Ανάλυση ΙΙ (A)
Επίθετα που ξεκινούν A-Mα
Εαρίνο Εξάμηνο 2020
Διδάσκων: Νίκος Φραντζικινάκης.
E-mail: frantzikinakis@gmail.com.
Ώρες διδασκαλίας: Τρίτη και Πέμπτη 9:15-11:00 στο Αμφ Α201.
Ώρες ασκήσεων:
Παρασκευή 9:15-11:00 Αμφ Α201.
Κύριο Σύγγραμμα: Σημειώσεις Μ. Παπαδημητράκη
εδώ.
Βοηθητικά Συγγράμματα: Σημειώσεις Θ. Μήτση
εδώ.
Σημειώσεις Θ. Μήτση για μετρικούς χώρους
εδώ.
Σημειώσεις Α. Γιαννόπουλου
εδώ (το κομμάτι που αφορά το ολοκλήρωμα Riemann και την ομοιόμορφη συνέχεια).
Γραφείο: Γ 307.
Ώρες γραφείου: Τρίτη και Πέμπτη 11:00-12:00.
Όσο είναι κλειστό το πανεπιστήμιο για οποιαδήποτε ερώτηση ή σχόλιο στείλτε μου email.
'Υλη (από τις σημειώσεις του Παπαδημητράκη): Ομοιόμορφη συνέχεια (4.6), ολοκλήρωμα Riemann (6.1-6.5), σχέση παραγώγου και ολοκληρώματος (7.1-7.3),
ακολουθίες συναρτήσεων (9.1-9.2), σειρές συναρτήσεων (10.1-10.3), σύντομη εισαγωγή σε μετρικούς χώρους (μέρος του 11).
Βαθμολογία: Τελικό διαγώνισμα (100%).
Ανακοινώσεις
30/1: Εδώ θα βρείτε ένα χαπάκι ανάλυσης, πατέντα του ντόκτορ Κολουντζάκη.
Συνιστάται καθημερινή χρήση ακόμη και αν αισθάνεστε υγιής.
13/2:
H πρόοδος θα πραγματοποιηθεί την Παρασκευή 3 Απριλίου
ώρα 17:15-19:15.
Το διαγώνισμα θα είναι ανάπτυξης και
η εξεταστέα ύλη θα περιλαμβάνει τις ενότητες
που αφορούν την ομοιόμορφη συνέχεια και το ολοκλήρωμα Riemann.
10/3: Tα μαθήματα αναστέλλονται για τις επόμενες δύο εβδομάδες.
Είναι καλή ευκαιρία να κάνετε επανάληψη στην μέχρι τώρα ύλη.
15/3: Η πρόοδος του μαθήματος ακυρώνεται.
16/3: Στο ημερολόγιο του μαθήματος παραθέτω την υπόλοιπη ύλη του μαθήματος, προτεινόμενες ασκήσεις από τις σημειώσεις, και τα σχετικά φυλλάδια ασκήσεων.
Μέχρι να ανοίξει ξανά το πανεπιστήμιο συνιστώ ισχυρά να χρησιμοποιήσετε το χρόνο σας για αυτο-μελέτη. Ειδικότερα, η υπολειπόμενη ύλη μέχρι και το τέλος της 10ης εβδομάδας αποτελεί το πιο εύκολο κομμάτι του μαθήματος και δεν θα δυσκολευτείτε να την κατανοήσετε. Για όποιες απορίες επικοινωνήστε μαζί μου με email. Καλή μελέτη!
21/3: Σε λίγες μέρες θα ξεκινήσω να βάζω στην ιστοσελίδα μου βιντεοσκοπημένα μαθήματα θεωρίας και ασκήσεων (με link στο YouTube).
Αυτό θα συνεχιστεί σε εβδομαδιαία βάση για όσο χρειαστεί. Για όποιες απορίες ή σχόλια επικοινωνήστε μαζί μου με email.
Δείτε και εδώ μια σχετική ανακοίνωση. Τα βίντεο θα είναι χρήσιμα και για τους φοιτητές του τμήματος Β.
23/3: Tο πρώτο βιντεοσκοπημένο μάθημα θα το βρείτε εδώ.
26/3: Tα βιντεοσκοπημένα μαθήματα της 6ης εβδομάδας βρίσκονται εδώ.
3/4: Tα βιντεοσκοπημένα μαθήματα της 7ης εβδομάδας βρίσκονται εδώ.
