

model second-order hyperbolic initial-boundary-value problem. Let Ω be a bounded

domain in Rd, d = 1, 2, or 3. We seek a real function u = u(x, t), x ∈ Ω, t ≥ 0, such

that 
utt −∆u = f, x ∈ Ω, t ≥ 0,

u = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u0t (x), x ∈ Ω .

(7.1)

Here f = f(x, t) and u0, u0t are given real functions on Ω× [0,∞), and Ω respectively.

We shall assume that the ibvp (7.1) has a unique solution, which is sufficiently smooth

for the purposes of the analysis of its numerical approximation. For the theory of

existence-uniqueness and regularity of (7.1) see [2.2]-[2.5]. We just make two remarks

here for the homogeneous problem, i.e. when f = 0 in (7.1).

i. Multiplying both sides of the pde in (7.1) by ut, integrating over Ω using Gauss’s

theorem and the boundary and initial conditions, we easily get the energy conservation

identity

∥ut∥2 + ∥∇u∥2 = ∥u0t∥2 + ∥∇u0∥2, t ≥ 0 . (7.2)
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ii. The regularity theory for (7.1) requires smoothness and compatibility conditions at

∂Ω of the initial data u0, u0t , and establishes corresponding smoothness and compati-

bility properties in the same spaces of the solutions u and ut for t > 0. Thus, in the

case of (7.1) we do not have any smoothing effect on the solutions for t > 0 as in the

case of the heat equation, cf. e.g [2.4].

7.2 Standard Galerkin semidiscretization

Multiplying the pde in (7.1) by v ∈
0

H1 and integrating over Ω using Gauss’s theorem

we obtain

(utt, v) + (∇u,∇v) = (f, v), t ≥ 0 . (7.3)

Let Sh be a finite-dimensional subspace of
0

H1 satisfying (6.2). Motivated by (7.3) we

define the (standard Galerkin) semidiscrete approximation uh of u as a function uh(t)

in Sh, t ≥ 0, such that
(uhtt, φ) + (∇uh,∇φ) = (f, φ), ∀φ ∈ Sh, t ≥ 0,

uh(0) = u0h,

uht(0) = u0t,h,

(7.4)

where u0h, u
0
t,h are given elements of Sh approximating u0, u0t , respectively. If {φj}Nh

j=1 is

a basis of Sh and we let

uh(x, t) =

Nh∑
j=1

αj(t)φj(x),

we see that 
Gα̈+ Sα = F (t), t ≥ 0,

α(0) = β,

α̇(0) = γ,

(7.5)

where Gij = (φj, φi), Sij = (∇φj,∇φi), 1 ≤ i, j ≤ Nh, Fi = (f, φi), 1 ≤ i ≤ Nh,

α = α(t) = [α1, . . . , αNh
]T , and β = (βi), γ = (γi) are the coefficients of u0h, u

0
t,h, with
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respect to the basis {φi}. The ivp (7.5) may also be written as

 I 0

0 G

 d

dt

 α

α̇

 =

 0 I

−S 0


 α

α̇

+

 0

F

 , t ≥ 0,

(α(0), α̇(0))T = (β, γ)T ,

i.e. as an ivp for a first-order system of ode’ s; it is then evident that (7.5) has a unique

solution for t ≥ 0. If we put φ = uh in (7.4) with f = 0 it is straightforward to prove

that

∥uht(t)∥2 + ∥∇uh(t)∥2 = ∥u0t,h∥2 + ∥∇u0h∥2, t ≥ 0, (7.6)

which is the discrete analog of (7.2) and expresses the stability (conservation) of

(uh, uht) in
0

H1 × L2.

We recall now the definition of the elliptic projection of a function v ∈
0

H1 as the

element Rhv ∈ Sh such that (∇Rhv,∇χ) = (∇v,∇χ) for all χ ∈ Sh. Following Dupont,

SIAM J. Numer. Anal., 10(1973), 880-889, we have

Theorem 7.1. Let u, uh be the solutions of the ivp’ s (7.1) and (7.4) respectively.

Then, given T > 0, there exists a positive constant C = C(T ) such that

∥uh(t)− u(t)∥ ≤ C
{
∥∇(u0h −Rhu

0)∥+ ∥u0t,h −Rhu
0
t∥

+ hr

[
∥u(t)∥r +

(∫ t

0

∥utt∥2rds
)1/2

]}
, 0 ≤ t ≤ T. (7.7)

Proof. We write as usual uh − u = θ + ϱ, where θ = uh −Rhu, ϱ = Rhu− u. We have

as before

∥ϱ(t)∥ ≤ Chr∥u(t)∥r, t ≥ 0. (7.8)

Now, for t ≥ 0 and any χ ∈ Sh we have using (7.4) and (7.3)

(θtt, χ) + (∇θ,∇χ) = (uhtt, χ) + (∇uh,∇χ)− (Rhutt, χ)− (∇Rhu,∇χ)

= (f, χ)− (Rhutt, χ)− (∇u,∇χ)

= (utt −Rhutt, χ) = −(ϱtt, χ).