9/4: Σε συνενvόνηση με τον Γ. Κωστάκη αποφασίσαμε στο τελικό διαγώνισμα τα δύο τμήματα να εξεταστούν στην ίδια ύλη και σε παραπλήσια θέματα. Ο Γιώργος θα ανεβάζει σημειώσεις και επιπλέον ασκήσεις στη δικιά του ιστοσελίδα
εδώ.
10/4: Tα βιντεοσκοπημένα μαθήματα της 8ης εβδομάδας βρίσκονται
εδώ.
21/4: Tα βιντεοσκοπημένα μαθήματα της 9ης εβδομάδας βρίσκονται
εδώ.
28/4: Tα βιντεοσκοπημένα μαθήματα της 10ης εβδομάδας βρίσκονται
εδώ.
5/5: Tα βιντεοσκοπημένα μαθήματα της 11ης εβδομάδας βρίσκονται
εδώ.
12/5: Tα βιντεοσκοπημένα μαθήματα της 12ης εβδομάδας βρίσκονται
εδώ.
20/5: Tα βιντεοσκοπημένα μαθήματα της 13ης εβδομάδας βρίσκονται
εδώ. Όλα τα βίντεο θα τα βρείτε
εδώ και
εδώ.
Τελική Εξέταση
25/5: Η τελική εξέταση θα είναι γραπτή (με θέματα ανάπτυξης) και θα πραγματοποιηθεί σε χώρο του πανεπιστημίου μετά τις 22 Ιουνίου.
Για όσους/σες δεν επιθυμούν να εξεταστούν με αυτόν τον τρόπο θα υπάρξει δυνατότητα διαδικτυακής εξέτασης η οποία
θα βασιστεί (ενδεχομένως αποκλειστικά) σε προφορική εξέταση η οποία θα γίνει κατ'ιδίαν, με ανοιχτές κάμερες.
26/5:
Οδηγίες εδώ για όσους/σες επιθυμούν να λάβουν μέρος στην τελική εξέταση με φυσική παρουσία.
Οδηγίες εδώ για όσους/ες επιθυμούν να λάβουν μέρος στην τελική εξέταση διαδικτυακά.
Οι φοιτητές του τμήματος Β θα βρουν σύντομα σχετικές πληροφορίες στην ιστοσελίδα του κ. Κωστάκη.
Προσοχή: Κάντε ότι σας ζητείται στις παραπάνω οδηγίες μέχρι τις 5 Ιουνίου
και κάντε και την εγγραφή σας στα μαθήματα που θέλετε να εξεταστείτε στην ιστοσελίδα του τμήματος
εδώ.
Παράκληση: Για να διευκολύνετε τη διαδικασία της εξέτασης, δηλώστε συμμετοχή μόνο αν είστε καλά προετοιμασμένοι για
να περάσετε το μάθημα. Σε αυτή την εξεταστική οι θεοί της ανάλυσης δεν θα εισακούσουν τις προσευχές σας να επιλέξω τα πέντε αγαπημένα σας θέματα και οι ημίθεοι-γκουρού-κονσιλιέρι προβλέπω πως δεν θα καταφέρουν να σας μεταλαμπαδέψουν τις γνώσεις τους. Αφήστε λοιπόν τους αναλυσιακούς σας πειραματισμούς για άλλες εξεταστικές.
29/5: Διαβάστε τους όρους εξετάσεων με φυσική παρουσία και εξ'αποστάσεως
εδώ. Δώστε προσοχή στον κανόνα για
χρήση μάσκας η οποία είναι υποχρεωτική για όλους στις εξετάσεις με φυσική παρουσία.
3/6: Υπενθυμίζω ότι όσοι θέλετε να συμμετάσχετε στην τελική εξέταση του μαθήματος πρέπει μέχρι τις 5 Ιουνίου
να μου στείλετε ένα τυποποιημένο email ακολουθώντας τις οδηγίες που θα βρείτε παραπάνω.