Given t > 0 take χ = θt in the above to obtain

1

2

d

dt
(∥θt∥2 + ∥∇θ∥2) = −(ϱtt, θt) ≤

1

2
∥ϱtt∥2 +

1

2
∥θt∥2.
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Hence
d

dt
(∥θt∥2 + ∥∇θ∥2) ≤ ∥ϱtt∥2 + (∥θt∥2 + ∥∇θ∥2), t ≥ 0. (7.9)

We recall now Gronwall’ s lemma: If σ′(t) ≤ α(t) + σ(t), t ≥ 0, then σ(t) ≤ etσ(0) +∫ t

0
et−sα(s)ds. To see this, note that for t ≥ 0

e−tσ′(t)− e−tσ(t) ≤ e−tα(t).

Therefore

d

dt
(e−tσ(t)) ≤ e−tα(t), i.e.

e−tσ(t)− σ(0) ≤
∫ t

0

e−sα(s)ds,

from which the conclusion follows. Using this result in (7.9) for σ = ∥θt∥2 + ∥∇θ∥2 we

have for 0 ≤ t ≤ T

∥θt∥2 + ∥∇θ∥2 ≤ C(T )

(
∥θt(0)∥2 + ∥∇θ(0)∥2 +

∫ t

0

∥ϱtt∥2ds
)
,

where C(T ) = eT . By the definition of θ and ϱ it follows that for 0 ≤ t ≤ T

∥θt∥2 + ∥∇θ∥2 ≤ C(T )

[
∥u0t,h −Rhu

0
t∥2 + ∥∇(u0h −Rhu

0)∥2 + Ch2r
∫ t

0

∥utt∥2ds
]
.

Using now the inequalities 1√
n

∑n
i=1 αi ≤ (

∑n
i=1 α

2
i )

1/2 ≤
∑n

i=1 αi, valid for αi ≥ 0, we

conclude that for some constant C = C(T )

∥θt∥+ ∥∇θ∥ ≤ C[∥u0t,h −Rhu
0
t∥+ ∥∇(u0h −Rhu

0)∥

+ hr
(∫ t

0

∥utt∥2ds
)1/2

], 0 ≤ t ≤ T. (7.10)

We note now that θ(t) =
∫ t

0
θt(s)ds+ θ(0), from which for t ≥ 0

∥θ(t)∥ ≤ ∥θ(0)∥+
∫ t

0

∥θt∥ds ≤ ∥θ(0)∥+ t max
0≤s≤t

∥θt(s)∥.

Therefore, using (7.10) we have for 0 ≤ t ≤ T

∥uh(t)− u(t)∥ ≤ ∥ϱ(t)∥+ ∥θ(t)∥

≤ Chr∥u(t)∥r + ∥θ(0)∥+ t max
0≤s≤t

∥θt(s)∥

≤ C(T ){∥u0t,h −Rhu
0
t∥+ ∥∇(u0h −Rhu

0)∥

+ hr[∥u(t)∥r +
(∫ t

0

∥utt∥2rds
)1/2

]},
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which is the desired estimate (7.7). (Note that we used Poincaré’ s inequality ∥θ(0)∥ ≤

C∥∇θ(0)∥ in the last inequality.)

Remarks

a. The estimate (7.7) implies that if we choose u0h = Rhu
0, u0t,h = Rhu

0
t , then we

have the optimal-order L2-estimate ∥uh(t) − u(t)∥ = O(hr). We may also choose u0t,h

as any optimal-order (in L2) approximation to u0t in Sh, e.g. as Put, where P is the

L2-projection onto Sh. However we cannot do the same for u0h, which must be close to

Rhu
0 in H1 to O(hr) to guarantee the optimal-order bound in (7.7).

b. From (7.10) it also follows that for 0 ≤ t ≤ T

∥uht − ut∥ ≤ ∥θt∥+ ∥ϱt∥ ≤ C

{
∥u0t,h −Rhu

0
t∥

+∥∇(u0h −Rhu
0)∥+ hr

[
∥ut(t)∥r +

(∫ t

0

∥utt∥2r ds
)1/2

]}
,

and

∥∇(uh − u)∥ ≤ ∥∇θ∥+ ∥∇ϱ∥ ≤ C

{
∥u0t,h −Rhu

0
t∥

+∥∇(u0h −Rhu
0)∥+ hr−1

[
∥u∥r−1 +

(∫ t

0

∥utt∥2r ds
)1/2

]}
.

The latter inequality implies that initial conditions e.g. of the type u0h = Pu0,

u0t,h = Pu0t will give an optimal-order estimate for ∥∇(uh − u)∥.

The following result, due to G. Baker, SIAM J. Numer. Anal. 13(1976), 564-576,

relies on a ‘duality’ argument in time and shows that one may after all get an L2

estimate of optimal order starting with any optimal-order L2 approximation of u0 and

u0t . We state it in a form that also improves Theorem 7.1 with respect to the required

regularity of the solution and the dependence of C on T .