5/6: Αγαπητοί φοιτητές (του τμήματος Α), κάποιοι από εσάς έχουν δηλώσει στην online φόρμα ότι θέλουν να εξεταστούν στο μάθημα μου, όμως δεν μου έστειλαν προσωπικό email όπως έχω ζητήσει. Κανένα πρόβλημα, γνωρίζω ότι πολλοί από εσάς πατήσατε το online κουμπάκι από κεκτημένη ταχύτητα και σας ευχαριστώ που το ξανασκεφτήκατε και κρίνατε πως είναι καλύτερο να
διευκολύνετε τη διοργάνωση της εξέτασης με την απουσία σας. Εγώ θα κάνω τον προγραμματισμό μου με βάση τα email που έχω λάβει (ή θα λάβω σήμερα) και θέση στην τελική εξέταση (με φυσική παρουσία ή διαδικτυακά) θα βρουν μόνο όσοι μου έστειλαν email. Οι υπόλοιποι έχετε τις
θερμές ευχές μου για μία πολύ καλή εξεταστική στα υπόλοιπα σας μαθήματα και στο δικό μου πιθανώς το Σεπτέμβρη.
30/6: Η εξέταση με φυσική παρουσία θα πραγματοποιηθεί τη Δευτέρα 6 Ιουλίου 10-12 πμ. Η κατανομή των εγγεγραμμένων φοιτητών σε αίθουσες βρίσκεται εδώ.
Η εξ'αποστάσεως εξέταση θα γίνει στις 7-9 Ιουλίου με το Zoom και θα είναι προφορική. Θα επικοινωνήσω σύντομα με τους εγγεγραμένους φοιτητές ώστε να κανονίσουμε τις λεπτομέρειες.
2/7: Παρακαλούνται όσοι έχουν δηλώσει ότι θα εξεταστούν εξ'αποστάσεως να μου απαντήσουν στο email που έλαβαν στον ιδρυματικό τους λογαριασμό μέχρι αύριο Παρασκευή ώστε να κανονίσουμε την διαδικτυακή προφορική εξέταση.
17/7: Τα θέματα του τελικού διαγωνίσματος είναι εδώ. Τα τελικά αποτελέσματα είναι
εδώ. Όσοι θέλετε να δείτε το γραπτό σας μπορείτε να περάσετε από το γραφείο μου την Πέμπτη 23 Ιουλίου 10:00-12:00.
17/8:
Η επαναληπτική εξέταση του Σεπτεμβρίου θα πραγματοποιηθεί με φυσική παρουσία την Παρασκευή 4 Σεπτεμβρίου
ώρα 10:00-12:00. Η εξέταση θα είναι ανάπτυξης και
η εξεταστέα ύλη περιλαμβάνει όλες τις ενότητες
που έχουμε καλύψει. Ο βαθμός της προόδου δεν θα μετρήσει.
Η κατανομή των εγγεγραμμένων φοιτητών σε αίθουσες θα ανακοινωθεί την επόμενη εβδομάδα εδώ.
1/9: Λόγω των πρόσφατων έκτακτων μέτρων
η προγραμματισμένη επαναληπτική εξέταση του Σεπτεμβρίου αναβάλλεται. Θα επαναπρογραμματιστεί (και για τα δύο τμήματα Α και Β) για νέα ημερομηνία μετά τις 14 Σεπτεμβρίου.
15/9: Η επαναληπτική εξέταση του Σεπτεμβρίου (για το τμήμα Α) θα πραγματοποιηθεί με φυσική παρουσία την Παρασκευή 25 Σεπτεμβρίου
ώρα 9:00-11:00 (για το τμήμα B οι ώρες είναι 12:00-14:00).
Η εξέταση θα πραγματοποιηθεί τηρώντας όλες τις προδιαγραφές ασφάλειας.
20/9: Η κατανομή των φοιτητών σε αίθουσες βρίσκεται
εδώ.
7/10: Τα θέματα του τελικού διαγωνίσματος του Σεπτεμβρίου είναι
εδώ και τα αποτελέσματα είναι
εδώ. Όσοι θέλετε να δείτε το τελικό σας διαγώνισμα μπορείτε να έρθετε στην αίθουσα Α214 την Πέμπτη 15/10 στις 11:00-12:00.
23/12: Η εμβόλιμη εξέταση του Ιανουαρίου (και για τα δύο τμήματα)
θα γίνει διαδικτυακά σε δύο μέρη. Στο πρώτο μέρος θα εξεταστείτε με θέματα πολλαπλής επιλογής. Στο δεύτερο μέρος θα εξεταστείτε γραπτά με θεμάτα ανάπτυξης και προφορικά. Χρειάζεστε βαθμό 5 και στα δύο μέρη για να περάσετε το μάθημα. Οι ημερομηνίες των δύο εξετάσεων και επιπλέον πληροφορίες θα ανακοινωθούν αργότερα.
6/1: Το πρώτο μέρος της διαδικτυακής εξέτασης θα πραγματοποιηθεί το Σάββατο 23 Ιανουαρίου
9:00-11:00.
Στο δεύτερο μέρος της εξέτασης θα λάβουν μέρος μόνο όσοι πάρουν βαθμό μεγαλύτερο του 4.5 στο πρώτο μέρος και θα πραγματοποιηθεί
την Δευτέρα 25 Ιανουαρίου 17:00-20:00.
7/1:
Παρακαλώ δηλώστε συμμετοχή στην εξέταση
εδώ μέχρι την Τρίτη 12 Ιανουαρίου 14:00.
17/1: Την πρώτη εξέταση και σχετικές οδηγίες (και για τα δύο τμήματα) θα τις βρείτε σε αυτή την
ιστοσελίδα το Σάββατο 23 Ιανουαρίου στις 9:00 το πρωί. Θα χρειαστείτε μόνο πρόσβαση στο internet και στο email σας
(κατά προτίμηση το ιδρυματικό). Παρακαλώ μη μου στέλνετε email σχετικά με τον τρόπο διεξαγωγής των εξετάσεων,
ότι πληροφορία χρειάζεστε ανακοινώνεται σε αυτή την ιστοσελίδα.
23/1: (Αφορά και τα δύο τμήματα.) Τα θέματα της πρώτης εξέτασης θα τα βρείτε παρακάτω. Λύστε τα θέματα του διαγωνίσματος με σειριακό αριθμό (S/N) ίδιο με τα τελευταία 3 ψηφία του ΑΜ σας (ΑΜ 1453 αντιστοιχεί στο διαγώνισμα 453). Στείλτε μου τις απαντήσεις σας (όχι τα θέματα) με email, το αργότερο μέχρι τις 10:35, στο
frantzikinakis@gmail.com
σύμφωνα με τις οδηγίες που αναγράφονται στην πρώτη σελίδα κάθε διαγωνίσματος.
Tα θέματα σας αν το ΑΜ σας τελειώνει σε
001-099
100-199
200-299
300-399
400-499
500-599
600-699
700-799
800-899
900-1000 (το 000 αντιστοιχεί στο 1000)
Πχ το ΑΜ 2021 κάνει κλίκ στο 001-099 και λύνει τα θέματα του διαγωνίσματος 21,
ενώ το ΑΜ 1821 κάνει κλίκ στο 800-899 και λύνει τα θέματα του διαγωνίσματος 821.
Όσοι γράψουν βαθμό 4.5 ή μεγαλύτερο θα ενημερωθούν αύριο με email για να συμμετάσχουν στο
γραπτό διαγώνισμα της Δευτέρας.
Καλή επιτυχία!
23/1: (Αφορά και τα δύο τμήματα.) Λαμβάνοντας υπόψη την επίδοση σας στη σημερινή εξέταση πολλαπλής επιλογής, οι φοιτητές με τους παρακάτω ΑΜ μπορούν να συμμετάσχουν στο
γραπτό διαγώνισμα της Δευτέρας.
1787,
1825,
1836,
1861,
1987,
1991
2005,
2050,
2134,
2286,
2354,
2392
4583,
4862
5126,
5169,
5302,
5345,
5383,
5399,
5429,
5478,
5516
Όσοι δε βρίσκονται στην παραπάνω λίστα δεν έχουν δικαίωμα να συμμετάσχουν στην εξέταση της Δευτέρας. Όσοι βρίσκονται στην παραπάνω λίστα θα λάβουν
περισσότερες πληροφορίες (στο ιδρυματικό τους email)
για την εξέταση της Δευτέρας σε λίγη ώρα.
Παρακαλώ
μη μου στέλνετε email σχετικά με το βαθμό σας, τα λάθη σας, κτλ.
Ημερολόγιο Μαθήματος
1η Εβδομάδα (5, 6, 7 Φεβρουαρίου): Aσκήσεις επανάληψης, ομοιόμορφη συνέχεια,
παραδείγματα, ακολουθιακός ορισμός ομοιόμορφης συνέχειας Lip-συνέχεια.
Παράγραφοι
3.1 και 3.2 από τις σημειώσεις του Γιαννόπουλου. Προτεινόμενες ασκήσεις από
τις σημειώσεις του Γιαννόπουλου,
σελίδες 52-54: 2, 4, 6, 7, 8, 9, 15, 16, 17, 18, 20, 21, 23.