Theorem 7.2. Let u, uh be the solutions of the ivp’ s (7.1), (7.4), respectively. Then

there exists a constant C, independent of t and h, such that

∥uh(t)− u(t)∥ ≤ C{∥u0h − Pu0∥+ t∥u0t,h − Pu0t∥

+ hr[∥u0∥r +
∫ t

0

∥ut∥rds]}. (7.11)
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Proof. We put e := uh − u = θ+ ϱ, where θ = uh −Rhu, ϱ = Rhu− u. As in the proof

of Theorem 7.1 we have (θtt, χ) + (∇θ,∇χ) = −(ϱtt, χ) for all χ ∈ Sh, t ≥ 0. Since

(θtt, χ) =
d
dt
(θt, χ)− (θt, χt) we have for any χ ∈ Sh, t > 0

−(θt, χt) + (∇θ,∇χ) = − d

dt
(θt, χ)−

d

dt
(ϱt, χ) + (ϱt, χt)

= − d

dt
(et, χ) + (ϱt, χt). (7.12)

Fix ξ > 0 and let χ̂(t) :=
∫ ξ

t
θ(s)ds, t ≥ 0. Then χ̂(t) ∈ Sh for t ≥ 0, χ̂(ξ) = 0, and

χ̂t = −θ. Select χ = χ̂ in (7.12) to obtain

(θt, θ)− (∇χ̂t,∇χ̂) = − d

dt
(et, χ̂)− (ϱt, θ),

i.e.
1

2

d

dt
∥θ∥2 − 1

2

d

dt
∥∇χ̂∥2 = − d

dt
(et, χ̂)− (ϱt, θ), t ≥ 0.

Integrating both sides of the above with respect to t from 0 to ξ, we obtain

∥θ(ξ)∥2 − ∥θ(0)∥2 − ∥∇χ̂(ξ)∥2 + ∥∇χ̂(0)∥2

= −2(et(ξ), χ̂(ξ)) + 2(et(0), χ̂(0))− 2

∫ ξ

0

(ϱt, θ)dt.

Since χ̂(ξ) = 0, χ̂ ∈ Sh, we have for any ξ > 0:

∥θ(ξ)∥2 ≤ ∥θ(0)∥2 + 2(Pet(0), χ̂(0))− 2

∫ ξ

0

(ϱt, θ)dt.

Hence

∥θ(ξ)∥2 ≤ ∥θ(0)∥2 + 2∥Pet(0)∥∥χ̂(0)∥+ 2

∫ ξ

0

∥ϱt∥∥θ∥dt.

We recall that χ̂(0) =
∫ ξ

0
θ(t)dt. Therefore ∥χ̂(0)∥ ≤

∫ ξ

0
∥θ∥dt and therefore

∥θ(ξ)∥2 ≤ ∥θ(0)∥2 + 2∥Pet(0)∥
∫ ξ

0

∥θ∥dt+ 2

∫ ξ

0

∥ϱt∥∥θ∥dt

≤ sup
0≤s≤ξ

∥θ(s)∥(∥θ(0)∥+ 2ξ∥Pet(0)∥+ 2

∫ ξ

0

∥ϱt∥dt).

Since ξ was arbitrary, the inequality above holds for all ξ′ ∈ [0, ξ]. Let τ ∈ [0, ξ] be a

point where ∥θ(τ)∥ = sup0≤s≤ξ ∥θ(s)∥. Applying the inequality for ξ′ = τ we get

∥θ(τ)∥2 ≤ ∥θ(τ)∥
(
∥θ(0)∥+ 2ξ∥Pet(0)∥+ 2

∫ ξ

0

∥ϱt∥dt
)
.

166



Hence, since ∥θ(ξ)∥ 5 ∥θ(τ)∥

∥θ(ξ)∥ ≤ ∥θ(0)∥+ 2ξ∥Pet(0)∥+ 2

∫ ξ

0

∥ϱt∥dt,

for any ξ > 0. Therefore, for t ≥ 0, using the definition of ϱ

∥θ(t)∥ ≤ ∥θ(0)∥+ 2t∥Pet(0)∥+ Chr
∫ t

0

∥ut∥rds, (7.13)

and

∥uh(t)− u(t)∥ ≤ ∥ϱ(t)∥+ ∥θ(t)∥ ≤ ∥ϱ(0)∥+
∫ t

0

∥ϱt∥ds+ ∥θ(t)∥

≤ C

{
∥u0h − Pu0∥+ t∥u0t,h − Pu0t∥+ hr[∥u0∥r +

∫ t

0

∥ut∥rds]
}
,

which is (7.11). (To get the last inequality of the right-hand side we used (7.13)

and that ∥ϱ(0)∥ = ∥Rhu
0 − u0∥ ≤ Chr∥u0∥r, ∥θ(0)∥ ≤ ∥u0h − Pu0∥ + Chr∥u0∥r, and

Pet(0) = P (u0t,h − u0t ) = u0t,h − Pu0t .)

It is evident that (7.11) implies that ∥u(t) − uh(t)∥ = O(hr) if u0h, u
0
t,h are any

optimal-order L2-approximations of u0, u0t in Sh, respectively.

Remark

It is straightforward to check that analogs of Theorems 7.1 and 7.2 hold for the ibvp
utt −

∑d
i,j=1

∂
∂xi

(aij(x)
∂u
∂xj

) + a0(x)u = f(x, t), x ∈ Ω, t ≥ 0,

u = 0 on ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u0t (x), x ∈ Ω,

where the coefficients aij, a0 satisfy the conditions set forth in Exercise 3 of section

6.2. L.A. Bales has proved (Math. Comp. 43(1984), 383-414) that similar results hold

when aij and a0 depend also on t.

7.3 Fully discrete schemes

In this section we shall examine some simple methods for discretizing in time the

semidiscrete Galerkin equations (7.4). As usual we put tn = nk, n = 0, . . . ,M , Mk =
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T > 0. We seek Un ∈ Sh, 0 ≤ n ≤ M , approximations of the solution u of (7.1) at tn,

satisfying
1
k2
(Un+1 − 2Un + Un−1, χ) + (∇Ûn

β ,∇χ) = (f̂n
β , χ), ∀χ ∈ Sh, 1 ≤ n ≤M − 1,

U0, U1 given in Sh,

(7.14)

where, for 1 ≤ n ≤ M − 1 and β ≥ 0, Ûn
β := βUn+1 + (1 − 2β)Un + βUn−1, f̂n

β =

βfn+1 + (1 − 2β)fn + βfn−1, fn = f( · , tn). Given Un−1, Un, (7.14) defines uniquely

Un+1 ∈ Sh as solution of the linear system of equations(
G+ βk2S

)
αn+1 =

(
2G− (1− 2β)k2S

)
αn −

(
G+ βk2S

)
αn−1 + k2F̂ n

β ,

where Un =
∑Nh

i=1 α
n
i φi, {φi}, G, S, were defined in section 7.2, and F̂ n

β is the Nh-

vector with components (f̂n
β , φi). If β = 0 (7.14) corresponds to the classical Courant-

Friedrichs-Lewy two-step scheme for the wave equation.

Taking for simplicity f = 0 in (7.14) and putting χ = Un+1 − Un−1 we obtain for

1 ≤ n ≤M − 1

(Un+1 − 2Un + Un−1, Un+1 − Un−1) + k2(∇Ûn
β ,∇(Un+1 − Un−1)) = 0. (7.15)

Now

(
Un+1 − 2Un + Un−1, Un+1 − Un−1

)
=
(
(Un+1 − Un)− (Un − Un−1), (Un+1 − Un) + (Un − Un−1)

)
= ∥Un+1 − Un∥2 − ∥Un − Un−1∥2.

In addition

(∇Ûn
β ,∇(Un+1 − Un−1)) = (∇(βUn+1 + (1− 2β)Un + βUn−1),∇(Un+1 − Un−1))

= β((∇Un+1,∇Un+1)− (∇Un−1,∇Un−1))

+ (1− 2β)((∇Un+1,∇Un)− (∇Un,∇Un−1)).

Hence, summing in (7.15) with respect to n from n = 1 to l, where 1 ≤ l ≤M − 1, we

see that

∥U l+1 − U l∥2 + βk2(∥∇U l+1∥2 + ∥∇U l∥2) + (1− 2β)k2(∇U l+1,∇U l)

= ∥U1 − U0∥2 + βk2(∥∇U1∥2 + ∥∇U0∥2) + (1− 2β)k2(∇U1,∇U0),
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which, motivated by the identity

β(x2 + y2) + (1− 2β)xy =
(x+ y)2

4
+ (β − 1

4
)(x− y)2,

we rewrite as

∥U l+1 − U l∥2 + k2

4
∥∇(U l+1 + U l)∥2 + k2(β − 1

4
)∥∇(U l+1 − U l)∥2

= ∥U1 − U0∥2 + k2

4
∥∇(U1 + U0)∥2 + k2(β − 1

4
)∥∇(U1 − U0)∥2, (7.16)

which is valid for 0 ≤ l ≤M − 1. With the aid of the identity (7.16) we may prove the

following stability result for the fully discrete scheme (7.14).

Proposition 7.1. Suppose that there exists a constant c, independent of h and k, such

that

∥U1 − U0∥ ≤ ck (7.17)

and

∥∇(U1 ± U0)∥ ≤ c. (7.18)

Then, there exists a constant C, independent of h and k, such that for all β ≥ 1
4
the

solution of (7.14) with f = 0 satisfies

max
0≤n≤M

∥Un∥ ≤ C. (7.19)

If 0 ≤ β < 1
4
and the inverse inequality (6.39) is valid in Sh, then (7.19) holds provided

k
h
≤ α, where α is some constant depending on C∗ and β.

Proof. If β ≥ 1
4
, (7.16) and (7.17) - (7.18) give, for l ≥ 0 and k ≤ 1, ∥U l+1 − U l∥ ≤ C

and ∥∇(U l+1 − U l)∥ ≤ C. Hence, by Poincaré’s inequality, ∥U l+1 ± U l∥ ≤ C, l ≥ 0,

and (7.19) follows since ∥Un∥ = ∥
(

Un+1+Un

2

)
−
(

Un+1−Un

2

)
∥.

If 0 ≤ β < 1
4
, (7.16) and (7.17) - (7.18) give for l ≥ 0

∥U l+1 − U l∥2 + k2

4
∥∇(U l+1 + U l)∥2 ≤ k2(

1

4
− β)∥∇(U l+1 − U l)∥2 + Ck2.

Therefore, by the inverse inequality (6.39) we have

∥U l+1 − U l∥2 + k2

4
∥∇(U l+1 − U l)∥2 ≤ k2

h2
(
1

4
− β)C2

∗∥U l+1 − U l∥2 + Ck2,
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i.e.