2η Εβδομάδα (12, 13, 14 Φεβρουαρίου): Oμοιόμορφη συνέχεια σε κλειστά και φραγμένα διαστήματα, σε φραγμένα διαστήματα, σε μη φραγμένα διαστήματα. Παράγραφος
3.3 από τις σημειώσεις του Γιαννόπουλου και
ασκήσεις 2, 9, 10, 12α, από τις ίδιες σημειώσεις ως θεωρία.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Γιαννόπουλου,
σελίδες 52-54: 55, 11, 13, 19, 22, 24, 25, 26, 27, 28.
3η Εβδομάδα (19, 20, 21 Φεβρουαρίου): Ανω και κάτω αθροίσματα Darboux, άνω και κάτω ολοκλήρωμα, Riemann ολοκληρώσιμες συναρτήσεις και κριτήριο ολοκληρωσιμότητας του Riemann, παραδείγματα. Παράγραφοι
4.1, 4.2 από τις σημειώσεις του Γιαννόπουλου, ή 6.1, 6.2 από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη σελίδα 237: 6.2.5, 6.2.6, 6.2.8, και του Γιαννόπουλου
σελίδα 75: 1-8.
4η Εβδομάδα (26, 27, 28 Φεβρουαρίου): Ολοκληρωσιμότητα τμηματικά συνεχών και μονότονων συναρτήσεων,
γραμμικότητα του ολοκληρώματος, βασικές ανισότητες,
γινόμενο ολοκληρώσιμων είναι ολοκληρώσιμη, ανισότητα Cauchy-Schwarz.
Παράγραφοι
4.3 4.4 από τις σημειώσεις του Γιαννόπουλου, ή 6.3 και 6.4 από τις σημειώσεις του Παπαδημητράκη. Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη σελίδα 249: 6.4.3-6.4.7, 6.4.25.
5η Εβδομάδα (3, 5, 6 Μαρτίου): Σύνθεση συνεχούς με ολοκληρώσιμη, θεώρημα μέσης τιμής ολοκληρώτικου λογισμού, αόριστο ολοκλήρωμα, παράγουσα συνάρτηση, 1ο και 2ο θεμελιώδες θεώρημα απειροστικού λογισμού.
Παράγραφοι
4.4, 5.1, 5.2 από τις σημειώσεις του Γιαννόπουλου, ή 6.4, 7.1, 7,2, από τις σημειώσεις του Παπαδημητράκη. Προτεινόμενες ασκήσεις από
τις σημειώσεις του Γιαννόπουλου σελίδες 92-93: 1-6, 13.
6η Εβδομάδα (10 Μαρτίου):
Ολοκλήρωση κατά μέρη και 1ο θεώρημα αντικατάστασης.
Παράγραφος
5.3 από τις σημειώσεις του Γιαννόπουλου ή Παράγραφοι 7.3.1 και 7.3.2 από τις σημειώσεις του Παπαδημητράκη.
---------------------------------------------------------------------------
Παρακάτω, με σκούρα γράμματα εμφανίζεται η θεωρία που έχω καλύψει στα βιντεοσκοπημένα μαθήματα. Όλα τα βίντεο θα τα βρείτε
εδώ και
εδώ.
---------------------------------------------------------------------------
Υπόλοιπο 6ης Εβδομάδας (23-27 Mαρτίου):
Προσέγγιση με κλιμακωτές συναρτήσεις και εφαρμογές, λήμμα Riemann-Lebesgue.
Ασκηση 38 σελίδα 79 και άσκηση 14 σελίδα 93 (για Riemann-ολοκληρώσιμες συναρτήσεις) από τις σημειώσεις του Γιαννόπουλου.
Βίντεο
7η Εβδομάδα (30 Μαρτίου-3 Απριλίου):
Κατά σημείο σύγκλιση και ομοιόμορφη σύγκλιση, παραδείγματα, πράξεις με ομοιόμορφα όρια, κριτήριο Cauchy για ομοιόμορφη σύγκλιση.
Παράγραφοι 9.1, 9.2 (μέχρι την σελίδα 350) από τις σημειώσεις του Παπαδημητράκη.
Δείτε επίσης τις σημειώσεις του Κωστάκη εδώ και εδώ. Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 9.1.1-9.1.5, 9.2.1-9.2.15.