[1− C2
∗
k2

h2
(
1

4
− β)]∥U l+1 − U l∥2 + k2

4
∥∇(U l+1 + U l)∥2 ≤ Ck2, l ≥ 0.

Hence, if
k

h
≤ α <

2

C∗
√
1− 4β

(7.20)

we have that ∥U l+1 ± U l∥ ≤ C(α) and (7.19) follows.

As we remarked in Section 6.4, a more general sufficient stability condition is

k
[
λmax(G

−1S)
]1/2

<
2√

1− 4β
. (7.21)

The inverse inequality (6.39) and (7.20) imply (7.21).

We proceed now to derive L2-error estimates for the scheme (7.14), following e.g.

Dupont, op.cit. For simplicity we treat only the case β = 1
4
, i.e. the case of smallest

value of β for which (7.19) holds unconditionally. The proof for the other β ≥ 0 follows

along similar lines. The basic step of the proof is the following result.

Proposition 7.2. Let u be the solution of (7.1), Un the solution of the scheme (7.14)

for β = 1
4
, and θn = Un − Rhu

n, where un = u(tn). Then, there exists a constant C

independent of h, k and T such that for 0 ≤ n ≤M − 1

max
0≤l≤n

(
1

k
∥θl+1 − θl∥+ ∥∇(θl+1 + θl)∥

)
≤ C

1

k
∥θ1 − θ0∥+ ∥∇(θ1 + θ0)∥

+
√
T

hr(∫ tn+1

0

∥utt∥2r ds

)1/2

+ k2

(∫ tn+1

0

∥∂4t u∥2 ds

)1/2
 . (7.22)

Proof. For 1 ≤ n ≤ M − 1 we denote ∂2τg
n = 1

k2
(gn+1 − 2gn + gn−1), ĝn = ĝn1/4 =

1
4
(gn+1 +2gn + gn−1). If Un − un = (Un −Rhu

n) + (Rhu
n − un) = θn + ϱn, using (7.14)

with β = 1/4 and (7.1), we have for 1 ≤ n ≤M − 1, χ ∈ Sh

(∂2τθ
n, χ) + (∇θ̂n,∇χ) = (f̂n, χ)− (∂2τ (Rhu

n), χ)− (∇ûn,∇χ)

= (ûntt − ∂2τ (Rhu
n), χ)

= (∂2τu
n − ∂2τ (Rhu

n) + ûntt − ∂2τu
n, χ)

= (−∂2τϱn + ωn, χ),

170



where ωn := ûntt − ∂2τu
n. Therefore, for any χ ∈ Sh

(θn+1 − 2θn + θn−1, χ) + k2(∇θ̂n,∇χ) = k2(−∂2τϱn + ωn, χ), 1 ≤ n ≤M − 1. (7.23)

We take now χ = Un+1 − Un−1 and sum both sides of (7.23) with respect to n from

n = 1 to l, for 1 ≤ l ≤M − 1. As in the proof of Proposition 7.1 we obtain

∥θl+1 − θl∥2 + k2

4
∥∇(θl+1 + θl)∥2 = ∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2

+ k2
l∑

n=1

(−∂2τϱn + ωn, θn+1 − θn−1). (7.24)

For any ε > 0 we have

k2
l∑

n=1

(−∂2τϱn + ωn, θn+1 − θn−1) ≤ k2
l∑

n=1

∥ − ∂2τϱ
n + ωn∥∥θn+1 − θn−1∥

≤ k2

2ε

l∑
n=1

∥ − ∂2τϱ
n + ωn∥2 + εk2

2

l∑
n=1

∥θn+1 − θn−1∥2

≤ k2

ε

l∑
n=1

∥∂2τϱn∥2 +
k2

ε

l∑
n=1

∥ωn∥2 + εk2

2

l∑
n=1

(∥θn+1 − θn∥+ ∥θn − θn−1∥)2

≤ k2

ε

l∑
n=1

∥∂2τϱn∥2 +
k2

ε

l∑
n=1

∥ωn∥2 + 2εk2
l∑

n=0

∥θn+1 − θn∥2. (7.25)

We estimate now the first two terms in the right-hand side of the above. By Taylor’s

theorem we have

ϱn+1 = ϱn + kϱnt +

∫ tn+1

tn
(tn+1 − τ)ϱtt(τ) dτ,

ϱn−1 = ϱn − kϱnt +

∫ tn−1

tn
(tn−1 − τ)ϱtt(τ) dτ.

Therefore

∂2τϱ
n =

1

k2

[∫ tn+1

tn
(tn+1 − τ)ϱtt dτ −

∫ tn

tn−1

(tn−1 − τ)ϱtt dτ

]
.

Since (∫ tn+1

tn
(tn+1 − τ)ϱttdτ

)2

≤
∫ tn+1

tn
(tn+1 − τ)2dτ

∫ tn+1

tn
(ϱtt)

2dτ

≤ k3

3

∫ tn+1

tn
(ϱtt)

2dτ,
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we have

(∂2τϱ
n)2 ≤ C

k4
k3
∫ tn+1

tn−1

(ϱtt)
2ds,

and we conclude by the definition of ϱ that

l∑
n=1

∥∂τϱn∥2 ≤
C

k

∫ tl+1

0

∥ϱtt∥2ds ≤ Ck−1h2r
∫ tl+1

0

∥utt∥2rds.

Now

ωn = ûntt − ∂2τu
n = (ûntt − untt) + (untt − ∂2τu

n) =: ωn
1 + ωn

2 .

For ωn
1 by Taylor’ s theorem we have

ωn
1 =

1

4

[∫ tn+1

tn
(tn+1 − s)∂4t uds+

∫ tn−1

tn
(tn−1 − s)∂4t uds

]
.

Hence (ωn
1 )

2 ≤ ck3
∫ tn+1

tn−1 (∂
4
t u)

2ds and

l∑
n=1

∥ωn
1 ∥2 ≤ ck3

∫ tl+1

0

∥∂4t u∥2ds.

Similarly,
l∑

n=1

∥ωn
2 ∥2 ≤ ck3

∫ tl+1

0

∥∂4t u∥2ds.

We conclude that

k2

ε

(
l∑

n=1

∥∂2τϱn∥2 +
l∑

n=1

∥ωn∥2
)

≤ ck

ε

[
h2r
∫ tl+1

0

∥utt∥2rds+ k4
∫ tl+1

0

∥∂4t u∥2ds

]
=:

ck

ε
σl, 1 ≤ l ≤M − 1. (7.26)

Therefore, by (7.24) - (7.26) we obtain for 0 ≤ l ≤M − 1

∥θl+1 − θl∥2 + k2

4
∥∇(θl+1 + θl)∥2 ≤ ∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2

+
ck

ε
σl + 2εk2

l∑
n=0

(
∥θn+1 − θn∥2 + k2

4
∥∇(θn+1 + θn)∥2

)
≤ ∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2 + ck

ε
σl

+ 2εkT max
0≤n≤l

(
∥θn+1 − θn∥2 + k2

4
∥∇(θn+1 + θn)∥2

)
,

since (l + 1)k ≤ T . Choose now ε = 1
4Tk

. Then, for 0 ≤ l ≤M − 1

∥θl+1 − θl∥2 + k2

4
∥∇(θl+1 + θl)∥2 ≤ ∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2

+ CTk2σl +
1

2
max
0≤n≤l

(
∥θn+1 − θn∥2 + k2

4
∥∇(θn+1 + θn)∥2

)
. (7.27)
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Fix l for the moment and let m, 0 ≤ m ≤ l, be an integer for which

max
0≤n≤l

(
∥θn+1 − θn∥2 + k2

4
∥∇(θn+1 + θn)∥2

)
= ∥θm+1 − θm∥2 + k2

4
∥∇(θm+1 + θm)∥2.

Then, from (7.27), since σn is increasing with n

∥θm+1 − θm∥2 + k2

4
∥∇(θm+1 − θm)∥2 ≤ ∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2

+CTk2σl +
1

2

(
∥θm+1 − θm∥2 + k2

4
∥∇(θm+1 + θm)∥2

)
.

Therefore

∥θm+1 − θm∥2 + k2

4
∥∇(θm+1 − θm)∥2 ≤ 2[∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2] + CTk2σl.

But

∥θl+1 − θl∥2 + k2

4
∥∇(θl+1 + θl)∥2 ≤ ∥θm+1 − θm∥2 + k2

4
∥∇(θm+1 + θm)∥2.

Hence,

∥θl+1 − θl∥2 + k2

4
∥∇(θl+1 + θl)∥2 ≤ C[∥θ1 − θ0∥2 + k2

4
∥∇(θ1 + θ0)∥2 + Tk2σl].

Dividing both sides of the above by k2 and taking square roots we obtain (7.22) in

view of (7.26).

Exercise 1. Using the technique of the proof of Proposition 7.1 show that an estimate

of the form (7.22) holds for the solution of (7.14) for any β ≥ 0, provided the stability

condition (7.20) holds if 0 ≤ β < 1
4
.

Exercise 2. The scheme (7.14) in the case β = 1
12

is known as the Störmer-Numerov

method. Show that this scheme is fourth-order accurate in time: Specifically prove that

for β = 1
12

l∑
n=1

∥ωn∥2 ≤ ck7
∫ tl+1

0

∥∂8t u∥2ds,

and consequently that the last term in the right-hand side of (7.22) is ofO(k4), provided

(7.20) holds with β = 1
12
. (The Störmer-Numerov scheme is the only fourth-order

accurate in k scheme of the family (7.14). For all other β ≥ 0 the temporal truncation

error is of O(k2).)

We present now some straightforward implications of Proposition 7.2.
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Proposition 7.3. Let the hypotheses of Proposition 7.2 hold and assume in addition

that for some constant C independent of h and k we have

1

k
∥θ1 − θ0∥+ ∥∇(θ1 + θ0)∥ ≤ C(k2 + hr). (7.28)

Then, there is a constant C = C(u, T ) such that

(i) ∥1
k
(Un+1 − Un)− ut(t

n+1/2)∥ ≤ C(k2 + hr), tn+1/2 = tn +
k

2
, 0 ≤ n ≤M − 1,

(ii) ∥1
2
∇(Un+1 + Un)−∇u(tn+1/2)∥ ≤ C(k2 + hr−1), 0 ≤ n ≤M − 1,

(iii) max
0≤n≤M

∥Un − un∥ ≤ C(k2 + hr).