Βίντεο
8η Εβδομάδα (6-10 Απριλίου): Ομοιόμορφη σύγκλιση και συνέχεια, ολοκλήρωμα Riemann, παράγωγος,
το θεώρημα προσέγγισης του Weierstrass και εφαρμογές.
Παράγραφοι 9.2, 9.3 από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 9.2.16-9.2.22, 9.3.3.
Βίντεο
9η Εβδομάδα (20-24 Απριλίου): Σύγκλιση και ομοιόμορφη σύγκλιση σειρών συναρτήσεων, κριτήριο Weierstrass για ομοιόμορφη σύγκλιση και παραδείγματα,
συνέχεια, ολοκληρωσιμότητα, και παραγώγιση σειρών συναρτήσεων, εφαρμογές σε υπολογισμό σειρών.
Παράγραφος 10.1, από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 10.1.1-10.1.11. Βίντεο
10η Εβδομάδα (27 Απριλίου-1 Μαϊου): Ακτίνα σύγκλισης και διάστημα σύγκλισης δυναμοσειρών και παραδείγματα,
παραγώγιση και ολοκλήρωση δυναμοσειρών, παραδείγματα υπολογισμού δυναμοσειρών,
σειρές Taylor, συντελεστές του υποψήφιου αναπτύγματος
Taylor και ίκανες συνθήκες για σύγκλιση (υπόλοιπο Lagrange τάξης n),
ανάπτυγμα Taylor βασικών συναρτήσεων.
Παράγραφοι 10.2 και 10.3 από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 10.2.1, 10.2.3, 10.2.4, 10.2.8, 10.2.9, 10.3.1, 10.3.3, 10.3.5, 10.3.6. Βίντεο
11η Εβδομάδα (4-8 Μαϊου): Ορισμός και παραδείγματα μετρικών στον R^d, σε χώρους ακολουθιών, και χώρους συναρτήσεων, διακριτή μετρική, σύγκλιση ακολουθιών σε μετρικούς χώρους και παραδείγματα, οριακά σημεία και σημεία συσσώρευσης, κλειστά σύνολα και κλειστότητα συνόλου, παραδείγματα, ενώσεις και τομές κλειστών συνόλων.
Παράγραφοι 11.1 και 11.4 από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 11.1.2, 11.4.1, 11.4.2, 11.4.5, 11.4.6, 11.4.9. Βίντεο
12η Εβδομάδα (11-15 Μαϊου): Περιοχές, ανοιχτά σύνολα, εσωτερικό, σύνορο, παραδείγματα, συνεχείς συναρτήσεις, ενώσεις και τομές ανοιχτών συνόλων, ακολουθιακός ορισμός συνέχειας, οι συνεχείς αντριστρέφουν ανοιχτά σε ανοιχτά και κλειστά σε κλειστά, παραδείγματα.
Παράγραφοι 11.2 και 11.3 από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 11.2.1-11.2.13, 11.3.4-11.3.7. Βίντεο
13η Εβδομάδα: Ακολουθιακός ορισμός συμπάγειας, συμπάγεια κλειστών και φραγμένων συνόλων στον R^d, συνεχείς συναρτήσεις σε συμπαγή σύνολα λαμβάνουν μέγιστο και ελάχιστο, εικόνες συμπαγούς συνόλου είναι συμπαγές, ομοιόμορφη συνέχεια σε συμπαγή σύνολα, πληρότητα θεωρία και παραδείγματα.
Παράγραφοι 11.5 (Σελ 425-426) 11.6 (Σελ 435-438) από τις σημειώσεις του Παπαδημητράκη.
Προτεινόμενες ασκήσεις από
τις σημειώσεις του Παπαδημητράκη: 11.5.3, 11.6.1, 11.6.6, 11.6.7, 11.6.9, 11.6.21.
Βίντεο
Φυλλάδια Ασκήσεων
1ο Φυλλάδιο και Υποδείξεις
2ο Φυλλάδιο και Υποδείξεις
3ο Φυλλάδιο και Υποδείξεις
4ο Φυλλάδιο και Υποδείξεις
5ο Φυλλάδιο
και Υποδείξεις
6ο Φυλλάδιο και Υποδείξεις
7ο Φυλλάδιο
και Υποδείξεις
8ο Φυλλάδιο
και Υποδείξεις
9ο Φυλλάδιο
και Υποδείξεις
10ο Φυλλάδιο
και Υποδείξεις