Proof. (i). Let 0 ≤ n ≤M − 1. Since

1

k
(Un+1 − Un)− ut(t

n+1/2) =
1

k
(θn+1 − θn) +

1

k
Rh(u

n+1 − un)− ut(t
n+1/2)

=
1

k
(θn+1 − θn) +Rh(

un+1 − un

k
)− (

un+1 − un

k
) + (

un+1 − un

k
− ut(t

n+1/2))

=
1

k
(θn+1 − θn) +

1

k

∫ tn+1

tn
(Rhut − ut)ds+ (

1

k
(un+1 − un)− ut(t

n+1/2)),

we have

∥1
k
(Un+1 − Un)− ut(t

n+1/2)∥ ≤ 1

k
∥θn+1 − θn∥+ Chr max

tn≤s≤tn+1
∥ut(s)∥r

+ Ck2 max
tn≤s≤tn+1

∥uttt(s)∥,

and (i) follows from (7.22) and (7.28).

(ii). Let 0 ≤ n ≤M − 1. Since

1

2
∇(Un+1 + Un)−∇u(tn+1/2) =

1

2
∇(θn+1 + θn) +

1

2
∇(Rh(u

n+1 + un)− (un+1 + un))

+∇(
1

2
(un+1 + un)− u(tn+1/2)),

we have

∥1
2
∇(Un+1 + Un)−∇u(tn+1/2)∥ ≤ 1

2
∥∇(θn+1 + θn)∥+ chr−1(∥un+1∥r + ∥un∥r)

+ Ck2 max
tn≤s≤tn+1

∥∇utt(s)∥,

and (ii) follows from (7.22) and (7.28).
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(iii). Since

U l − ul = θl + ϱl, 0 ≤ l ≤M,

we have

∥U l − ul∥ ≤ ∥θl∥+ Chr∥ul∥r, 0 ≤ l ≤M. (7.29)

But for 0 ≤ n ≤ M − 1, θn+1 = θn+1+θn

2
+ k

2
( θ

n+1−θn

k
). Hence by (7.22), (7.28) and

Poincaré’ s inequality

∥θn+1∥ ≤ 1

2
∥θn+1 + θn∥+ k

2

1

k
∥θn+1 − θn∥

≤ C∥∇(θn+1 + θn)∥+ k

2
∥θ

n+1 − θn

k
∥ ≤ C(k2 + hr),

for 0 ≤ n ≤ M − 1. In addition, since θ0 = θ1+θ0

2
− k

2
( θ

1−θ0

k
), we have by the Poincaré

inequality and (7.28)

∥θ0∥ ≤ 1

2
∥θ1 + θ0∥+ k

2
∥θ

1 − θ0

k
∥ ≤ C

2
∥∇(θ1 + θ0)∥+ k

2

∥θ1 − θ0∥
k

≤ C(k2 + hr).

Therefore (iii) follows from (7.29) and these estimates.

We turn now to the matter of choosing U0 and U1 in Sh so that (7.28) holds. We

choose first

U0 = Rhu
0. (7.30)

This implies that θ0 = 0; hence, U1 must be chosen so that

1

k
∥θ1∥+ ∥∇θ1∥ ≤ C(k2 + hr). (7.31)

A straightforward way of doing this is using Taylor expansions:

Let

u∗(x) = u0(x) + ku0t (x) +
k2

2
(∆u0(x) + f(x, 0)), x ∈ Ω. (7.32)

Since by (7.1) utt = ∆u+ f , it is clear that u∗ �∂Ω= 0 and that we have

u∗ = u(k) +O(k3), ∇u∗ = ∇u(k) +O(k3).

We let

U1 = Rhu
∗. (7.33)

175



Then by Poincaré’ s inequality

∥θ1∥ = ∥U1 −Rhu(k)∥ = ∥Rh(u
∗ − u(k))∥

≤ C∥∇Rh(u
∗ − u(k))∥ ≤ C∥∇(u∗ − u(k))∥ ≤ Ck3,

and

∥∇θ1∥ = ∥∇Rh(u
∗ − u(k))∥ ≤ ∥∇(u∗ − u(k))∥ ≤ Ck3.

Therefore 1
k
∥θ1∥ + ∥∇θ1∥ ≤ Ck2 and (7.31) holds. It is then straightforward to check

that the initial conditions (7.30) and (7.33) satisfy the hypotheses (7.17) and (7.18) for

the L2-stability of the scheme (7.14). Indeed, we have by Poincaré’ s inequality, that

∥U1 − U0∥ = ∥Rh(u
∗ − u0)∥ ≤ C∥∇(u∗ − u0)∥ ≤ Ck,

and

∥∇(U1 ± U0)∥ = ∥∇Rh(u
∗ ± u0)∥ ≤ C∥∇(u∗ ± u0)∥ ≤ C.

Exercise 3. Consider the Störmer-Numerov method (see Exercise 2.). Take U0 = Rhu
0

and U1 = Rhu
∗∗, where u∗∗ = u0 + ku0t +

k2

2
utt(0) +

k3

3!
∂3t u(0) +

k4

4!
∂4t u(0). Prove that

with these choices one has

1

k
∥θ1 − θ0∥+ ∥∇(θ1 + θ0)∥ ≤ Ck4, (7.34)

so that by Exercises 1 and 2 and Proposition 7.3 (iii) one obtains for the Störmer-

Numerov scheme the error estimate

max
0≤n≤M

∥Un − un∥ ≤ C(k4 + hr),

provided (7.17) holds for β = 1
12
. (Note that for the wave equation,

∂2t u(0) = ∆u0 + f(0), ∂3t u(0) = ∆u0t + ft(0),

∂4t u(0) = ∂2t (∆u+ f) �t=0= ∆2u0 +∆f(0) + ftt(0),

so that, in principle, u∗∗ can be computed by the data of (7.1).) Finally show that

these choices in U1 and U0 also satisfy the estimates (7.17) and (7.18).

Remarks

a. The choice U1 = Rhu
∗ has the disadvantage that it needs the computation of ∆u0.
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Alternatively (see Dougalis and Serbin, Comput. Math. Appl. 7(1981), 261-279)),

one may compute initial conditions for the scheme (7.14) for β ̸= 1
12

as follows: (For

simplicity we consider only the homogeneous equation, f = 0).Take again U0 = Rhu
0

and compute U1 ∈ Sh as solution of the problem

(U1, χ) + βk2(∇U1,∇χ) = (U0, χ) + (β − 1
2
)k2(∇U0,∇χ) + k(u0t , χ), ∀χ ∈ Sh.

It can be shown that for this choice of U0 and U1, (7.28) and (7.17)-(7.18) hold.

b. In the case of the Störmer-Numerov method (β = 1
12
) the choice U1 = Rhu

∗∗ (see

Exercise 3 above) requires computing ∆u0, ∆u0t , ∆
2u0, ft(0), ftt(0), ∆f(0), which may

be difficult or impossible in practice. A more efficient way (see Dougalis and Serbin,

op. cit) of computing U0, U1, so that (7.34) and (7.17)-(7.18) hold, is the following.

(We take f = 0 for simplicity.) Define again U0 = Rhu
0 and compute successively U0,1,

U0,2, and U1 in Sh by the equations

(U0,1, χ) +
k2

12
(∇U0,1,∇χ) = 6(U0, χ) +

k2

2
(∇U0,∇χ) + k(u0t , χ), ∀χ ∈ Sh,

(U0,2, χ) +
k2

12
(∇U0,2,∇χ) = (U0,1, χ), ∀χ ∈ Sh,

U1 = U0,2 − 5U0.

c. For higher-order accurate in time full discretizations of the second-order semidis-

crete problem (7.4) one may use e.g. the so-called cosine methods (cf. e.g. Baker et

al., Numer. Math. 35(1980), 127-142, RAIRO Anal. Numer. 13 (1979), 201-226),

extended to problems with time-dependent coefficients by Bales et al., Math.Comp.

45(1985), 65-89, and to nonlinear problems by Bales and Dougalis 52(1989) 299-319,

and Makridakis, Comput. Math. Appl. 19(1990), 19-34, or linear multistep methods

(cf. e.g. Dougalis, Math. Comp. 33(1979), 563-584), etc.

Another class of fully discrete Galerkin methods for the wave equation is obtained

by writing (7.1) as a first-order system in the temporal variable:

qt = ∆u+ f, x ∈ Ω, t ≥ 0,

ut = q, x ∈ Ω, t ≥ 0,

u = 0, q = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), q(x, 0) = u0t , x ∈ Ω.

(7.35)
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We may then consider the Galerkin semidiscretization of (7.35) and its temporal dis-

cretization by single-step or multistep schemes. For example, consider the trapezoidal

method in which we seek Un, Qn in Sh for 0 ≤ n ≤M satisfying

U0 = Pu0, Q0 = Pu0t ,

and for n = 0, 1, . . . ,M − 1:(Q
n+1−Qn

k
, χ) + 1

2
(U

n+1+Un

2
,∇χ) = 1

2
(fn+1 + fn, χ), ∀χ ∈ Sh,

1
k
(Un+1 − Un) = 1

2
(Qn+1 +Qn).

(Here P is the L2-projection onto Sh.) The scheme is easily solvable for Qn+1 by

substituting Un+1 from the second equation into the first one. Taking χ = Un+1 − Un

in the first equation and the L2-inner product of both sides of the second equation by

Qn+1 −Qn we easily obtain the stability estimate

∥Qn∥2 + k

2
∥∇Un∥2 = ∥Q0∥2 + k

2
∥∇U0∥2,

that may be viewed as a discrete analog of (7.2). Baker, SIAM J. Numer. Anal.,

13(1976), 564-576, has analyzed the convergence of the scheme and shown that

maxn ∥Un − un∥ = O(k2 + hr). Higher-order temporal discretizations for the Galerkin

semidiscretization of (7.35) have been studied by Baker and Bramble, RAIRO Anal.

Numer. 13(1979), 75-100, and extended by Bales (Math. Comp. 43(1984), 383-414,

SIAM J. Numer. Anal., 23(1986), 27-43, Comput. Math. Appl. 12A(1986), 581-604)

to the case of equations with time-dependent coefficients and nonlinear terms.
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